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ABSTRACT
We give a representation of the packet-level dynamical be-
havior of the Reno and Tahoe variants of TCP over a sin-
gle end-to-end connection. This representation allows one
to consider the case when the connection involves a net-
work made of several, possibly heterogeneous, deterministic
or random routers in series. It is shown that the key features
of the protocol and of the network can be expressed via a
linear dynamical system in the so called max-plus algebra.
This opens new ways of both analytical evaluation and fast
simulation based on products of matrices in this algebra.
This also leads to closed form formulas for the throughput
allowed by TCP under natural assumptions on the behavior
of the routers and on the detection of losses and timeouts;
these new formulas are shown to re�ne those obtained from
earlier models which either assume that the network could
be reduced to a single bottleneck router and/or approximate
the packets by a 
uid.

1. INTRODUCTION
Various approaches have been investigated to characterize
the key properties of the adaptive, additive increase, mul-
tiplicative decrease (AIMD) window 
ow control of TCP,
including heuristics and simulations, 
uid approximations
or Markovian analysis [10, 11, 1, 13, 12, 8]. All analytical
models are based on the so called single bottleneck heuris-
tic [9]. It was also recently shown that window 
ow control
on networks consisting of several routers in series admits a
simple max-plus linear representation when window size is
constant [2]. The present paper focuses on a class of models
which combine the AIMD adaptive window size mechanism
of TCP and a network model made of several routers in
series. We show that their dynamics can be described at
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packet level via matrix recurrences in the max-plus alge-
bra. Both the deterministic packet transmission time case
and various stochastic models that have been used in the
literature are considered, including the case where there are
random losses in addition to losses due to bu�er over
ow,
and the case when the packet transmission times are ran-
domly perturbed by the rest of the tra�c. The key aspects of
the protocol can be represented, including congestion losses,
timeouts, random losses, propagation and queueing delays
as well as delays due to the 
ow control mechanism, window
adaptation etc. We show how this approach allows one to
establish general links between spectral properties of max-
plus matrices and the mean throughput of TCP. This is
used to derive closed form formulas for the maximal achiev-
able throughput. These formulas can be used to analyze the
case with several bottleneck routers. They are shown to be
asymptotically compatible with the classical ones when the
maximal window size tends to 1. This framework allows
one to analyze the instantaneous, possibly random 
uctua-
tions of the throughput, which may be useful for estimating
the QoS o�ered to the connection. This approach is also
shown to be particularly well suited for an e�cient though
detailed exact simulation of the end-to-end dynamics of the
TCP protocol over large networks. In particular, it is proved
that when using this approach, the simulation of n packets
over K routers can be made with a computational cost of
at most 2n(Kw�)2, where w� denotes the maximal window
size.

In addition to these theoretical contributions, several phe-
nomena of practical interest are also pointed out: (a) As
soon as there are random perturbations due to cross tra�c
in the routers, the throughput cannot be expressed in terms
of the mean bitrate of the bottleneck router and the mean
RTT only: for example, permuting two routers along the
route may then lead to a di�erent throughput. (b) A given
overall loss probability is in general not enough to predict
throughput; in particular losses due to random perturba-
tions created by cross tra�c have a more severe e�ect on
throughput than that of congestion losses stemming from a
high send rate. (c) Variance may have a signi�cant e�ect
on throughput: keeping all mean service times �xed in the
routers, an increase of variance may lead to a degradation
of throughput.

The paper is structured as follows. In Section 2, we intro-
duce the model and we give its representation in terms of a
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linear max-plus recurrence equation. We then establish the
main theoretical results of the paper by showing the link be-
tween TCP throughput and max-plus Lyapunov exponents.
In Section 3, we consider the class of deterministic mod-
els and show periodicity results together with links between
throughput and max-plus matrix eigenvalues. In Section 4,
we consider two classes of stochastic models representing the
random perturbations created by cross tra�c. In Section 5,
we give a brief list of further questions and extensions that
can be treated along the same lines and for which analytical
formulas extending those of the basic cases (or at least new
simulation methods based on products of random matrices)
can be expected.

2. MAX-PLUS REPRESENTATION
2.1 The max-plus algebra
Roughly speaking, the scalar max-plus \algebra" is the semi-
ring structure over the real line where one replaces the addi-
tion by max (denoted �) and the multiplication by plus (de-
noted 
). It is the fact that 
 is distributive w.r.t. � which
allows one to extend classical concepts of linear algebra to
this framework, and in particular matrix theory. This scalar
semi-ring is denoted (Rmax ;�;
), where Rmax = R[f�1g
is the real line completed by �1, the neutral element for
�. In what follows, we will denote (Rd;dmax ;�;
) the set of
square matrices of dimension d in this algebra, where the
two operations � and 
 have the following meaning when
applied to matrices:

(A�B)ij = Aij �Bij = max(Aij ; Bij);

(A
B)ij =
M

1�k�d
Aik 
Bkj = max

1�k�d
(Aik +Bkj):

For more details on this algebra, which is also used for QoS
guarantees in networks [6], the reader may refer to [3] or [6].

2.2 The network model
Our basic model consists of a single source sending packets
to a single destination over a path made of K routers in
series. The transmission of the packets of this reference 
ow
is assumed to be TCP controlled. Each router is represented
by a single server queue. Each queue serves the packets of
the reference 
ow as well as those of other 
ows, which will
be referred to as cross tra�c 
ows in what follows. Each
router is assumed to be a FIFO queue for the packets of
the reference 
ow. The nth packet of the reference 
ow
arriving at queue i requires there an aggregated service time
�i(n). In case of a FIFO router, this aggregated service
time captures both the processing time of this packet by
the router and that of the backlog of cross tra�c packets
interleaved between the arrival time of packet # n� 1 and
that of packet # n in queue i. The model also incorporates
some propagation delays between routers. The propagation
delay from router i to j will be assumed to be deterministic
and will be denoted di;j .

The input rate is controlled by a dynamic window size. This
window mechanism controls the maximum number of pack-
ets sent by the source that have not been acknowledged by
the destination.

2.3 From feedback to window
Let ACK(n) denote the 
ow/congestion feedback signal giv-
ing information on the state of the network seen by packet #
n. For example, ACK(n) = 1 if neither loss nor timeout are
experienced by packet # n, otherwise ACK(n) = 0 which
means either loss (LO) or timeout (TO).

In the deterministic case, at the time of the reception of
signal ACK(n) (either the reception of the acknowledgment
of packet # n, or the detection of its loss or timeout), the
window size is updated according to the following rule:

W (n) = F (W (n� 1); ACK(n)); n > 0; (1)

with some initial condition W (0) = 1.

Once the sequence fACK(n)g is known, the above recur-
rence relation gives the reference window size process fW (n)g.
Note thatW (n) is the window size at the reception of the ac-
knowledgment of packet # n by the source. The associated
e�ective window size is by de�nition

wn = (int) W (n) = bW (n)c: (2)

We assume that the reference window size takes its values
in a �nite set with maximum element W �. We will denote
w� = bW �c.

