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ABSTRACT

Fault isolation has received little attention in the Internet re-
search literature. We take a step towards addressing this d-
eficiency, exploring robust and scalable techniques by which
multicast receivers can (in some cases, approximately) lo-
cate the on-tree router responsible for a route change, or
the link responsible for significant packet loss. A common
property of our techniques is that receivers with overlapped
paths coordinate to share the responsibility of monitoring
paths to the source. Our techniques assume no addition-
al path monitoring capability other than that provided by
multicast traceroute (mtrace).

We explore the scaling characteristics of two classes of mech-
anisms: those that assume some kind of router assist for se-
lectively multicasting the responses to mtrace requests, and
those that do not. In the former category fall schemes that
use subcast or directed multicast. In the latter are schemes
that use scoping, or limited multicasts. The latter two ap-
proaches can be deployed in today’s multicast infrastructure.
We find that while one deployable alternative has somewhat
acceptable performance, schemes that leverage router assist
have very desirable scaling characteristics.

1. INTRODUCTION

While much recent research has focused on IP multicast
routing protocols and the design of multicast application-
s, scalable solutions for managing networks with deployed
multicast has not received much attention. In this paper,
we take a step in this direction, by considering the problem
of fault isolation in the context of large multicast distribu-
tion trees. To more fully explore the design space, we focus
on single-source trees. Such trees are fairly representative
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of the kinds of applications network-layer multicast is very
well suited for—mnetwork broadcasts, streaming media type
applications etc.

The problem of fault isolation is that of locating (perhaps
approximately) that on-tree router or link which is the origin
of a fault. In this paper, we use the term fault in two very
specific ways. First, an on-tree link is faulty if it is the cause
of significant packet loss. Our mechanisms do not rely on
the term “significant packet loss” being precisely quantified.
Rather, multicast receivers determine which link or links
contribute most to perceived packet loss. Second, an on-
tree router is faulty if it is the origin of a routing change
that results in a change to at least one receiver’s path to
the source. This definition includes the scenario in which a
receiver loses connectivity to the root.

Two considerations enable us to find feasible solutions to
this problem of fault isolation. First, we believe it is accept-
able for the fault isolation mechanisms to localize a fault
to within some topological neighborhood of the actual fault
location. Simultaneously achieving perfect spatial fidelity of
isolation, scale and robustness seems intractable. For a sim-
ilar reason, we believe it is acceptable for the mechanisms
to achieve imperfect temporal fidelity—i.e., altogether miss
extremely short-lived faults.

Finally, a desirable solution for multicast fault isolation must
also be robust to receiver joins and leaves, or network dy-
namics. In particular, the joining or leaving of a receiver
must not render the fault isolation capability inoperable at
other receivers. When a network partition results in some
receivers being unreachable from the source, the remaining
receivers must still be able to isolate faults.

SNMP-based monitoring systems [13, 10, 24, 1, 3] provide
a capability that is complementary to fault isolation. That
is, once a fault has been located, SNMP-based monitoring
systems can be used to infer the causes of such faults (e.g.,
failed routers, chronically underprovisioned links). For this
reason, inferring the cause of a fault is an explicit non-goal
of our fault isolation mechanisms. However, SNMP-based
monitoring systems cannot, we believe, be used for fault
isolation. Monitoring individual routers may not be suffi-
cient for correlating an application-perceived behavior with
router activity. For example, given that a route change has
occurred at a router, the router cannot infer the specific re-
ceiver or receivers affected by a route change. The multicast



routing state in a router does not, for scaling reasons, con-
tain the identities of downstream receivers. Thus, collecting
information from inside the network may not be sufficient
for fault isolation.

In our approach, receivers at the edge of the network peri-
odically probe the path to the source. They each maintain
some history of the results of these probes. Each receiver
also coordinates—exchanges probe information with—some
set of other receivers. Once a fault is detected, an affected
receiver can isolate the fault using the probe history, per-
haps after obtaining more detailed information from some
other receivers.

The probing primitive that forms the basis of this approach
is multicast traceroute [7]. Using multicast traceroute, a re-
ceiver on a multicast distribution tree may trace its current
path to the source. In its simplest form, this is initiated
by the receiver host sending an mtrace request message to
its first hop router on the multicast distribution tree (Fig-
ure 1(a)). That router performs two actions. First, it ap-
pends its own identity (i.e., its IP address) to the request
message. It also appends a count of the total number of
multicast packets received on this tree. This count helps
determine how many packets were dropped by this router.
Second, the router forwards the request to the previous hop
towards the source (the identity of the previous hop is deter-
mined from routing tables). This router, and each successive
router, repeats these actions. Finally, the router attached
to the source returns an mirace response to the destination
specified in the mtrace query; this response message contains
the information accumulated at each hop to the receiver.

