Packet Types: Abstract Specification of Network
Protocol Messages

Peter J. McCann and Satish Chandra
Bell Laboratories
263 Shuman Blvd., Naperville, IL 60566

{mccap, chandra}@research.bell-labs.com

Abstract

In writing networking code, one is often faced with the task
of interpreting a raw buffer according to a standardized
packet format. This is needed, for example, when moni-
toring network traffic for specific kinds of packets, or when
unmarshaling an incoming packet for protocol processing.
In such cases, a programmer typically writes C code that
understands the grammar of a packet and that also per-
forms any necessary byte-order and alignment adjustments.
Because of the complexity of certain protocol formats, and
because of the low-level of programming involved, writing
such code is usually a cumbersome and error-prone process.
Furthermore, code written in this style loses the domain-
specific information, viz. the packet format, in its details,
making it difficult to maintain.

We propose to use the idea of types to eliminate the need for
writing such low-level code manually. Unfortunately, types
in programming languages, such as C, are not well-suited
for the purpose of describing packet formats. Therefore,
we have designed PACKETTYPES, a small packet specifica-
tion language that serves as a type system for packet for-
mats. PACKETTYPES conveniently expresses features com-
monly found in protocol formats, including layering of pro-
tocols by encapsulation, variable-sized fields, and optional
fields. A compiler for this language generates efficient code
for type checking a packet, i.e., matching a packet against a
type. In this paper, we describe the design, implementation,
and some uses of this language.

1 Introduction

Networking software is difficult to construct. Networking
code in a system must interface with bare hardware in a net-
work device, and at the same time implement complicated
real-time algorithms. Furthermore, both the low-level data
manipulation and the emphasis on high performance have
(barring few exceptions) limited the choice of an implemen-
tation language to C. As a result, development, testing, and
deployment of new protocols is a slow and expensive process.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

SIGCOMM’00, Stockholm, Sweden.

Copyright 2000 ACM 1-58113-224-7/00/0008...$5.00.

321

ip_fw_chk(struct iphdr *ip) {
struct tcphdr *tcp =
(struct tcphdr *)((__u32 *)ip + ip->ihl);
int offset =
ntohs(ip->frag_off) & IP_OFFSET;

switch (ip->protocol) {
case IPPROTO_TCP:
if (loffset) {

src_port

dst_port

ntohs(tcp->source);
ntohs(tcp->dst);

Figure 1: Excerpt from the firewall code in Linux (v2.0.32).

Motivated by this problem, significant research effort has re-
cently been put into systematic software architectures and
languages suited for constructing networking software. These
efforts usually address a specific aspect of the complexity of
networking code. Some approaches try to better express the
modular structure and composition of protocol layers (e.g.,
z-kernel [11], Foxnet [6]). Others try to better express the
reactive control within each layer (e.g., Esterel [5]). Yet oth-
ers emphasize the verification aspect (e.g., Promela++ [3]),
or focus on an object-oriented implementation (e.g., Mor-
pheus [1], Prolac [14]). These efforts demonstrate that an
implementation methodology or language more suited to the
task at hand can help build cleaner and more robust im-
plementations and can do so without exacting performance
penalties.

One aspect of the complexity of writing networking code
arises from the fact that the wire format of a network packet
is fixed by standards. Packet formats are independent of
any given machine’s architecture to allow interoperability,
and generally pack data as tightly as possible to minimize
the header overhead per unit of actual content. To interpret
a buffer containing a “raw” network packet, a programmer
must write low-level code that understands the packet for-
mat and that also performs any necessary byte-order and
alignment adjustments as per host requirements. We illus-
trate such low-level code by means of an example.

Figure 1 shows an abstracted form of the firewall code in the
Linux networking module (net/ipv4). The code first com-
putes the starting address of an IP packet’s payload into the
variable tcp, by adding the size of the header (field ihl) to
the start of the packet. It then computes the offset of the

present TP fragment' into the variable offset; the macro
ntohs converts a network byte order representation to the
host byte order representation for a 16-bit quantity. If the
protocol in the payload is TCP and offset is zero (first frag-
ment), it extracts the source and destination port numbers
from the TCP header. Later code (not shown) implements
specific firewall policies based on this and other information.

The style of programming involved here is not complicated,
but does have some undesirable properties. A program-
mer must explicitly encode the layout of an IP packet us-
ing pointer arithmetic and bit operations. He must en-
code the correlation between the protocol field’s value of
IPPROTO_TCP and the payload being a TCP packet. He must
also remember to convert any multi-byte numeric quantities
between the network byte order and the host byte order at
all appropriate places.> While the TCP/IP suite does not
have a complicated packet format, other protocols do, and
writing code that interprets a packet belonging to one of
those protocols can require a lot of cumbersome program-
ming. For example, the Q.931 protocol [12] defines the for-
mat of ISDN signaling messages as rather complex hierar-
chical packets. A C implementation that parses a Q.931
message can run into thousands of lines of code, and it is
easy to introduce coding errors in offsets, sizes, conditionals,
or endianness.

The capability to interpret a network packet is key to many
important networking applications, in addition to protocol
processing. These applications include network monitoring,
accounting, and security services. The only software archi-
tecture in the literature that addresses such applications is a
packet filter. However, filter specifications essentially parse
a packet in much the style of Figure 1, and are written in
byte code (except for some higher-level expression languages
available for TCP/IP). The need for a mechanism to build
such applications quickly and correctly, even for complicated
formats, has been our primary motivation.

At first blush, the concern for parsing a packet may not ap-
pear to be a problem at all—one might be able to simply
overlay a raw buffer with an appropriately defined C struct
or union, and read off the values from the fields of the struc-
ture. Because C supports bit fields in structures, this seems
to be a plausible choice. However, the C type system is
not adequate for describing packet formats for a number of
reasons:

1. Protocol headers can contain fields whose sizes depend
on the value of a previous field in the header. For ex-
ample, the options field in an IP header can occupy
between 0 to 40 bytes, depending on the value of a pre-
vious field ihl (header length). Variable-sized fields
cannot be represented as static types.® Similarly, op-
tional fields are not supported by C structs.

2. C types do not support the notion of layering of pro-
tocols in a clean way. One possibility is to define the
payload of a packet as a union of all possible types of
packets the payload could carry. A problem that im-
mediately presents itself is how to know in advance all

LA long payload may be transmitted by IP as a series of IP frag-
ments, each of which contains a segment of the original payload, and
an indication of the offset of the segment in the original payload.

2To put this in perspective, in the Linux implementation (v2.0.32),
endianness related macros hton* and ntoh* together appear about 300
times in the net/ipvé4.

3By static types we mean data structures whose memory can be
allocated at compile time. Pointer data structures can represent
variable-sized objects, but cannot be allocated at compile time.

322

case (#payload ip) of
TCP {source, dst, ...} =>
if ((#offset ip) = 0) then

Figure 2: An ML-style description. The syntax #field var
is field selection from a record. The term on the left of =>
is a pattern, here matching the datatype TCP.

possible types of payload a given packet may be asked
to carry. Thus, this solution is not easily extensible.
Another problem with C unions is that one must still
test the discriminating field and choose the interpre-
tation consistently. For example, if we represent an IP
payload as a union of TCP and UDP types, we must
still make the right choice based on the value of the
protocol field.

3. Finally, because of possible alignment and byte order
mismatches between a host machine and the network
format, applications may still need to do adjustments
before using a numeric value as a primitive type.