We also assume that the evolution of the window size can be
decomposed into two phases with the following properties:

increasing phase (ACK = 1) : 0 � F (W (n); 1)�W (n) � 1;

decreasing phase (ACK = 0) : 1 � F (W (n); 0) < W (n):

In the following, we allow F to depend on a sequence f�(n)g,
where �(n) gives the threshold that separates the slow-start
phase from the congestion-avoidance phase. In this case, the
pair (W (n);�(n)) is updated according to the re�ned rule:

W (n) = F (�(n� 1);W (n� 1); ACK(n)); (3)

�(n) = �(�(n� 1);W (n� 1); ACK(n)); (4)

Here are two ideal cases of particular interest, which repre-
sent simpli�ed versions of Tahoe and Reno:

1. TCP Tahoe :

�(�(n� 1);W (n� 1); 1) = �(n� 1);

�(�(n� 1);W (n� 1); 0) = b�W (n� 1)c ;
F (�(n� 1);W (n� 1); 1) =8><>:

min(W (n� 1) + 1;W �); if W (n� 1) < �(n� 1);

W (n� 1); if W (n� 1) =W �;
min(W (n� 1) + 1

wn�1
;W �); otherwise :

F (�(n� 1);W (n� 1); 0) = 1:

2. TCP Reno : the same as above but with the following
adaptation:

F (�(n� 1);W (n� 1); LO) = max(1; b�W (n� 1)c);
F (�(n� 1);W (n� 1); TO) = 1:

Here, 0 < � < 1 and �(0) are parameters and W (0) = 1.
In the following examples, we will mainly consider the case
� = 1=2.



2.4 From window to dater
In what follows, we assume that the input queue is saturated
(the non saturated case can be considered along the same
lines as explained in x5). Then the network behaves as a
closed network, the throughput of which gives the maximal
rate at which the source can send packets while keeping the
source bu�er stable [2].

Let xi(n) be the time at which packet # n starts its aggre-
gated service on router i (this is the time when this packet
is head of the line within the set of packets of the reference

ow).

INPUT

ACK(n)

W(n)
WINDOW CONTROL

ROUTER 1 . . . . .

SOURCE DESTINATION

ROUTER K-1

y0 y1 yK

Let yi(n) = xi(n) + �i(n) be the time when packet # n
leaves router i and let �0(n) � 0. Let vn be the window size
experienced by packet # n+1, when it is sent by the source.
In general, vn and wn (de�ned above) do not coincide. If the
sequence fvng is known, then fyi(n)g, 0 � i � K, n � 1,
satis�es the equations :

y0(n) = yK(n� vn�1)
 dK;0;

yi(n) = [yi�1(n)
 di�1;i � yi(n� 1)]
 �i(n); i = 1; : : : ; K:

In this model, the transmission of acks from the destination
to the source is represented by a simple delay dK;0. One
can represent this backward route as a sequence of routers
similar to that of the forward route with only slight modi�-
cations of the basic model.

We de�ne Y (n) = (y1(n); y2(n); ::; yK(n)) 2 R1;Kmax , and

Z(n) = (Y (n); Y (n� 1); ::; Y (n� w� + 1))
t 2 RK:w� ;1

max :

The last vector will be referred to as the dater vector in what
follows.

Let Mi, i 2 f1; ::; w�g, be given matrices of RK;K
max . Below,

(M1jM2j � � � jMw�) denotes the block matrix of RK:w� ;K:w�

max ,
where blocks are of size K �K; all blocks are equal to the
matrix E of RK;K

max with all its entries equal to �1, but for
the �rst line of blocks which is M1;M2; : : : ;Mw� .

Lemma 1. [Max-plus representation] If the system is ini-
tially empty, and if the sequence of experienced window sizes
is fvngn2N, then the dater vectors Z(n) satisfy the following
max-plus matrix recurrence relation:

Z(n) = Avn�1(n)
 Z(n� 1); n � 1; (5)

where Z(0) = (0; ::; 0)t and

A1(n) = (M(n)�M 0(n)jEj::jE)�D;

A2(n) = (M(n)jM 0(n)jEj::jE)�D; : : : ;

Aw�(n) = (M(n)jEj::jEjM 0(n))�D:

In these formulas, M(n) and M 0(n) are given by:

(M(n))ij =

(Pi
k=j �k(n) +

Pi�1
k=j dk;k+1; if i � j;

�1; if i < j;

�
M 0(n)

�
ij
=

(Pi
k=1 (dk�1;k + �k(n)) + dK;0; if j = K;

�1; if j < K;

and D is the square matrix of dimension Kw� with all its
entries equal to �1 but for those of the form DK+i;i, i =
1; : : : ; K(w� � 1), which are all equal to 0.

Proof. The proof is immediate from the dynamics estab-
lished for the yk(n) variables when expanding the max-plus
product (5) coordinate by coordinate.

Remark 1. At the level of representation adopted here,
no di�erence exists between packets and retransmitted pack-
ets. In particular, we will make no di�erence between send
rate, throughput or goodput [12].

2.5 Example of evolution
Here is an explicit pathwise evolution of the dater vector and
the window size: we takeK = 5, w� = 4 and (�1(n); � � � ; �5(n))
= (1; 1; 2; 1; 1) for all n. We consider a periodic window size
evolution (which is that of TCP Tahoe without slow start,
cf. x3):
(v0; v1; v2; : : : ) = (1; 1; 2; 2; 2; 3; 3; 3; 3; 4; 1; 1; 2; 2; 2; : : : ):

# packet sent
1(1) 2(1), 3(2) 4(2) 5(2), 6(3) 7(3) 8(3) 9(3), 10(4) 11(1)(vn)

arrival time

departure time

packets ACKs (wn)

RTT 4

RTT 3

RTT 2

RTT 1

1(2) 2(2) 3(3) 4(3) 5(3) 6(4) 7 8 9 10(1)

For instance, packet # 6 experiences a window size of v5 = 3,
a fact that we denote 6(3) on the �gure: this means that the
admission of packet # 6 takes place at the time when the
acknowledgment of packet 6� 3 = 3 is received.

2.6 From dater and window to feedback
2.6.1 Deterministic feedback
The deterministic model for the detection of losses and time-
outs is:

ACK(n) = G(vn�1; Z(n)): (6)

Here Z(n) is the equivalence class of the dater vector (de-
�ned in Lemma 1) for the equivalence relation: Z � Y if for
all i, Zi = Yi + c for some constant c, whereas vn�1 is the
window experienced by packet # n. Here are a few basic
examples:



� Rate based loss detection Assume one can deduce
some estimate 1=��(n) of the current bottleneck ser-
vice rate in the network, and some estimate S(n) of
the current round trip time, both from (vn�1; Z(n));
then it makes sense to state that one detects a (con-
gestion) loss when the average send rate

vn�1
S(n)

reaches

the bottleneck rate, namely

(G1) : ACK(n) = 0 (Tahoe); LO (Reno);

if
vn�1
S(n)

>
1

��(n)
:

� Bu�er over
ow detection If there is a maximal
bu�er capacity of �i for the reference 
ow on router i,
then it makes sense to state that

(G2) : ACK(n) = 0 (Tahoe); LO (Reno);

if 91 � i � K; yi�1(n) + di�1;i < yi(n� �i):

Note that either �i < w� in which case the values of
yi�1(n)�yi(n��i) can be retrieved from Z(n) indeed;
or �i � w�, and then no loss can ever occur for the
reference 
ow on router i.

� Timeout detection In this case, the function G also
admits the value RTO(n) of the timer for packet # n
as an additional argument; this variable is built from
moving averages of the preceding RTT's by a recur-
rence relation (see [14] and [15]).

(G3) : ACK(n) = 0 (Tahoe); TO (Reno);

if yK(n)� y0(n) + dK;0 > RTO(n):

Since y0(n) = yK(n� vn�1) + dK;0, this condition can
also be retrieved from (vn�1; Z(n)) at least in the case
when vn�1 < w� (in case vn�1 = w�, one more step of
the dater history is in fact needed).

� Large service times or RTT Here is a model in the
same spirit as (G2) or (G3) but somewhat simpler. In
case of random service times, it makes sense to as-
sume that a packet of the reference 
ow experiences
loss and/or timeout in case of large enough aggregated
service time on one of the routers, or in case of large
enough sum of its aggregated service times:

(G4)-Tahoe : ACK(n) = 0; if �(n) 2 B; 1 otherwise;
where �(n) = (�1(n); : : : ; �K(n)) and where B is a cer-
tain subset of RK expressing one of the above proper-
ties (e.g.

P
i �i > X for timeout or �i > Yi for some i,

for loss created by a large cross tra�c on some router
etc.) and

(G4)-Reno : ACK(n) =

8><>:
LO; if �(n) 2 C;
TO; if �(n) 2 D;
1; otherwise;

where C and D are subsets of RK in the same vein as
above.

Remark 2. In what follows, we will always assume that
the detection of loss is instantaneous, namely that the e�ect
of the loss of packet # n in terms of window size is applied
from packet # n + 1 on. This is of course an approxima-
tion in comparison to what happens e�ectively via the triple
duplicate mechanism.

2.6.2 Stochastic feedback
In this second and more general case, the feedback sig-
nals fACK(n)g are also function of some random perturba-
tions represented by an i.i.d. f0; 1g-valued random sequence
f�(n)g. More precisely, (6) is replaced by

ACK(n) = �(vn�1; Z(n); �(n)); (7)

with �(vn�1; Z(n); 1) = G(vn�1; Z(n)) for both Tahoe and
Reno and, for Tahoe �(vn�1; Z(n); 0) = 0, whereas for Reno

�(vn�1; Z(n); 0) =

(
LO; if G(vn�1; Z(n)) is 1 or LO;
TO; if G(vn�1; Z(n)) = TO:

We denote p the probability that �(1) = 0. The case with
p = 0 leads back to the deterministic scheme described
above.

This stochastic model is to be compared to that of [13],
where a global loss probability is used to capture both ran-
dom packet losses and losses due to congestion. In contrast,
in this re�ned stochastic model, these two mechanisms are
separately described: random packet losses constitute an
i.i.d. process independent of all other elements of the net-
work and are captured by the sequence f�(n)g (p is then
the probability that a packet is lost due to random pertur-
bations), whereas congestion based losses are captured by
the G function.

Models with random timeouts in place of (or in addition to)
random losses can be considered along the same lines.

2.7 Global dynamics and throughput
2.7.1 Simplified dynamics
For the sake of easy exposition, we will �rst describe the
global dynamics when making the approximation that wn =
vn for all n. We will see later on how to correct this. Un-
der this simpli�cation, the overall dynamics is constructive:
if one knows W (n � 1) and Z(n), then one can compute
ACK(n) from either (6) or (7); this in turns allows one
to de�ne W (n) and hence wn using (1) and (2). Finally,
the knowledge of vn = wn and Z(n) allows one to compute
Z(n + 1) thanks to (5). We summarize this in the follow-
ing theorem which refers to the family of max-plus matrices
Ai(n), n � 0, 1 � i � w�, de�ned in Lemma 1 and to the
functions F and � de�ned above.

Theorem 1. Under the foregoing assumptions, the se-
quence of vectors fZ(n);W (n)g satis�es the recurrence re-
lation

Z(n) = AbW (n�1)c(n)
 Z(n� 1); (8)

W (n) = F
�
W (n� 1);�(W (n� 1); Z(n); �(n))

�
; (9)

n � 1, with initial condition Z(0) = (0; ::; 0)t and W (0) = 1.
In these equations f�(n)g is an i.i.d. f0; 1g-valued sequence
representing random losses (�(n) � 1 in case there are no
such losses).

Remark 3. Equations (8) and (9) are given here in the
simplest case where F is not a function of �(n�1) and where
� is not a function of RTO(n). In order to handle the gen-
eral case, one should of course add the evolution equations



for the variables �(n) and RTO(n) to these two recurrence
relations.

The equations in Theorem 1 are the basis for the algebraic
simulation scheme alluded to in the introduction. Since the
matrices Awn�1(n) are of dimension Kw�, and since only
matrix-vector products are required (in addition to the com-
putation of the F and G functions, the cost of which is here
neglected), one can simulate the controlled transmission of
n packets through a network of K routers in 2n(Kw�)2 op-
erations on a single processor. This can be signi�cantly re-
duced when using the fact that the matrices are in fact quite
sparse.

2.7.2 Exact dynamics
In order to describe the exact dynamics (namely that where
one does not make the simpli�cation vn � wn anymore), one
should keep track of the history of the reference window size
de�ned in x2.3. Let W(n) = (W (n); : : : ;W (n�w�+1)) be
this history, with the convention W (k) = 1 if k � 1. The
experienced window size vn is then obtained by picking the
integer part of the appropriate coordinate of the W(n) vec-
tor. Here is the generic part of the procedure allowing one
to select the appropriate coordinate:

v = bW (n)c;
for (k = 1; k < v; k++)

if (bW (n� k + 1)c == bW (n� k)c+ 1)
v--;

This procedure, which is that to be used during the increas-
ing phase of the reference window size process, stems from
the observation that vn is equal to bW (n)c if the window
size does not change during the transmission of packet # n,
and that the discrepancy between bW (n)c and vn increases
of one unit each time bW (n� k)c jumps up. The procedure
to be used within periods where the window size decreases
depends on the version of the protocol. For instance, in the
Tahoe case, one simply resets theW vector to (1; : : : ; 1) each
time the window decreases. Detailed examples are studied
below.