What about data types in higher-level programming lan-
guages, such as Standard ML? In Standard ML, one might
express the logic in Figure 1 using the code fragment shown
in Figure 2. Unlike in Figure 1, the programmer does not
need to explicitly interpret the wire format.

There are good reasons why protocol code is not written
in this way. First, unmarshaling from the wire format to
the high-level data type could be expensive, because ML’s
representation of data types is not as close to machine rep-
resentation as that of C. Second, defining layered packets
in an extensible way is still difficult. Although Foxnet [6]
implements TCP/IP in Standard ML, packets are exposed
as C-like byte arrays. The code uses low-level marshaling
and unmarshaling into SML records to access fields that are
needed for protocol processing.

In this paper we show that the idea of types can nevertheless
be a useful one in the context of networking applications. To
this end, we propose PACKETTYPES, a small packet specifi-
cation language to describe packet formats. The philosophy
behind this language is to supply an ezternal type system for
packet formats. While an external type system cannot be
enforced by the compiler for a host language, we show that
by its disciplined use, a programmer can avoid the problems
mentioned earlier. PACKETTYPES has the following salient
features:

e Packet descriptions are expressed as types.

e The fundamental operation on packets is checking their
membership in a type.

e Layering of protocols is expressed as successive spe-
cialization on types.

e Refinement of types creates new types, a facility useful
for packet classification.

The role of PACKETTYPES is analogous to “yacc”, in that
it abstracts away the packet grammar into a separate speci-
fication language, and automatically creates recognizers for
packets. PACKETTYPES can find application in a number of
situations, such as the following:

Specification of network monitoring code. The task of
writing network monitoring code can be automated—
and perhaps more importantly, sped up—by writing
the specifications in PACKETTYPES.

Packet classification. Type definitions written using
PACKETTYPES can also serve as packet filter specifi-
cations, and can be much simpler to write than byte
codes.

Stub generation. The PACKETTYPES compiler can au-
tomatically generate interface code between the wire
representation and a host language’s representation,
eliminating the need for low-level programming.

Formal specification of packet formats. Instead of En-
glish descriptions and ASCII graphics, Request for Com-
ments documents can use PACKETTYPES to adopt a
formal approach to describing formats. This could also
provide a basis for formal verification.

We have implemented this language, and based on it, have
built a number of applications, including a network moni-
toring system that works for 3.931 protocol messages. We
have also measured the performance of these applications
on simulated, yet realistic workloads. Based on our experi-
ments, we believe that the packet specification language can
be implemented efficiently enough and serve a number of
uses in real systems.

We describe the packet specification language in Section 2,
and a case study on its application to network monitoring
in Section 3. We describe the implementation of this lan-
guage in Section 4. Section 5 describes uses of our language
in stub generation and packet classification, and also gives
performance results. Section 7 compares PACKETTYPES to
related work.

2 PAckeTTYPES: A Packet Specification Language

In this section we describe a specification language for packet
formats, based on the notion that the layout of fields within
a packet, plus a collection of constraints on those fields, can
be considered to be a type. The semantics of a type is a
subset of the universe of binary strings. As we will see be-
low, this specification technique is similar in many respects
to regular languages, but it adds a system of constraints
over attributes of terms which is lacking in most automata-
theoretic models.

We start with one primitive type, bit, and add the ability
to define new types using just a few operators. Definitions
have the form name type. For example,

byte
bytestring

:= bit[8];
:= bytel[];

defines the term byte to be a sequence of exactly eight bits,
and defines the term bytestring to be an arbitrarily long
sequence of bytes. The empty square bracket operator []
is therefore analogous to the Kleene closure operator *, but
with the addition of a constant argument, it constrains the
repetition to have exactly the given number of occurrences.
We also allow grouping and sequencing of terms to form

structures. For example, the specification of an Internet
Protocol (IP) packet might begin as:

323

Attribute Meaning

value The natural number formed by concatenat-
ing all the bits of the field in network order.

numbits The total number of bits occupied by the
field.

numbytes | The total number of bytes occupied by the
field.

numelems | The number of elements in an array-type
field.

alt For an alternative-type field, a collection of
booleans indicating which alternative was
chosen.

Table 1: Attributes and their meanings. See examples i
the text for details.

nybble := bit[4];
short := bit[16];
long := bit[32];
ipaddress := byte[4];
ipoptions := bytestring;
IP_PDU := {
nybble version;
nybble ihl;
byte tos;
short totallength;
short identification;
bit morefrags;
bit dontfrag;
bit unused;
bit frag_off[13];
byte ttl;
byte protocol;
short cksum;
ipaddress src;
ipaddress dest;
ipoptions options;

bytestring payload;

}

IP_PDU defines the fields of an Internet Protocol version 4
header [21]. This type imposes a structure on packets, but
without additional constraints, it allows many sequences of
bits that are not valid IP packets. The necessary constraints
appear in a where clause following the sequence, as in:

= {

} where {
version#value 0x04;
options#numbytes = ihl#value * 4 - 20;
payload#numbytes totallength#value - ihl#value * 4;

}

IP_PDU

These constraints specify that the version field is set to
4 (for IP version 4), and give the number of bytes occu-
pied by the options and payload fields. We use the syntax
field#attribute to reference specific attributes of the given
fields. A partial list of attributes and their meaning is given
in Table 1. Note that the attributes #numbits, #numbytes,
and #numelems can take on only natural numbers as val-
ues, and any packet for which the corresponding constraints
associate a negative value with these attributes should be
rejected as ill-formed.

A set of constraints in a where clause may follow any newly
defined type. In the IP_PDU example, these constraints have
been used to specify that a certain field will hold a certain
constant value and to specify the length of variable-length

fields. In the absence of constraints, the repetition opera-
tor [] is treated “greedily,” meaning that any following data
that could belong to the repetition is assumed to do so. Con-
straints on the number of repetitions may come from within
the repeated member, because each element must match the
given type; from the where section of a structure that con-
tains the repetition, as in the example above; or from out-
side the containing structure in the form of constraints on
the length of the data object in which the structure appears.

In addition to defining types by the := operator, we also
allow a construct known as refinement, which is represented
by the :> operator. Refinement is used to add additional
constraints to an already-specified type. For example, an
Ethernet frame containing an IP packet might be specified
as:
macaddr := bit[48];
Ethernet_PDU := {
macaddr dest;
macaddr src;
short type;
bytestring payload;

}

IPinEthernet :> Ethernet_PDU where {
type#value = 0x0800;
overlay payload with IP_PDU;

Ethernet_PDU contains the specification of an Ethernet frame
and IPinEthernet shows how to layer IP on it by constrain-
ing the type to have the value 0x0800 and overlaying the
IP_PDU definition onto the Ethernet payload.

The overlay...with constraint allows us to merge two type
specifications by embedding one within the other, as is done
when one protocol is encapsulated within another. Overlay
constraints introduce additional substructure to an already
existing field. Essentially, the constraints of the IP_PDU type
will become a part of the payload member of the Ether-
net frame, and must be checked before a packet can match
IPinEthernet. Because IPinEthernet is grounded in a link-
layer frame that might come from a device driver, this would
be an appropriate representation on which to base a network
monitoring application.

Sometimes it is useful to specify additional constraints on
an overlayed type in a refinement, or to otherwise reference
the fields of a sub-structure. For example, an IPinEthernet
packet whose source address is 192.168.0.1 could be expressed
as

My_IPinEthernet :> IPinEthernet where {
payload.srcaddr#value = 192.168.0.1;

The notation payload.srcaddr is used to denote the IP
source address of the packet. Here the dot notation is used
to access the fields of an overlayed structure, but it may also
be used in other contexts such as to reference the substruc-
ture of a definition that uses other definitions as member
types. Note that if a field with substructure is overlayed,
that structure is hidden by the new structure and the old
fields are no longer accessible. This ensures that each dotted
name will resolve to a unique member of the packet struc-
ture.

Finally, we allow the specification of alternative types us-
ing the alternation (1=) operator. This operator combines

324

terms disjunctively, where a given bitstring matches the type
if and only if it matches one of the constituent members.
Earlier, in describing IP_PDU, we had defined ipoptions as
a bytestring. We now provide a more precise definition of
the ipoptions type:

ipoptions := {
NonEndOption mneol[];
EndOption eo[];
bytestring padding;

} where {
eo#numelems <= 1;

}

Here the options are specified as a sequence of

NonEndOptions, followed by an optional EndOption, followed
by padding. The [] operator along with the constraint
eoftnumelems <= 1 effectively ensures that there will be zero
or one EndOptions. We use this idiom to denote optional
fields.

While the EndOption is just a single byte whose value is
zero, the NonEndOptions are more interesting and make use
of the |= construct:

NonEndOption |= {

NoOperation nop;
Security sec;
LSRR 1lsrr;
SSRR SSrr;
RR rr;
StreamID sid;
Timestamp tstamp;

}

The alternatives construct |= is syntactically similar to the
definition construct := in that it consists of a list of type,
name pairs. The repetition operator can be used as before
and there may be a where clause following the members
with additional constraints. In contrast to :=, however, this
example states that a NonEndOption may take on any one
of the formats described by the members.

The #alt attribute may be used in constraints to detect
which alternative was chosen. For example, the alternatives
list above defines seven booleans expressions, #alt @ nop
through #alt @ tstamp, each of which is true if and only if
the member took on the given alternative. We use a sep-
arate @ operator to compare the #alt attribute to one of
the possible values in order to keep the space of such values
distinct from other numeric or boolean values. In a where
clause of the ipoptions structure, for instance, the boolean
expression neo[0]#alt @ tstamp would be true if and only
if the first alternative was a timestamp.

Clearly, the expressiveness of the language comes primarily
from constraints. In general any kind of constraint, includ-
ing relational operators >, < and boolean combinators may
be used (see the appendix). However, for computability rea-
sons, the language limits the kinds of constraints that it ad-
mits. Constraints that provide size information for variable-
sized fields must be such that they reference attributes only
of previously mentioned fields. An implementation should
enforce this restriction.

Moreover, any given implementation may put further limita-
tions in the kinds of constraints it supports; for example, it
may require that lengths be given using very simple expres-
sions such as the ones in IP_PDU. Limitations of our compiler
are mentioned in Section 4.5.

3 Network Monitoring Case Study

In this section, we consider in detail a network monitor-
ing example taken from a real-life situation: monitoring
of signaling messages for ISDN calls in telecommunications
switching equipment. The protocol under consideration is
Q.931, the Layer-3 ISDN signaling, running over LAPD
frames. The general format of a Q.931 message includes
a single-byte protocol discriminator (8 for 3.931 messages),
a call reference value to distinguish between different calls
being managed over the same D channel, a message type,
and various information elements (IEs) as required by the
message type in question. Thus, the top-level description of
a Q.931 packet is given as follows (the types cref, mtype
and infoelem will be defined shortly):

Q931control := {

byte protdisc;

cref callref;

mtype messtype;

infoelem elems[];
} where {

protdisc#value = 0%0001000;

We wish to write a monitoring tool that taps Q.931 mes-
sages and prints out the fields of the message on a display
device. We first describe the relevant portions of the format
of a Q.931 packet, and alongside, show how PACKETTYPES
supports the idioms that appear in it. We then compare
the monitoring tool created by using PACKETTYPES to one
written by hand in C to bring out the advantages of using a
concise yet powerful description language.

The type cref contains one or more octets. Octets following
the first octet in a cref denote an optional call reference
value crv. The length of crv in octets is given in a portion
of the first octet of cref, and could be 0 if crv is omitted.
If crv is present, the most-significant bit of its first octet
denotes a flag value. The packet types defined next capture
this description.

cref := {
nybble reserved;
nybble length;
crv cr[];
} where {
cr¥numelems <= 1;
cr#numbytes = length#value;

}
crv := {

bit flag;

bit cvalue[];
}

Here, the field cr is constrained to have zero or one oc-
currences. The constraint on the numbytes attribute of cr
expresses the relation between the value of the length field
and the number of octets in cr.

The type mtype is simple: one reserved bit followed by one
seven-bit MessageType, which is an alternate list of bit pat-
terns of seven bits each. In this list, instead of inventing
names for fixed bit-patterns, we use the literals as types.

MessageType |= {
0%0000000 Escape;
0%0000001 Alerting;

0%0000010 Proceeding;

The type infoelem is the most challenging part of this pro-
tocol. At the top level, an infoelem can be represented
simply as follows:

infoelem |= {
TypelSingleOctetInfoelem t1;
Type2SingleOctetInfoelem t2;
MultiOctetInfoelem multi;

}

infoelem is defined to be one of three possible alternatives.
The first two alternatives are simple, one-octet types. The
third, multi-octet type is quite complex, and is described
next. The first and second alternatives can be distinguished
from the third by their first bit, which is always set, whereas
it is always clear in the third; they differ between themselves
in their next three bits. Each MultiOctetInfoelem de-
scribes its own length, which enables iteration over a variable-
sized array of infoelems.*

MultiOctetInfoelem is the base for carrying IEs. It can
carry a variety of IEs, such as Bearer Capability, Cause, Call
State, etc. We focus only on Bearer Capability; other ones
can be handled similarly. In PACKETTYPES, MultiOctetInfo
elem is an alternatives list containing the various IEs:

MultiOctetInfoelem |= {
BearerCapability bc;

Each IE is a refinement of the following “base” type:

MultiOctetInfoelemBase := {
0%0 zero;
LongElemIDcsO elemid;
byte length;
bytestring payload;
} where {
payload#numbytes = length#value;

LongElemIDcsO is another enumerated type expressed as a
list of alternatives, each being a seven-bit pattern.’

IEs can be quite complicated. An ASCII picture of the
Bearer Capability IE is shown in Figure 3. Its top level
definition in our language is the following:

BearerCapability :> MultiOctetInfoelemBase
where {
elemid#alt Q@ BearerCapabilityID;
overlay payload with {
BC_group3 g3;
BC_group4 g4;
BC_group5 g5[];
BC_group6 g6[];
BC_group? g7[];
} where {
gb#numelems <= 1;

4The iteration continues until no more infoelems can be matched.

5The suffix csO corresponds to codeset 0. Codesets can be changed
on the fly to get a different set of IEs in place. We do not support
codesets at present (see Section 6).

325

gb#numelems <= 1;
g7#numelems <= 1;

}
}

It is natural to describe the fields g3 to g7 of Bearer Capabil-
ity in terms of octet groups. An octet group is a sequence of
non-final octets followed by a final octet. A non-final octet
has its most significant bit clear, whereas a final octet has
it set.

octetgroup := {
nonfinaloctet nfol];

finaloctet fo;

}

nonfinaloctet := byte where {
[0]#value = 0;

}

finaloctet := byte where {
[0]#value = 1;

}

The syntax [0]#value denotes the first element of the type
byte, in other words, the zero’th bit.

Each of the types BC_group3 through BC_group7 can now
be defined by overlaying an octetgroup with appropriate
decompositions. We do not describe these further, as they
are quite routine.