Denote vn = a(W(n)) this mapping. Under the foregoing
assumptions, the sequence of vectors fZ(n);W(n)g satis�es
a recurrence relation of the form

Z(n) = Aa(W(n�1))(n)
 Z(n� 1); (10)

W(n) = F �W(n� 1);G(W(n� 1); Z(n); �(n))
�
; (11)

n � 1, with initial condition Z(0) = (0; ::; 0)t, for mappings
F and G which are mere extensions of the F andGmappings
to the histories of the variables under consideration (e.g.
[F(W(n� 1); : : : )]1 = [W(n)]1 =W (n) = F (W (n� 1); : : : )
and for 1 < i � w�, [F(W(n�1); : : : )]i = [W(n)]i = [W(n�
1)]i�1 =W (n� i+ 1)).

In what follows, the default assumption will be that of sim-
pli�ed dynamics.

2.7.3 Throughput and Lyapunov exponents
The instantaneous throughput 
uctuates forever due to the
adaptation of the window and/or changes in the cross traf-
�c in the routers. By de�nition, the mean throughput � of

the controlled connection is the long term averaging of the
instantaneous throughput, namely the limit

� = lim
n!+1

n

yK(n)
= lim

n!+1
nPn

p=1(yK(p)� yK(p� 1))
;

(12)

when it exists. This is a natural de�nition given the fact
that our model makes no di�erence between send rate and
goodput.

The max-plus Lyapunov exponent 
 of the sequence of ma-
trices is de�ned as:


= lim
n!+1

max
1�l;k�K:w�

�
Avn�1(n)
 � � � 
Av0(1)

�
l;k

n
: (13)

A su�cient condition for the the limit de�ning 
 to exist
(in the almost sure sense) is that the sequence fAvn�1(n)g
converges (with so called shift coupling) to some station-
ary and ergodic sequence. The existence then follows from
Kingman's subadditive ergodic theorem (cf. [3]).

Since with our de�nition of Z(0), max1�l;k�K:w�
�
Avn�1(n)


Avn�2(n� 1)
 � � � 
Av0(1)
�
l;k

= yK(n), we see that un-

der this coupling convergence property, the mean through-
put is well de�ned and that it coincides with the inverse of
the Lyapunov exponent of the sequence of matrices: � =

�1.

It is beyond the scope of the present paper to give the min-
imal conditions for these convergences to hold, and we will
rather analyze this question case by case.

3. DETERMINISTIC MODELS
In this section we assume that �i(n) = �i, for all n, where
�i is non-random (this is the deterministic service time as-
sumption) and that �(n) � 0 (deterministic feedback as-
sumption).

We will use the following notations: �� = max1�i�K �i and

S =
PK

i=1 �i. For the sake of simple presentation, we will
�rst consider the case when all propagation delays di;j are
0, and then show how the formulas should be modi�ed to
cover the non-zero case.

Theorem 2. Assume that the service and the transmis-
sion times are rational numbers. Then under any of the
above assumptions concerning the protocol (e.g. Reno or
Tahoe with or without slow start), and the form of feed-
back (e.g. G2, or G2 and G3, or G1, etc.), the sequence
of reference windows fwng becomes ultimately periodic, with
values in an integer interval of the form [a�; b�], such that
1 � a� � b� � w�.

The proof is forwarded to x7.

In what follows, we will assume that the period is made of a
single increasing phase. This is always the case under (G1).
The more complex periodic patterns which can take place
under (G2) or (G3) can be studied in similar terms.

Denote ti the number of occurrences of a
� � i � b� during

a period and T the period: T = ta� + ta�+1 + � � � + tb� .



Thanks to Theorem 2, under the foregoing deterministic as-
sumptions, one can simplify the dynamical system (8)-(9)
by reducing it to the pure max-plus recurrence relation

Z(n) = Awn�1(n)
 Z(n� 1); (14)

where fwng is the periodic window size in this theorem (see
the examples below). Therefore, there exists a square matrix
A0 of dimension Kw� describing the transient phase of the
window size, and an integer m describing the number of
packets sent in this transient phase, such that for all n � 0,

Z(nT +m) =
�
A
tb�
b� 
A

tb��1
b��1 
 � � � 
A

ta�
a�

�n

A0 
 Z(0):

(15)

We then have the following theorem which establishes the
link between the mean throughput of our deterministic TCP
model and max-plus matrix eigenpairs (see [3] for more on
the computation of eigenvalues and eigenvectors):

Theorem 3. If the square matrix (of dimension K:w�)
A
tb�
b� 
A

tb��1
b��1 
� � �
Ata�

a� has a unique max-plus eigenvalue


, then the mean throughput is � = T


.

3.1 Tahoe and Reno examples
3.1.1 TCP Tahoe
We �rst consider the TCP Tahoe model without the slow-
start phase. Either vn = w� for n large enough, or we have

fv1; v2; : : : g = (16)

f1; 2; 2; 3; 3; 3; : : : ; b� � 1; ::; b� � 1| {z }
b��1 times

; b�; ::; b�| {z }
tb� times

; 1; 2; 2; ::g:

The value of b� and that of tb� depend on the chosen feed-
back model (for instance, in the (G1) case, tb� = 1 and
b� =

�
S
��

�
+1; see the proof of Theorem 2). In other words,

8i 2 f1; ::; b� � 1g, ti = i and 1 � tb� � b�. Therefore

T = b�(b��1)
2

+ tb� .

Corollary 1. [Periodic TCP Tahoe without slow start]
Either the window is always equal to w�, after a certain rank,
in which case the mean throughput is

� = min(
1

��
;
w�

S
); (17)

or there is an in�nite number of epochs when the window
drops to 1 and the mean throughput is:

� =
1

2

b�(b� � 1) + 2tb�Pb��1
k=1 max(S; k��) + tb���

: (18)

A partial proof of Corollary 1 is given in x7 under (G1).
The proof is based on the computation of the eigenvalue 

de�ned in Theorem 3, which is unique in this case. We also
give a graphical interpretation of this eigenvalue property
below.

Remark 4. Note that for (G1),

� =
1

2

b�(b� � 1) + 2

(b� � 1)S + ��
; (19)

so that � only depends on �� and S (since b� =
�
S
��

�
+1). In

this case, when b� ! +1, the asymptotic throughput is such
that � � 1

2
1
��
: As for (G2) or (G3), there are no closed form

expressions for b�, which can nevertheless be computed nu-
merically in 2K2(w�)3 operations. For these more complex
models, � depends in general on � = (�1; : : : ; �K) and on
� = (�1; : : : ; �K) as well as on the way RTO(n) is updated.

3.1.1.1 Pathwise interpretation
In Figure 1 below (where we assume (G1) and b� = 6), we
restrict our attention to the pathwise evolution of the en-
trance time y0(n) and the departure time yK(n) of packet
# n, which turn out to have more regularity than the daters
associated with internal routers; the above eigenpair prop-
erty receives the following interpretations: before congestion
detection, packets sent behave as if there were no interac-
tions between them, except for the pairs of packets sent at
the same moment, i.e. when the window increases of one
unit; for these pairs, the second packet always leaves the
network �� units time later than the �rst one. Using this,
one can read the eigenvalue property directly on the �gure.
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Figure 1: Interpretation through pathwise evolution

The sequence for Tahoe with slow start is:

f1; 2; ::; � � 1; �; ::; �| {z }
� times

; � � � ; b� � 1; ::; b� � 1| {z }
b��1 times

; b�g; (20)

with � = bb�=2c. The limitations of the simpli�ed dynamics
appear clearly here since this in fact leads to an \instan-
taneous" slow start phase where � packets are sent at the
same time.