We can now specify a monitor for the wire format by refin-
ing a LAPD frame (definition is not shown, but assume it
contains a payload field):

Q931inLAPD :> LAPDframe where {
overlay payload with Q931control;

In addition to being a machine readable encoding of Fig-
ure 3, the types described above can be used to automat-
ically construct monitoring code. The compiler generates
print statements after each unit (or type) is matched. An
important issue is the output format: the default print out
may not be what is desired in a given monitoring system.
One possibility is to specify a printf-like template string
that defines the output format, and interpret it with the
data values extracted from the packet. Another possibility
is to generate a skeletal data-structure traversal routine in C
and let the user insert print (or other) statements as needed.

By contrast, writing C code by hand to recognize and parse
a Q.931 packet is tedious due to the large number of con-
ditionals and bitwise operations needed to capture the de-
scription. One implementation of (roughly®) this function-
ality takes well over 10,000 lines of C. It is also harder to
modify as specifications evolve (for example, a version of
this protocol augments octet 3 of Figure 3 with an optional
3a octet.) By contrast, a PACKETTYPES version of a subset
of the same specification takes far fewer lines—by about a
factor of four—and contains far more readable text than the
corresponding C code.

We have produced a working implementation of a monitor
for Q.931 over LAPD (although we have implemented only
a few information elements), and also for IP packets over
Ethernet. The latter includes complete parsing capability
for IP options. We are investigating the possibility of con-
structing monitors for ASN.1 messages, by expressing ASN.1
encodings in our language.

SFor example, the implementation does support multiple codesets,
which we do not currently support.

326

Figure 3: Bearer Capability Information Element

Length
__ I
| Coding | I
| Standard | information transfer cap. |
__ I
| transfer | I
| mode | information transfer rate |
__ I
I I | I
| structure |configura’n|establish’t|
__ I
| | information transfer rate |
| symmetry | destination -> origination |
__ I
() 11 I
| layer 1 | user info layer 1 protocol |
__ I
|sync |Negot| I

|async|posbl|

|intermediat| NIC | NIC |flow |[flow | |
| rate lon Txlon Rxlon Txlon Rx| 0O |

|headr |multi| |ILL ID|assgr|inbndl| |
Ino hd|frame|mode Inegotl|assgelnegot| 0 |

| number of | number of |

| stop bits | data bits | parity |
__ I
|duplx| |
|mode | modem type

__ I
| 1 (| I
| layer 2 | wuser info layer 2 protocol |
__ I
| 1 1] I
| layer 3 | wuser info layer 3 protocol |

5b+ for V.110
5b*x for V.120

| Octet

4a

4b

ba

5b+

5¢c

5d

4 Implementation

We have implemented a compiler for PACKETTYPES. The
compiler works in four steps. In the first step, it takes as
input a list of PACKETTYPES type definitions and produces
a parse tree consisting of a node for each term in the in-
put. In the second step, it performs semantic processing to
resolve fieldnames and propagate constants, so that struc-
tures of fixed size can be recognized. In the third step, it
produces an elaborated intermediate representation consist-
ing of one node for each usage of a definition. Finally, the
compiler generates code from the elaborated intermediate
representation. Construction of the parse tree is routine
and is not discussed further. The subsequent phases are de-
scribed next. We also discuss efficiency considerations in the
matching code, and limitations of our current approach.

4.1 Semantic Processing

In this step, the compiler performs a bottom-up “size prop-
agation” so that structures of fixed size are annotated with
their size. A structure has a fixed size if:

e it is a bit;
e it is a fixed size array of bits;
e it is a binary string literal;

e it is a definition list (:=) consisting only of fixed size
members; or

e it is an alternatives list (|=) consisting only of fixed
size members where all members have the same size.

A refinement has the same size as the structure it is refining.
If the size of a structure cannot be determined at this time,
it must be computed at run time; the compiler generates
code for this computation as described later.

The compiler also resolves fieldnames during this step. At
each occurrence of a fieldname in the constraints, it inserts
a pointer to the member to which it refers. Fieldnames can
also be “dotted”, i.e., contain references to fields of substruc-
tures, e.g., payload.srcaddr. For each dotted fieldname, a
search is performed backwards from the point at which it
appears in the following manner:

e A backwards search is performed to find a constraint
that overlays any fieldname which is a prefix of the
target fieldname. If such an overlay is found, the over-
laid structure or definition is searched for the rest of
the fieldname.

e If no such overlay constraint is found, and this is a
refinement of another type, the other type is searched
for the fieldname as in the previous step.

e If this type is a definition or alternatives list, the mem-
ber names are checked to see if any match the first
term of the fieldname. If one is found, its definition is
checked for the subsequent terms of the fieldname.

e An empty fieldname matches the entire structure in
which it appears.

This algorithm implies that once a field is overlaid, its inter-
nal structure is no longer accessible. Only the newly overlaid
fields may be accessed from that point on. It also shows that
the order in which overlay constraints appear is significant.

327

4.2 Elaboration

In this phase, definitions are expanded so that each usage in-
stance of a defined type is given its own data structure node.
The later phases of the compiler use this data structure to
store information specific to this instance of the type; for
example, the offset of a particular type t will typically be
different for each instance of t. For cases in which definitions
are used in array types, only one node is inserted for each
array instead of potentially unbounded replication. This has
important implications for the code generation phase. Also,
this phase identifies structural constraints, which are con-
straints that impose limits on the size of variable-lengths
fields, and demultiplezing constraints, which are constraints
comparing the value of a key field (see Section 4.4) to a
constant.

4.3 Code Generation

The primary functionality of the generated code is to check
if a packet belongs to a specified type. Therefore, for each
definition or alternatives list, one routine is generated that
checks for that type as well as any refinements of that type.
Usually only one of these routines corresponding to a given
link-layer or device-specific form will be of interest to the
user, such as the Ethernet_PDU from Section 2 or the LAPD-
frame from Section 3. This routine will search for the most
refined type that matches a given packet, or stop after find-
ing a single match for which the user has indicated interest.

During code generation, first each of the nodes in the elab-
orated intermediate representation is allocated named loca-
tions, henceforth referred to as registers, to hold the non-
constant (or, run-time) information such as lengths and off-
sets of fields. The code also uses a set of scratch registers as
needed. These registers are later mapped on to variables in
the generated code. Next, the various language constructs
are translated, as described below.

Definition List. For a definition list (:=), the compiler gener-
ates code that checks the constraints of each member of the
type, and then checks the constraints of the where clause.
Each member is checked recursively in the same manner.
Note that some members may be variable-sized arrays and
that each element of such an array may itself be of variable
size. This necessitates an iteration strategy that first checks
for any structural constraints on the number of elements or
the number of bits that is occupied by the member, and then
checks each element in turn to be sure that its constraints
are satisfied. Iteration must stop when the member runs
out of space, either by violating its structural constraint or
by failing to leave enough room for all of the subsequent,
constant-size members. Failure of an element to satisfy its
constraints also terminates the array iteration.

Because each usage of a definition is given a fixed amount
of storage space, all elements of an array share the same set
of registers and only the last element touched is saved at
any given moment. If values of another element are needed,
they must be recomputed. Also, iteration over an array uses
only local information. If an array uses up too much space
and a later, variable-sized member is left without enough
space, we do not attempt backtrack and change the number
of elements occupied by the first array. We believe this is
an appropriate limitation for most real-world applications,
because most protocols do not require implementations to
perform backtracking during parsing.