Corollary 2. [Periodic TCP Tahoe with instantaneous
slow start] Under (G1), the throughput of TCP Tahoe with
slow-start is given by:

� =
1

2

b�(b� � 1)�
j
b�

2

k�j
b�

2

k
� 3
�

(b� + 1� � b�
2

�
)S + (

�
b�

2

�� 1)��
: (21)

When b� ! +1, the asymptotic throughput is such that
� � 3

4
1
��
.

3.1.1.2 Exact dynamics
Under (G1) when moving from the simpli�ed dynamics to
the exact one, the window size that should be used in place
of (16) is:

fv1; v2 : : : g = (22)

f1; 1; 2; 2; 2; 3; 3; 3; 3; : : : ; b� � 1; ::; b� � 1| {z }
b� times

; b�; 1; 2; 2; ::g:



Then, the throughput is given by:

� =
1

2

b�(b� + 1)

b�S + (b� � 1)��
: (23)

For the same model with slow start, the following sequence
should be used in place of (20):

f1; 1; 2; 2; ::; �-1; �-1; �; ::; �| {z }
�+1 times

; : : : ; b�-1; ::; b�-1| {z }
b� times

; b�; 1; 1; 2; 2; ::g:

(24)

One can check that these modi�cations do not change the
asymptotic value of the throughput when letting b� !1.

Example 1. Take TCP Tahoe without slow-start phase
over 4 tandem queues with �1 = 3:2, �2 = 4:61, �3 = 2:7,
�4 = 4:61. b� = 4, wn 2 f1; 2; 3; 4g. The throughput is
equal to 0:140084 (Corollary 1). This is to be compared to
the throughput given by (23): 0:134571.

3.1.2 TCP Reno
The periodic and deterministic evolutions of TCP Reno have
been considered in [11] to get a heuristic value of the through-
put. The above max-plus representation leads to a new for-
mula that re�nes that of [11].

Corollary 3. [Periodic TCP Reno] Under (G1) without
slow start, the throughput of TCP Reno is given by:

� =
1

2

b�(b� � 1)� b b�
2
c
�
b b�
2
c � 1

�
+ 2

(b� � b b�
2
c)S + ��

: (25)

When b� ! +1, the asymptotic throughput is such that
� � 3

4
1
��
. In case of Reno with slow start, the formula is

the same as that of Tahoe with slow start.

3.2 Interpretation and comparison to earlier
results

The results of this section are all under (G1).

3.2.1 Graphical interpretation of throughputs
The asymptotic throughputs found in Corollary 1 (case 1),
Corollary 3 (case 2) and Corollary 2 (case 3) under (G1)
have a natural graphical interpretation from a 
uid approx-
imation of the window size evolution: let d0 = 1

��
be the

throughput for static window size wn = b� (case 0).

CASE 1CASE 0 CASE 2

Graphical interpretation of throughputs

When wn increases linearly from 1, the quantity of trans-
mitted packets, which is proportional to the integral ofW (t)
on a period, is indeed equal to 1

2
d0 (case 1); when wn in-

creases linearly from b�

2
, the quantity of transmitted packets

is scaled down by a factor 3
4
(case 2).

3.2.2 Loss probability
The well known formula of the throughput for a single TCP
connection in terms of loss probability ploss and round trip
time RTT is of the form [11]:

Dth =
co

RTT
p
ploss

;

where co is a real constant. For our deterministic model, we
have: RTT = S and

case 1 : ploss =
2

b�(b� � 1) + 2
;

case 2 : ploss =
2

b�(b� � 1)� b b�
2
c �b b�

2
c � 1

�
+ 2

;

case 3 : ploss =
2

b�(b� � 1)� b b�
2
c �b b�

2
c � 3

� :
When b� !1, we have

p
ploss �

p
2

b�
(case 1) and

p
ploss �q

8
3
1
b�

(cases 2 and 3). Therefore we have the following

values for co:

case 1: co =
1p
2
' 0:71 ; cases 2 and 3: co =

q
3
2
' 1:22.

Thus, for large values of b� (or small value of ploss), the
asymptotic formula of Corollary 3 reduces to the formula in
[11].

3.2.3 Extension to non zero propagation delays
All the results concerning (G1) hold with constant prop-
agation delays di;j when replacing the value of S by S =

dK;0 +
PK

k=1(�k + dk�1;k).

3.2.4 Comparison with NS
The mean throughput obtained for these deterministic mod-
els can be compared to that given by the NS simulator when
choosing an arbitrary packet size and when taking a bitrate
for router i corresponding to �i. The send rates obtained
from NS simulation and from our formulas may only di�er
due to discrepancies on the loss/congestion detection mech-
anism (discrepancies stem from the instantaneous loss detec-
tion assumption (see Remark 2) and also from the fact that
we take the integer part of W (n) rather than W (n) etc.).
However, for all deterministic models with the same periodic
evolution of fvng, the evolutions are exactly the same. Here
is an example: on NS we take a TCP connection with ftp
source: K = 10, packet size is 1250 (40 for ack), bu�er size is
2, all di;j are equal to 0:1ms except for dK;0 which is equal
to 1ms; the bitrates are: (10; 5; 4; 2; 5; 4; 5; 5; 4; 5; 5)Mb for
the links 0�1; ::; 9�10; 10�0. At t = 100s, NS gives 152:27
packets/s. For this example, S = 25:5ms and �� = 5ms;
using (G1), we get from (21): 134 packets/s. However, we
note that b� is actually equal to 7 in the NS simulation (since
one RTT is needed to detect triple-acks) whereas it is equal
to 6 in our model (this is precisely the di�erence between in-
stantaneous and non instantaneous loss detections); taking
(21) with b� = 7 gives 152:55 packets/s.

4. STOCHASTIC MODELS
4.1 Deterministic services, random feedbacks
We now consider the case with simpli�ed dynamics, with
all service times still deterministic and rational, but with
random feedback as de�ned in x2.6.



Under our assumptions, the sequence f(W (n); Z(n))g (resp.
the sequence f(�(n),W (n),RTO(n),Z(n))g when applica-
ble) forms a Markov chain with �nite state space �. If this
Markov chain is irreducible, then the sequence of random
matrices in (5) converges to a stationary and ergodic se-
quence in a sense which guarantees the existence of the mean
throughput. More directly, if one denotes � the stationary
probability of the Markov chain, then it follows from (12)
that the inverse of the mean throughput can be expressed
as

��1 = 
 =
X

(w;z)2�
�(z)�(w; z); (26)

where �(z) = zK � z2K (see also [4]). Here is a concrete
application of this general idea:

Theorem 4. Under (G1), if p > 0, fW (n)g is an ir-
reducible Markov chain on the integer interval [1; b�], with
b� =

�
S
��

�
+ 1, and the throughput depends on service times

only through S and ��.

Proof. The �rst property is immediate (the irreducibil-
ity stemming here from the fact that fW (n)g can reach the
value 1 from any initial condition by su�ciently many ran-
dom losses in series). The last property follows from (26)
and from the fact that the sequence fyK(n+1)�yK(n)gn2N
takes its values in the set � = fS� (k � 1)��; k = 1; ::; b� �
1g [ f��g (see Lemma 2 and the proof of Corollary 1 in the
appendix).

4.1.1 Tahoe example
Corollary 4. [Markov TCP Tahoe without slow start]

Under (G1) the throughput of Tahoe without slow start is
given by:

� =
1

�� +
Pb��1

k=1 [S� k��] q(k)
;

with q(k) =
p(1� p)

k(k+1)
2

�1

1 � (1� p)
b�(b��1)

2
+1

: (27)

Proof. In this case, fW (n)g is an irreducible Markov
chain on the set X = f1; 2; 2 + 1

2
; 3; 3 + 1

3
; 3 + 2

3
; 4; : : : ; b� �

1 + b��2
b��1 ; b

�g. Let us denote by �(x); x 2 X, the stationary
probability of this Markov chain. Simple calculations give:
for all k + j

k
2 X (j = 0; : : : ; k � 1; k = 2; : : : ; b�),

�(k +
j

k
) = (1� p)

(k�1)k
2

+j�(1);

with �(1) =
p

1� (1� p)
b�(b��1)

2
+1

:

So we have


 =

b��1X
k=1

(S� (k � 1)��)�(k + k�1
k
) + ��

b�X
k=2

k�1X
j=1

�(k + j�1
k
):

(28)

For k = 1; : : : ; b� � 1, if we put q(k) = �(k + k�1
k
), (28)

immediately gives (27).

Remark 5. When b� ! 1, the asymptotic throughput
takes a simple form if p � 2

(b�)2
; in this case,

� �
 

1� e�1

2
R 1
0
e�t2dt

!
1

��
' 0:42

1

��
: (29)

4.1.2 The impact of random losses
These Markov models can be used to show that the e�ect
of losses due to random perturbations is preponderant com-
pared to that of losses due to a too high send rate: indeed,
the global loss probability of this model is: �(b�) + p(1 �
�(b�)) = �(1), where �(b�) is the loss due to congestion and
p(1 � �(b�)) is the loss due to random perturbations. For
�(1) �xed, Figure 2 shows how the throughput obtained by
(27) decreases in p (this case is that when �� = 1, so that
S = b� � 1).
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Figure 2: Throughput as a function of p for �(1) = 0:01

4.1.3 Reno examples
Similar results can be derived for TCP Reno type models.
Due to the lack of space we will limit ourselves to a few
numerical examples.

Example 2. Take K = 4 with �1 = 3:2, �2 = 4:61, �3 =
2:7, �4 = 4:61. b� = 4, wn 2 f1; 2; 3; 4g. Figure 3 shows
the evolution of n

y4(n)
and wn for Markov TCP Reno with

p = 0:1.
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Figure 3: TCP Reno

4.2 Random service times
We now consider the case with random (aggregated) services
on all routers. This case is the most di�cult one, even for



a constant window size. The di�culty stems in particular
from the fact that the computational cost of the formulas
grows in non-polynomial way with the maximum window
size. We will assume here that the sequence f�i(n); i =
1; : : : ; Kgn is i.i.d. This is a simpli�ed model w.r.t. our
initial motivations where aggregated service times represent
the in
uence of cross tra�c on the packets of the reference
connection (see [2]). Under this assumption, the sequence
of matrices fAi(n); i = 1; : : : ; w�gn is i.i.d. and for all loss
detection models described in x2.6, f(W (n); Z(n))g (resp.
the sequence f(�(n),W (n),RTO(n),Z(n))g when applica-
ble) forms a Markov chain.

4.2.1 Examples

4.2.1.1 Tahoe (G1)-(G4)
The assumptions concerning the feedbacks are (G1) and
(G4);

� (G1) accounts for the losses due to an excessive send
rate of the reference 
ow; we will take here S(n) = S =

IE(
PK

i=1 �i(1)) and �
�(n) = �� = maxKi=1 IE(�i(1)), so

that b� is still given by b� =
�
S
��

�
+ 1;

� (G4) accounts for the losses and timeouts due to the
variations of cross tra�c.

For n � (b��1)b�
2

+ 1, let eB(n) be the vector
eB(n) = bAvn(n+ 1)
 eAvn�1(n)
 � � � 
 eAv1(2)
 Z(0);

where v1; v2; : : : ; is the Tahoe sequence (1; 2; 2; 3; 3; 3; : : : ; b
��

1; b� � 1; b�). In this formula, the matrices f eAi(n); i =

1; : : : ; Kg (resp. f bAi(n); i = 1; : : : ; Kg) are i.i.d. and de-
�ned as fAi; i = 1; : : : ; Kg, but when using the i.i.d. ran-
dom variables e�(n) (resp. b�(n)) in place of �(n), where e�(n)
(resp. b�(n)) is a random vector with the law of �(n) condi-
tional on the property that �(n) =2 B (resp. that �(n) 2 B).
For instance, if B is the set

B = f� 2 RK s.t. �i > X for some ig;
and if the random variables �i(n), i = 1; : : : ; K are indepen-
dent and uniformly distributed on the interval [0; U ], with
X < U , then the random variables e�i(n), i = 1; : : : ; K are
still i.i.d. and uniform on the interval [0; X], whereas the
random variables b�i(n), i = 1; : : : ; K have a joint distribu-
tion which can be computed explicitly using order statistics.

Corollary 5. [TCP Tahoe with random service times]
Under (G1)-(G4), the throughput of TCP Tahoe without
slow start is:

� =

Pb�

k=1

Pk�1
i=0 pki

�
(k�1)k

2
+ i+ 1

�
Pb�

k=1

Pk�1
i=0 pki IE

h� eB � (k�1)k
2

+ i+ 1
��

K

i ; (30)

where

pki = �
(k�1)k

2
+i(1� �); (31)

with � = P (�(n) 2 B).

Proof. Since the matrixM(n)�M 0(n) has the so called
memory loss property on the set f(y1; ::; yK) 2 R

K ; y1 �
:: � yKg (see [4]), the stochastic process fW (n); Z(n)g is
a regenerative process where the regeneration times are the
epochs when the window size is equal to 1. The lengths Tl,
l � 1, of the successive regeneration cycles are i.i.d. and
such that

T1 2
�
1; : : : ;

b�(b� + 1)

2

�
:

Let pki denote the probability that T1 is equal to
k(k�1)

2
+i+

1, 0 � i < k � b�. One obtains the value given in (31) for pki
when using the assumption that the service time vectors are
i.i.d. Formula (30) for 
 follows from the ergodic theorem
for regenerative processes (see the formula in Cor.1 [4]).