Alternatives List. In the code generated for an alternatives
list (1=), each member is checked in turn as before, but pro-
cessing stops at the first member which is found to match.
Also, instead of being cumulative, bit offsets are restarted
from zero for each member. The constraints in the where
section are checked as before. Note that for alternative lists
the #alt attribute is available to see which alternative was
matched. If a fieldname of a constraint happens to reference
an alternative that was not selected, then the entire boolean
expression in which it appears is taken to be false.

Refinement. Refinements of a type (:>) are checked immedi-
ately after the base type has been checked. Each refinement
of a type is checked in turn: the new constraints introduced
by the refinement are simply evaluated to see if they hold. If
a match is found, further refinements of the matching type
are checked before examining any sibling types. Thus, this
approach seeks to find a most-refined match, although other
policies can also be implemented. If the type definitions con-
nected by :> are arranged as a tree, in which a :> b causes
node a to be a child of node b in the tree, then our matching
strategy can be seen as an preorder traversal of this tree.

Constraints. As mentioned earlier, structural constraints
provide information about variable-length fields. The com-
piler uses registers to hold values of attributes computed at
run time. A structural constraint generates code that reads
the necessary attributes from previously matched fields—
these attributes are held in registers—and either evaluates
a boolean, or assigns a value to an attribute of some field.
Non-structural constraints generate code that evaluates a
boolean condition on #value or #alt attributes of fields.
If any boolean condition evaluates to false, matching for
the corresponding type fails and the execution attempts
to match the packet against the next type in its traversal.
Note that overlay constraints have no run-time significance
by themselves, except that they can contribute additional
structural and non-structural constraints.

The matching code that we generate can optionally perform
rigorous bounds checking to ensure that each structure fits
within the memory it is given. Such code is often missing
from hand-coded implementations of networking protocols.
Along with matching code, we can optionally generate code
to print out the values of fields as they are encountered.
As shown in Section 3, this feature makes it easy to create
network monitoring tools.

4.4 Efficiency Considerations

An optimization implicit in our matching scheme is to match
common prefixes of composite types only once. For exam-
ple, if there are two refinements of IP_PDU, say TCPinIP
and UDPinIP, at run-time, the matching process matches
the IP_PDU part only once, and then tries the additional
constraints of TCPinIP and UDPinIP in sequence. This is a
rather important optimization in the packet filter literature.

However, matching against a list of refinements could be
slow if the implementation were to iterate through a large set
of “sibling” types until a match was found. In many cases,
these sibling types differ only in the value of one member
or a set of members, which acts as a demultiplexing key. A
similar situation also arises for alternatives lists, if most of
the alternatives are either literal bit-strings or refinements
of a common type with a demultiplexing key. Our compiler
generates code to perform an optimized traversal in these
cases. Instead of a sequential search, the compiler generates

328

InfoElemBase
elemid
payload
Cause
: elemid = 0x3
CallState overlay payload
elemid = 0x2

BearerCapability

overlay payload
elemid = 0x1

overlay payload

Figure 4: Optimization of traversal of sibling types. The
bold edges lead to types included in the alternatives list
(I=) of InfoElem. The dotted edges lead to types derived
from InfoElemBase using refinement (:>).

(when possible) a switch statement indexed by the demul-
tiplexing key to proceed directly to the code to match a
specific refinement or alternative.

We illustrate this idea by an example. Figure 4 shows three
types, BearerCapability, CallState and Cause, that form
a part of the alternatives list of InfoElem. The three types
also are refinements of InfoElemBase, and can be discrimi-
nated by the value of the elemid member. When matching a
packet against type InfoElem, the base type can be checked
just once. If the base type matches, the value of elemid
can be used to determine which particular type to exam-
ine further.” A similar scheme could be followed to match
a packet against a type “tree” rooted at InfoElemBase. If
the local constraints of InfoElemBase match, we attempt to
find a more specific match. Again, the value of elemid is
used to directly go to the code that matches the particular
type, bypassing a preorder traversal.

The compiler uses demultiplexing constraints to identify op-
portunities for this optimization. For now, only equality
comparisons and alt @ constraints are supported as demul-
tiplexing constraints. This is because the implementation
strategy is to generate C switch statements, which are effi-
ciently supported by a native C compiler. If there is more
than one field used as the key in the demultiplexing con-
straints, a nested switch statement is generated. Efficient
handling of ranges in demultiplexing constraints would re-
quire the implementation of scalable range matching algo-
rithms [7]. Also, handling of dynamic insertion and deletion
of endpoints in a general and efficient way would require
dynamic code generation to produce code equivalent to a
C switch. We present a more limited scheme for dynamic
insertion and deletion of demultiplexing keys in Section 5.3.

Another important consideration is how to obtain fast code
for member value references. In principle, we could generate
code that can extract any number of bits from any offset
in the packet. However, such code is likely to run slowly,
because machine instruction sets support efficient loads only

“In general, InfoElem could have other alternatives unconnected
with the three types. In that case, if none of the three types match,
the others alternatives are then tried in order.

from aligned addressed, and only of certain fixed numbers of
bits (typically, 8, 16, and 32.). Fortunately, in practice most
protocols allocate fields in a way that permits us to perform
member value references efficiently. Our compiler makes
certain assumptions to be able to generate efficient code for
value references. It assumes that any #value that needs to
be extracted from a packet will be of a fixed, constant size
less than 32 bits, and that the value will not straddle an
alignment boundary greater than this size. That is, fields
having 32 bits or less will be completely contained within
word-aligned four bytes, fields having 16 bits or less will be
completely contained within a short-aligned two bytes, and
so on. The compiler also optionally assumes that overlays
are applied only to byte-aligned fields to avoid book-keeping
for fractional octets.

4.5 Implementation Choices and Limitations

For simplicity, our compiler currently supports only limited
forms of structural and demultiplexing constraints. Struc-
tural constraints must currently be written with a single at-
tribute (#numelems, #numbits, or #numbytes) of a variable-
length field on the left hand side, and an operator =, <,
or <=, followed by an integer expression on the right-hand
side. Currently, the compiler supports only demultiplexing
constraints that are of the form name#value = constant or
name#alt @ constant.

Assumptions on alignment of members could be relaxed
while maintaining the same level of performance for some
special cases with the use of an alignment inference engine
that could be easily constructed, given our intermediate rep-
resentations and an indication of the expected alignment of
the beginning of each packet. Members for which no align-
ment or size could be inferred would need to use more gen-
eral, less efficient code.

While we have chosen to produce C code from our inter-
mediate bytecode, this is not the only possible choice. We
took this path to take advantage of the optimization done
by the native C compiler, and because compilation over-
head is currently not a concern in the primary application
we are interested in, viz., network monitoring. We could
also have produced specifications for other packet filters or
produced executable code directly, as is done using dynamic
code generation in DPF [10]. Because each packet type uses
a fixed amount of space during matching, hardware compi-
lation also appears to be feasible.

Currently, our compiler does not perform any optimizations
on the generated bytecode. We could (and plan to) adopt
an approach similar to that described for BPF+ [4]. This
is desirable not only for dynamic code generation, where we
do not have the benefit of a C optimizer, but also for some
high-level transformations that a C compiler is not able to
perform.

An unexpected benefit of generating C code is easy de-
bugging, because we can use standard C debuggers to step
through the generate code. Once we move to dynamically-
generated object code, we will lose this facility. In fact, an
option of generating C code is worth keeping around just for
debugging the type definitions.