4.2.1.2 Tahoe (G1)-(G3)
The assumptions concerning the feedbacks are (G1) and
(G3), with RTO(n) = RTO; we also assume that the ser-
vice times can take a �nite number of rational values. Under
these assumptions, the variables fyK(n)�yK(n�wn�1); n 2
Ng can only take a �nite number of values too, say in a set
	, and this sequence has the same regenerative structure as
above. The joint law of regeneration cycle T1 and the dater
Z(n) can be explicitly computed by the following recursion:

P (T1 > n; Z(n) = z)

=P (\nk=1fyK(k) - yK(k-wk-1) < RTOg; Z(n) = z)

=
X
z02	

P (\nk=1fyK(k) - yK(k-wk-1) < RTOg;

Z(n� 1) = z0; Z(n) = z)

=
X
z02	

P (Z(n) = z; yK(n) - yK(wn-1) < RTO j Z(n� 1) = z0)

P (T1 > n� 1; Z(n� 1) = z0):

This is valid for n < b�. From this, one can derive a formula
for the throughput using the ergodic theorem for regenera-
tive processes in the same way as above:

� =

Pb��1
k=0 P (T1 > k)Pb��1

k=0

P
z2	 P (T1 > k;Z(k) = z)�(z)

; (32)

where �(z) is the function de�ned in x4.1.

4.2.2 Extensions
A similar formula can be obtained for TCP Tahoe with slow
start or for TCP Reno, and also for various extensions of
the above model including independent packet losses as in
x4.1.

Example 3. Here we consider TCP Tahoe with K = 3
routers, under (G2) with �1 = �3 =1 and �2 = 3, w� = 50.
The random variables �i(n) are i.i.d. multinomial with the
following values: �1(n) is equal to f1; 10; 20g with probability
0:1; 0:2; 0:7; �2(n) is equal to f13; 15; 17g with probability
0:25; 0:5; 0:25; �3(n) is equal to f1; 10; 20g with probability
0:7; 0:2; 0:1.

One of the curves of Figure 4 shows the evolution of W (n)
for TCP Tahoe model with slow start under these assump-
tions, whereas the other curve gives the evolution of W (n)



when exchanging the statistics of �1(n) and �3(n).
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Figure 5 shows the comparison of the throughput of these
two TCP Tahoe models. The �rst model gives a through-
put of 0:058679 (simulation of 107 packets), whereas that
of the second one is 0:053357. So, the permutation of the
characteristics of two routers may in
uence the value of the
throughput: we cannot reduce the network to a single bottle-
neck router since the throughput may depend on the position
of the bottleneck along the path.

In the same way, mean values are not su�cient to predict the
throughput: for instance, for the �rst model, when moving to
deterministic service times equal to the mean values of the
corresponding multinomial distributions, we �nd a through-
put of 0:062112, whereas when increasing variance of service
times in routers 1 and 2 (�1(n) equal to f0; 32:2g with prob-
ability 0:5; 0:5 and �2(n) equal to f0; 30g with probability
0:5; 0:5), the throughput collapses to 0:043819 (�30%).

5. FURTHER EXPLOITATION OF THE AP-
PROACH

In the previous sections, we limited ourselves to the mean
value of the saturated throughput. In fact, one can derive
further results from our analysis, either analytically, or via
our fast algebraic simulation algorithm; this concerns for
instance:

1. The law of the instantaneous throughput limn!1 P (
(yK(n+1)�yK(n))�1 � x); which, under the setting of

x4.1, is equal toP(w;z)2� 11f�(z)�1=xg�(w; z); this is an
important quantity which de�nes a natural indicator
of QoS in complement to the average value;

2. The law of the end-to-end delay: limN!1 1
N

PN
n=1 P (

yK(n)� yK(n� wn�1) � x);

3. The law of the time D needed to transmit a �le of
size F ; in �rst approximation, this law is given by the
relation: P (D > t) = P (yK(F ) > t); although more
precise formulas can be derived when taking retrans-
missions of lost packets into account.

Within this framework, we could also possibly handle

4 Open model (i.e. non saturated source models like
http sources), where the arrival process is described
by its statistical characteristics; in this case, the basic
equations read:

y0(n) = [yK(n� vn�1)
 dK;0]� u(n);
yi(n) = [yi�1(n)
 di�1;i � yi(n� 1)] 
 �i(n);

i = 1; : : : ; K, where u(n) denotes the time when packet
n becomes available at the source node. This leads to
a max-plus a�ne dynamical system where (5) has to
be replaced by:

Z(n) = Avn�1(n)
 Z(n� 1)� V (n); (33)

where V (n) is a vector built from fu(k)g (see [3]).
5 Multiple connections cases allowing one to study in-
teractions between several customers;

6 Multicast connections over a network involving a tree
rather than a linear sequence of routers in series (see
[5] for the constant window case).

7 Equation based control as considered in [7].

These last questions will be the object of future research.

6. CONCLUSION
We have shown that both in the saturated and the non sat-
urated case, the adaptive feedback mechanism of TCP is
a linear feedback in the max-plus algebra. This leads to a
simple representation of the e�ect of this protocol on any
network which admits a max-plus representation without
the control, like tandem queues or the fork-join queue net-
works that one �nds in multicast trees. We have deduced
from this simple formulas for various deterministic service
time models that re�ne well known results of the literature.
These formulas con�rm that in this case, the throughput
only depends on the RTT and the bottleneck router rate,
at least in the (G1) case. New formulas are also obtained
for the random service time case, where the randomness is a
natural way of representing the e�ect of the rest of tra�c on
the controlled connection. It is shown that in this case, one
cannot obtain the throughput from mean values only, and
that the order and the �ne statistical behavior of the routers
cannot be ignored. The set of all possible models within this
setting is quite rich. One can indeed select a deterministic or
random service time model, a congestion or loss based 
ow



control; losses may stem from congestion, or timeouts, or
be random, or any combination of the three; Reno or Tahoe
can be selected, with or without slow start etc. We have
shown how our approach could be used to analyze some of
these combinations; we �nd it useful to stress that all such
combinations can in principle be analyzed within this set-
ting, which will be the object of our future research. More
generally, this approach provides a generic framework for
the simulation of TCP and related protocols over possibly
large networks, based on simple algorithms with a low com-
putational cost.

7. APPENDIX
7.1 Proof of Theorem 2
For all integers 1 � u; s � w�, and all vectors z 2 RKw� let
f ~W (n); ~Z(n)g be the sequence de�ned by

Z(n) = AbW (n�1)c(n)
 Z(n� 1);

W (n) = F (s;W (n� 1); 1) ;

with initial conditions ~W (0) = u, Z(0) = z and �(0) =
s (this is the sequence where we enforce �(n) � s and
ACK(n) � 1). Let ~n be the �rst integer n such that either

loss or timeout are detected for packet n in the f ~W (n); ~Z(n)g
sequence, when making use of rule (6). In case no such event
occurs, this means that the reference window size eventually
stays constant and equal to W �. If not, let B� = ~W (~n).
Here are a few examples:

� Under (G1), b� = bB�c is given by

b� = minfn : n�� > Sg =
�
S

��

�
+ 1:

Note that in this case, b� � K + 1 and only depends
on �� and S.

� Under (G2),

~n = inffn : A
ewn�1 
 � � � 
A

ew0 
 z 2 S2g;
where S2 = fZ 2 R

Kw� s.t. for some i; 1 � i �
K; Zi�1+di�1;i < Zi+�iKg: Note that in this case, b�

depends in general on the whole vectors � = (�1; : : : ; �K)
and � = (�1; : : : ; �K).

� Under (G3), the condition de�ning ~n is as for (G2) but

with, in place of S2, the set S3;n = fZ 2 RKw� s:t: ZK�
ZK+ ewn�1K > RTO(n)g.

Departing from u = u0 = 1, s = s0 = b�W �c, and z =
z0 = (0; : : : ; 0)t, we either have a reference window size
which eventually stays constant and equal to W �; in this
case, the result is proved with a� = b� = w�. If not, after
the value B�0 = B� is reached, the window drops down, and
it starts a new cycle similar to the �rst one, but this time
with u1 = b�B�0c, s1 = s0 or b�B�0c, and z1 = ~Z(~n). Here

again, either ~W (n) =W � eventually, or we start a new cycle
when the window size reaches the value B�1 etc. In case the
constant sequence with onlyW � is never reached, there is an
in�nite sequence of such cycles that only di�er in their initial
conditions. Since the structure of the ith cycle is completely
determined by the triple (ui; si; zi) where zi is the class of
zi (see x2.6), and since there is only a �nite set of possible

values for such triples under our conditions, the periodicity
follows. In case RTO(n) is used in the initial condition, the
proof can easily be adapted along the same lines.

7.2 Proof of Corollary 1
We will only give the proof for the (G1) case. In view of

Theorem 3, we have to check that the matrix Ab�
Ab��1
b��1


� � � 
A1 has a unique eigenvalue and to compute this eigen-
value. The �rst property is immediate. The second one is
proved via the following lemmas.

Lemma 2. For all i 2 f1; ::; b� � 1g,

Ai
i =

0BBBBBBBBBBBBBBBBBBB@

M i �M 0 MM 0 � � � � � � M i�1M 0 E � � �
M i�1 M 0 . . .

. . . M i�2M 0 ...
... E . . .

. . .
...

...

M2
...

. . . M 0 MM 0 ...

M
...

... E M 0 ...

Id E
...

... E
...

E Id E
...

...
...

...
. . .

. . .
...

...
...

1CCCCCCCCCCCCCCCCCCCA

 ith
block

" ith block

For all i � 1, n 2 f1; ::; i� 1g,

An
i =

0BBBBBBBBBBBB@

Mn E � � � E M 0 � � � Mn�1M 0 E � � �
...

... E . . .
...

...

M
...

...
. . . M 0 ...

Id E � � � E
...

... E
...

E Id E � � � E
...

...
...

...
...

. . .
. . .

...
...

...
...

...

1CCCCCCCCCCCCA
 nth
block

" ith block

Proof. By �nite induction.

Lemma 3. For all n � b� � 1, the matrix M 
 (Mn �
M 0) 
 � � � 
 (M �M 0) is irreducible and its eigenvalue is
equal to nS + ��.

Proof. M �M 0 is irreducible and this property is stable
by left max-plus product byM , which implies the announced
irreducibility property. Let C(n) = (Mn)1�i�K;j=1, C =

C(1). We have for all n � 1, for all i 2 f1; ::; Kg;�
C(n)

�
i

= (C)i + (n� 1) max
k=1;::: ;i

�k:

and

M 
 C(n) = C(n+1); M 0 
 C(n) = S + (n� 1)�� +C;

so that

(M l �M 0)
 C = C(l+1) � (S
C):



Since, for n 2 f1; ::; b� � 1g, n�� � S, if 1 � l � b� � 1, we
have

(M l �M 0)
 C = S + C; (M �M 0)
 C(2) = S + �� + C:

Therefore M 
 (Mn �M 0)
 � � � 
 (M �M 0)
C(2) = nS+

��+C(2): Hence C(2) is an eigenvector ofM
 (Mn�M 0)

� � � 
 (M �M 0) for the eigenvalue nS + ��.

7.2.1 Proof of Corollary 1
We have

A1 
 ((C(2))t; � � � )t � (S + �� + (C)t; �� + (C)t; � � � )t

and

A2
2 
 (S + �� + (C)t; �� + (C)t; � � � )t
� (2S + �� + (C)t; 2S + (C)t; S + �� + (C)t; � � � )t;

where ((C(2))t; � � � ) or (S + �� + (C)t; �� + (C)t; � � � ) are
line vectors of dimension K:w� and where � � � are entries of
these vectors that have no in
uence on the computation (for
instance put �1).

Using Lemma 2 and the fact that for all n < b�, n�� � S,
we get by induction that for all i 2 f2; ::; b� � 1g,
Ai
i 

�
(i� 1)S + �� + (C)t; (i� 1)S + (C)t; : : : ;

(i� 1)S� (i� 3)�� + (C)t; (i� 2)S + �� + (C)t; � � � �t
� �iS + �� + (C)t; iS + (C)t; : : : ;

iS� (i� 2)�� + (C)t; (i� 1)S + �� + (C)t; � � � �t :
Therefore�

Ab� 
Ab��1
b��1 
 � � � 
A1 
 ((C(2))t; � � � )t

�
1�i�K

�
((b� � 1)S + ��)
 (M 
 C)�
((b� � 1)S + (b� � 2)��)
 (M 0 
 C)

� (b� � 1)S + �� + C(2):

For n < b�, let B(n) denote the matrix (An+1 
An
n 
 � � �


A1)1�i;j�K : For all n < b�, we have B(n) �M 
 (Mn �
M 0)
 � � � 
 (M �M 0), so that�

Ab� 
Ab��1
b��1 
 � � � 
A1 
 ((C(2))t; � � � )t

�
1�i�K

�M 
 (Mn �M 0)
 � � � 
 (M �M 0)
 C(2)

= (b� � 1)S + �� + C(2);

where the last equality follows from Lemma 3. Hence�
Ab� 
Ab��1

b��1 
 � � � 
A1 
 ((C(2))t; � � � )t
�
1�i�K

= (b� � 1)S + �� +C(2):

The relation B(n) � M 
 (Mn �M 0) 
 � � � 
 (M �M 0)
also implies that B(b� � 1) is irreducible. Therefore the
eigenvalue of B(b��1), that is 
, is equal to (b� � 1)S + ��.
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