Our implementation strategy is geared towards batch com-
pilation, in which all type definitions are presented to the
compiler at once. In Section 5.3, we describe a (restricted)
way in which we permit run-time addition of new types.

329

5 Applications and Performance

In this section we describe some sample scenarios in which
PACKETTYPES can be used, and the performance of the gen-
erated code for those situations.

5.1 Network Monitoring Tool

We have already described an application of PACKETTYPES
to rapid generation of network monitoring tools. The de-
scription outlined in Section 3 can be used to generate packet
matching code that prints out the values encountered in each
field. Because such a monitor is producing high-level output
to a file or a screen, performance is not an important issue.

5.2 Stub Generator

In this section, we outline, by means of an example, how
we can use PACKETTYPES to automatically obtain interface
code between the wire representation and a host language’s
representation. We also examine the performance of such
stubs (which were compiled using the native C compiler)
with hand-written C stubs compiled using the same compiler
(Sun Workshop 4.2, -xO2 option).

Reconsider the code from Figure 1. This code fragment
(partially) unmarshals a TCP packet from an IP payload,
and makes decisions based on some of the values found in
the protocol data. In this respect, it resembles a packet
filter, except it is interested in extracting some of the values
in a packet rather than demultiplexing it. This code can be
written as:

ip_fw_chk(struct iphdr *ip) {
struct tcpview {
short src_port;
short dst_port;
} tv;

if (match((void *) ip,
TCPinIP_firstfrag,
TCPVIEW,
(void *) &tv))

The function match takes four arguments, as shown in the
figure. The first argument, ip, is simply a pointer to the
packet buffer. The second argument, the type name TCPinIP
_firstfrag, represents the encapsulation of a TCP data-
gram inside an IP packet that is a first fragment (IP offset
is 0). Type names occur as integer constants in the C code.
The third argument, a descriptor, specifies the set of field
values that the programmer desires to extract (explained
further shortly), and the final argument points to space
where such extracted values must be stored. Note that the
programmer did not have to write low-level C code to work
with the wire representation. The style of this code is similar
to the typeful style of Figure 2.

The match call entails two tasks. First, the packet is matched
against the type TCPinIP_firstfrag. Second, the values de-
sired by the programmer must be extracted and presented
in the host language’s representation. The mechanism we
choose to do this is to use a descriptor. Each type name is
associated with a few user-defined descriptors. A descriptor
lists fields and the format in which the host language expects
them. For example, use of the descriptor TCPVIEW implies

that the src and dst fields of TCP_PDU should be used to
populate struct tcpview in agreement with the host ma-
chine’s alignment and byte order. The specification of the
descriptor itself lists the field names that are desired, as well
as the sizes in bits of the corresponding fields in the struc-
ture that hold the extracted values (e.g., we could ask for
extracting a value that occupies 5 bits in the packet into a
8-bit char). For TCPVIEW, the view specification is given as
follows:

TCPVIEW of TCPinIP_firstfrag
payload.src D 16 O
payload.dst D 16 32

This specification lists the fields to be extracted in sequence;
for each field, it gives the field name, address (A) or data
(D) to be copied, bit size and the bit offset in the target
space.® Notice that the descriptor does not assume, but
rather explicitly specifies the bit offsets in target memory
where the extracted data is to be stored. This is because we
did not want to generate code specific to the layout that the
C compiler on any given machine produces for the target
structure (struct tcpview in the example). The generated
code corrects the endianness of multi-byte quantities, so on
any given machine, the user sees the views populated in the
correct host byte order. Code generation can be done in a
portable fashion, without regard to the endianness of the
host machine.

We can also automatically generate complete views—or parse
trees—f{rom a packet specification, producing C structs that
contain fields for every member of the input specification. To
accommodate variable-sized objects, these views necessarily
make assumptions about pointers and memory management
that might not hold in every usage situation, but they serve
as convenient starting points when most or all fields need to
be extracted.

We used our compiler to obtain match functions that re-
turned a boolean value and populated a view structure on
success. We generated stubs for the following three types:

1. Typel matches any Ethernet frame that holds an IP
or an ARP packet. The view extracts Ethernet’s type
field.

2. Type2 matches Ethernet frames that are IP packets
from host 135.1.152.73 to host 135.1.152.66. (We
specialize the type IPinEthernet described earlier.)
The view extracts IP’s src and dest addresses.

3. Type3 matches TCP segments between the above two
hosts that have source port 1014 and destination port
513. (We specialize type TCPinIP, which, in turn, con-
strains the protocol field of IP_PDU to 6, and overlays
its payload with TCP_PDU.) The view extracts IP’s src
and dest addresses, and also TCP’s src and dst port
numbers.

We ran each of these stubs for a large number of times on
simulated data. We used three different packets for the
Typel (of which 2 match), three different packets for the
Type2 (of which 1 matches) and four different packets for
the Type3 (of which 2 match). Each packet was tried on the
stub 10 million times. Our experiments were carried out on
a 300 MHz UltraSparc-IIi machine with 128 M memory; all

8The purpose of providing the A alternative is that for payload of
packets, one wants to retrieve a pointer to it rather than a copy.

330

timings were collected by calling getrusage. Since we are
working with a small amount of simulated data, we believe
that the working set fits in the cache and that the timings
are fairly indicative of number of instructions executed.

The following table reports the execution time per call in
nanoseconds for each of the stubs. The first two rows show
the performance of the hand-written and automatically gen-
erated codes, respectively. The third row is explained fur-
ther below.

Typel | Type2 | Type3
Hand-Written 91 105 158
Generated 128 110 189
Baseline 73 60 67

The generated code ran up to 40% slower than the hand-
written code. We inspected the code to understand the
reasons for this performance difference. In Typel, our com-
piler does not perform boolean short-circuit evaluation that
the hand-written code does perform. When we applied this
transformation (manually) to the generated code, it matched
Typel in 106 nanoseconds on an average, reducing the per-
formance gap substantially. The remaining difference in
times in each of the three types is due to different control
sequences generated by the native C compiler for automat-
ically generated C code and for the handwritten C code.’
We do not currently know the reason for this different be-
havior; in the future we plan to explore transformations on
bytecode that will result in better control constructs being
generated in the resulting object code.

In many situations, for example in Figure 1, programmers
write classification code inline. Therefore, it might be more
appropriate to factor out the overhead of the function call,
and of moving the data into a view structure in the timings.
We measured this overhead by running a “Baseline” version
of the experiment, in which no classification logic is run in-
side the functions. We see that the cost of the instructions
to evaluate the logic is only a small part of the total cost of
each stub call. Therefore, for performance-critical applica-
tions, a desirable optimization to perform would be to inline
the match call and eliminate the loads and stores to the view
structure.

5.3 Packet Classifier

We also implemented the core of a packet classifier using
the technique for matching types described above. In a typ-
ical deployment, a packet classifier requires the capability
of dynamically adding and removing types of interest. The
implementation outlined in Section 5, however, works only
on a static collection of types.

We have added a feature to our system that allows us to dy-
namically add and remove types, albeit in a restricted way.
We make use of the observation that, typically, packet clas-
sifiers are interested in demultiplexing structurally similar
packets to a large number of endpoints: that is, the packets
are almost of the same type, with a few fields working as the
demultiplexing key. For example, for TCP connections, the
demultiplexing key is a four-tuple consisting of the source
and destination IP addresses and the source and destination
TCP ports. We call such types parameterized types.

9The sequence of loads and stores generated in the two cases was
the same.

The use of demultiplexing parameters is similar to the idea
of identifying a set of demultiplexing constraints presented
earlier, but that technique relied on the presence of similar
constraints in a number of types given statically at com-
pile time. Here we are interested in generating parameter
sets even for types that have no derived types at compile
time, so we rely on the use of user pragmas in the type
specification to identify parameterized types and their de-
multiplexing keys. Refinements of parameterized types can
only be of certain kinds—essentially only different values of
the demultiplexing key. These refinements can be installed
in the system only through a specific interface at run time.
Furthermore, no additional refinements are permitted. The
compiler generates functions, with formal parameters for the
demultiplexing key, to install or remove refinements of pa-
rameterized types. For the case of TCP packets, prototypes
of such functions are the following:

void insert_TCP(int IPsrc, int IPdst, int srcport,
int dstport, void *endpoint);

void delete_TCP(int IPsrc, int IPdst, int srcport,
int dstport);

The functions insert and delete allow the user to install
and remove endpoints. Another function returns a previ-
ously installed endpoint corresponding to the demultiplex-
ing key, or NULL if none is found. For TCP packets, it has
the following prototype:

void *lookup_TCP(int IPsrc, int IPdst, int srcport,
int dstport);

Typically, lookup is called only from inside the compiler-
generated matching code.

At run time, a hash table for each parameterized type main-
tains a map of the demultiplexing key and the endpoint in-
serted for that key. Thus, the interface functions mentioned
above map directly to insert, delete, and lookup functions
of a hash table. The hash table approach is essentially the
same as adopted in previous packet filter work [24, 10].

The traversal optimization presented in Section 4.4 and the
run-time technique presented here are more closely related
than they first appear to be. In Section 4.4, we used a C
switch statement, whenever a suitable demultiplexing key
could be identified. A compiler would (in most cases) im-
plement this switch statement by using a “jump” table of
code addresses. If the cases of this switch statement were
known only at run time, we could maintain a similar table
ourselves, without compiler support. Furthermore, since the
size or distribution of the cases are unknown, a hash table is
a good choice for implementing this table. This is essentially
the technique that we have adopted here.

In the remainder of this subsection, we describe the runtime
performance of demultiplexing TCP sessions. Our experi-
mental setup is the same as in the case of the stub generator.
The workload that we measured is a set of four simulated
TCP packets, each of which vary only the TCP destination
port number in Type3 above. For three of the four packets,
we installed a filter that matches the respective packets. We
also inserted endpoints for other types, but these types did
not occur in the workload. However, the additional types
influence the performance of hash table lookups, which is a
more realistic scenario.

331

We timed a test run that simulates 10 million arrivals of a se-
quence of the four packets mentioned above. We performed
this test with various numbers of filters installed, from 10 to
200 (of which, only 3 filters match). All runs were conducted
by a single user level process. A realistic deployment of such
a system would require the standard packet filter machinery
of inserting and deleting filters from an operating system
kernel, which was not our focus here.

500

“run.dat"

T

400

350 -

300 |-

Time (nanoseconds)

250 -

200

150 L L L
100 150

Number of Filters

200

Figure 5: Execution Times of the Packet Filter

Figure 5 shows the time in nanoseconds needed to determine
an endpoint (if any) for each packet. As is evident from
the figure, the performance of our system scales very well
upon increasing the number of installed filters. The steps
in the figure denote the increase in the average lengths of
the linked list for each hash table bin (this could be reduced
by resizing the hash table periodically). Better scalability
could be achieved with an implementation of more advanced
lookup and insertion algorithms [7].

The absolute time that we obtain per packet, about 350
nanoseconds, is very low compared to the per-packet cost of
running virtual-machine-based packet classifiers (e.g., MPF,
which costs several microseconds per packet).10 In our case,
we run compiled C code to perform the match, so there is
no interpretation overhead. On the other hand, our system
would incur a higher expense when installing completely new
parameterized types in the system, because we need to rerun
the packet specification compiler and the C compiler (unless
dynamic code generation is used). In a virtual-machine-
based classifier, new filters can simply be downloaded in the
form of bytecode into the kernel with a system call.

6 Limitations of PACKETTYPES

We have found PACKETTYPES quite adequate to express
packet formats for typical ISO layer 3 and layer 4 proto-
cols. However, sometimes there are consistency conditions
on a packet that are at a semantic level beyond the scope
of PACKETTYPES. One example is checking the value of
a checksum field for whether it indeed corresponds to a
standards-based checksum value for the packet. Another ex-
ample is being able to respect ordering or uniqueness condi-
tions in options, such as a hypothetical condition that there

101f optional bounds checking on fields and overlayed structures
are enabled, the times go up by about 50%, to approximately 500
nanoseconds per packet.

is at most one appearance of the timestamp option in an
IP packet. This situation is analogous to that in compilers:
the yacc specification of a grammar cannot check for certain
semantic conditions, which must be checked explicitly in a
subsequent phase. In future work we will investigate adding
universal and existential quantifiers to support more general
conditions over array types.

Link-layer protocols sometimes have additional characteris-
tics, such as character escaping in PPP [22], that are not
considered in PACKETTYPES. Application-layer protocols
are often ASCII-text based, and PACKETTYPES does not of-
fer specific support to handle them. Another problem in
expressing higher-layer formats all the way to link layer (us-
ing :> and overlay) is that we may need to convert from
a datagram-oriented view of packets to a stream-oriented
view, or we may need to re-assemble fragments of a lower-
layer packet. These capabilities are beyond the scope of
PACKETTYPES.

In certain protocols, the grammar of packets can essentially
change dynamically depending on previously seen data. An
example is the use of different sets of “information elements”
that may change as a packet is interpreted. Similarly, ASN.1
packets can signal different encoding schemes to be used for
the remainder of a packet, depending on values of certain
fields. One approach is to keep a limited amount of state
at run time, and identify certain type definitions as being
applicable only in a certain state.

Another limitation of the language is that, while the user
need not be aware of the endianness of his own machine,
all specifications (in particular, the interpretation we have
assigned to #value) assume that integers are represented as
unsigned quantities in network byte order. This could easily
be changed to any fixed byte ordering, but the expression
of protocols with variable byte orders, such as CORBA’s
GIOP [19], which allows the byte order to change even within
a single message, would require some mechanism for express-
ing this such as a new #byteorder attribute. Similarly, rep-
resentation of signed quantities could be accommodated by
perhaps adding #svalue attributes to stand for signed in-
terpretation of values.

Finally, PACKETTYPES does not have any primitives to ex-
press error conditions; either a packet matches or it fails.
Sometimes it is desirable for a packet specification to toler-
ate certain kinds of errors. One approach might be to indi-
cate the closest or “deepest” match and then indicate which
constraint failed to hold. We intend to add such features in
the future.

7 Related Work

CSN.1. PACKETTYPES is most closely related to the CSN.1
language [18], developed within the European Telecommu-
nications Standards Institute. Similarly to PACKETTYPES,
CSN.1 specifies bit-strings that correspond to packet for-
mats by using regular expression and grammar constructs.
It also allows constructs similar to length and value at-
tributes of PACKETTYPES. CSN.1 provides some desirable
features lacking in PACKETTYPES; for example, it directly
supports error handling by specifying the error case bit-
strings along with the regular case bit-strings.

PACkETTYPES differs from CSN.1 in significant ways. (a)
PACKETTYPES provides a more general constraint language
than CSN.1. For example, the CSN.1 core specification does

332

not support relational operators on arithmetic quantities.
(b) CSN.1 is geared primarily for describing formats and for
generating conforming packets for testing. It does not have
a notion of views for extracting data from a packet. (c)
PACKETTYPES pays significant attention to efficiency of the
generated matching code, and makes a number of assump-
tions to be able to do so. (d) PACKETTYPES tries to provide
a user with a syntax similar to C structs, where as CSN.1’s
syntax is close to pure regular expression and grammar de-
scriptions, which sometimes appears overly terse.

Packet Filters. Packet filtering systems also provide some
way of specifying a packet format, which could be consid-
ered a type definition. Examples of packet filters include
CSPF [17], BPF [16], BPF+ [4], MPF [24], DPF [10] and
PathFinder [2]. Except for PathFinder and BPF+, filters
are specified as low-level bytecode. Work by Jayaram and
Cytron [13] used context-free grammars to specify filters in
an attempt to gain composability and allow specification
of variable-length fields. The generality of their approach
forced them to use LR parsers to create recognizers for pack-
ets. Furthermore, since their language is a string of bits, se-
mantic relationships between fields must be broken down to
allowable strings of bits, which leads to hard-to-read speci-
fications.

Data-structure Description Languages. The need for de-
scribing a data structure has arisen in many contexts in
the past, but most importantly in distributed computation,
such as remote procedure calls and component-based pro-
gramming. The USC stub compiler [20] employs very pre-
cise descriptions of structure layouts, but lacks the ability to
specify variable-length fields. Other format description lan-
guages such as ASN.1 [8] or XDR [23] allow for very flexible
descriptions of structure, but do not provide control over lay-
out adequate to be used for specification of arbitrary packet
formats. Stub compiler languages such as CORBA IDL [19]
or Flick [9] have similar limitations.

Other. The idea of creating subtypes by adding constraints
on a type bears resemblance to the work by Liskov and
Wing [15].

8 Conclusion

Interesting programming language concepts, such as types,
often go unused in systems software, because of the deeply
entrenched practice of writing low-level C code. This leads
to code that is hard to write, maintain, and debug. This pa-
per shows that even within this traditional coding practice,
the idea of types has much to offer.

Acknowledgments

We thank the reviewers for their insightful comments on
this work, and specially our shepherd for his guidance in
preparing the final version of this paper. A previous version
of this language was presented at the Workshop on Compiler
Support for Systems Software, in May 1999.

References

[1] Mark B. Abbott and Larry L. Peterson. A language-based
approach to protocol implementation. ACM Transactions
on Networking, 1(1):4-19, February 1993.

2]

[12]

(13]

[14]

(15]

(16]

(17]

(18]

(19]

20]

Mary L. Bailey, Burra Gopal, Michael A. Pagels, Larry L.
Peterson, and Prasenjit Sarkar. PathFinder: A pattern-
based packet classifier. In Proceedings of the First Sym-
posium on Operating Systems Design and Implementation.
USENIX Association, November 1994.

Anindya Basu, Mark Hayden, Greg Morrisett, and Thorsten
von Eicken. A language-based approach to protocol construc-
tion. In Proceedings of the ACM SIGPLAN Workshop on
Domain Specific Languages (WDSL), Paris, France, January
1997.

Andrew Begel, Steven McCanne, and Susan L. Graham.
BPF+: Exploiting global data-flow optimization in a gener-
alized packet filter architecture. Computer Communication
Review, 29(4):123-34, October 1999.

Gérard Berry and Georges Gonthier. The ESTEREL
synchronous programming language: Design, semantics,
implementation. Technical Report 842, Ecole Nationale
Supérieure des Mines de Paris, 1988.

Edoardo Biagioni, Robert Harper, and Peter Lee. Signa-
tures for a network protocol stack: A systems application of
Standard ML. In Lisp and Functional Programming, 1994.

Milind M. Buddhikot, Subash Suri, and Marcel Waldvogel.
Space decomposition techniques for fast layer-4 switching. In
Proceedings of the Sixth International Workshop on Proto-
cols for High Speed Networks, pages 25-41. Kluwer Academic
Publishers, August 1999.

CCITT. Recommendation X.208: Specification of Abstract
Syntaz Notation One (ASN.1), 1988.

Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary
Lindstrom. Flick: A flexible, optimizing IDL compiler. In
Proceedings of PLDI ’97, pages 44-56, 1997.

Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, flex-
ible message demultiplexing using dynamic code generation.
In Proceedings of ACM SIGCOMM’96 Conference on Appli-
cations, Technologies, Architectures and Protocols for Com-
puter Communication, 1996.

Norman C. Hutchinson and Larry L. Peterson. The z-Kernel:
An architecture for implementing network protocols. Trans-
actions on Software Engineering, 17(1):64-76, January 1991.

International Telecommunication Union. Recommendation
Q.931 - ISDN user-network interface layer 3 specification
for basic call control, May 1998.

Mahesh Jayaram and Ron K. Cytron. Efficient demultiplex-
ing of network packets by automatic parsing. In Proceedings
of the Workshop on Compiler Support for System Software
(WCSSS), 1996.

Eddie Kohler, M. Frans Kaashoek, and David R. Mont-
gomery. A readable TCP in the Prolac protocol lan-
guage. Computer Communication Review, 29(4):3-13, Oc-
tober 1999.

Barbara H. Liskov and Jeannette M. Wing. A behavioral
notion of subtyping. ACM Transactions on Programming
Languages and Systems, 16(4), November 1994.

Steven McCanne and Van Jacobsen. The BSD packet filter:
A new architecture for user-level packet capture. In 1993
Winter USENIX, pages 259-269, January 1993.

Jeffrey C. Mogul, Richard F. Rashid, and Michael J. Accetta.
The packet filter: An efficient mechanism for user-level net-
work code. In Proceedings of the 11th ACM Symposium on
Operating Systems Principles, pages 39-51, November 1987.

Michael Mouly. CSN.1 Specification, Version 2. Cell & Sys,
1998.

Object Management Group. CORBA/IIOP 2.2 Specifica-
tion, 1998.

Sean W. O’Malley, Todd A. Proebsting, and Allen B. Montz.
USC: A universal stub compiler. In Proceedings of the SIG-
COMM ’94 Symposium, October 1994.

333

21]

(22]

23]

[24]

J. Postel. RFC 791: Internet Protocol, September 1981. Ob-
soletes RFCO0760. See also STD0005. Status: STANDARD.

W. Simpson. RFC 1662: PPP in HDLC-like framing, July
1994. See also STD0051 . Obsoletes RFC1549 . Status:
STANDARD.

R. Srinivasan. RFC 1832: XDR: External data representa-
tion standard, August 1995. Status: DRAFT STANDARD.

Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and
J. Eliot B. Moss. Efficient packet demultiplexing for mul-
tiple endpoints and large messages. In Proceedings of the
1994 Winter USENIX Conference, pages 153-165, January
1994.

Appendix

definition-list:

[definition 1*

definition:

id := structure
id :> structure
id |= structure

structure:

singleton-type ;
{ [member [* }
{ [member |* } where constraints

singleton-type:

id
id [integer-constant]
id [1]

member:

id id ;
id id [integer-constant];

id id [1;

constraints:

{ constraint-list }
singleton-constraint

constraint-list:

[singleton-constraint |*

singleton-constraint:

boolexpr ;

boolexpr:

expr =
expr >
expr <
expr

expr
expr

expr

>= expr

expr <= exrpr

erpr '= expr

expr @ id

boolexpr || boolexpr
boolexpr && boolexpr

expr:

integer-constant

zd[[id]|[[ezpr]]]*#id
erpr + expr

erpr * expr

expr / expr

erpr - expr

(expr)