Using multicast traceroute (or mtrace for short), a receiver
can determine both its path to the source (or part thereof),
and the number of losses on individual links in that path.
Mtrace’s loss statistics are approximate, and sometimes er-
roneous [7]. However, for fault isolation, this qualitative loss
indication is usually sufficient. Is mtrace alone also suffi-
cient for locating the origin of a routing change? No. If a
receiver were to conduct an mtrace to the root before and
after a routing change, it may not be able to infer the fault
location from the two mtraces alone (Figure 1(c)). Further-
more, a solution where every receiver mitraces to the root
does not scale well to large trees (Figure 1(b)). This scaling
requirement motivates the study of the various mechanisms
considered in this paper.

In this paper, we discuss a class of solutions that leverages
the following simple observation. Consider two receivers A
and B in a multicast tree that share a common ancestor®. It
suffices for one of them, say A to mtrace to the root, and the
other B to mtrace up to the common ancestor. This obser-
vation allows us to scale the periodic monitoring of multicast
tree paths. If A and B share the results of their mtraces,
they can each learn from the other about tree changes or
lossy links. As we describe later, a receiver can approxi-
mately isolate a failed router by determining the paths, be-
fore and after a fault, of all other receivers with whom it has
a common ancestor.

'In general, receivers can share multiple ancestors. In this
paper, common ancestor refers only to the shared ancestor
that is nearest to the receivers.
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Receivers determine peers with whom they share a common
ancestor by exchanging mtrace results with other receivers.
In our example above, A would subcast (i.e. subtree mul-
ticast [17, 4]) its response. Upon receiving this, B would
infer that it shares an ancestor with A, and would limit its
mtrace to that shared ancestor. In turn, B would subcast
its response from the shared ancestor. Subcast is not, how-
ever, the only possibility; other possibilities include directed
multicast [20], scoped multicast, or multicasted mtrace re-
sponses from a limited subset of receivers.

In this paper, we describe our approaches in some detail
(Section 2). We then attempt to compare the performance
of these schemes. The performance metrics of interest (the
probing overhead and the fidelity of fault isolation) are de-
pendent on the characteristics of the multicast tree. We an-
alytically evaluate these metrics for a class of regular trees
(Section 3.1). We then simulate the performance of these
schemes over a wider, parameterizable, class of randomly
generated trees (Section 3.2).

We find that the scoped-multicast based fault isolation has
good average performance. However, schemes that employ
router assist have very desirable (logarithmic) overhead s-
caling, and high fault isolation fidelity. This is particularly
true of directed multicast. Our results confirm the need
for router assist in a deployed multicast infrastructure, and
demonstrate the existence of protocols other than reliable
multicast that can utilize such assist.

2. MULTICAST FAULT ISOLATION

In this section, we show how multicast traceroute can be
used for scalable and robust fault isolation in multicast trees.
For clarity, we use the term session watcher to denote the
software entity that actually initiates the multicast tracer-
oute, keeps probe history, and coordinates with other session
watchers. A session watcher may be colocated with a receiv-
er. More generally, there may be one session watcher in a
multi-access LAN, performing fault isolation on behalf of all
receivers on the LAN.

There exists a naive technique for monitoring multicast dis-
tribution trees that uses multicast traceroute. Each ses-
sion watcher periodically traces its path to the source and
maintains a history of these traces. Using this information
alone, a session watcher (denoted by W,, say) can iden-
tify the link responsible for significant loss. Locating the
router responsible for a route change is harder: W, needs to
query neighboring session watchers to determine if, before
the route change, they happened to share a part of the path
of the source. If W3’s path to the source was unchanged
after the route change observed at W,, then the location of
the fault must be downstream of ancestor common to W,
and W,. Otherwise, the fault location must be upstream of
this ancestor. W, can localize the fault by this process of
elimination. This is illustrated in Figure 1(c).

This naive technique has some interesting properties. Other
session watchers are not affected by the failure of a session
watcher. The temporal fidelity of this technique is governed
by the rate at which session watchers send mtrace requests;
this technique will not be able to isolate faults whose dura-
tion is less than the interval between mtrace requests. Fur-
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Figure 1: Multicast Traceroute

thermore, this technique scales better to large groups than
a centralized collection of traceroutes (using, for example,
third-party [7] multicast traceroutes).

Nevertheless, this technique still exhibits undesirable scal-
ing behavior. Closer to the root of the distribution tree, the
overhead of mtrace requests can be significant, particularly
for very large multicast groups. Furthermore, to isolate a
routing change, a session watcher may need to query poten-
tially every other session watcher in the group.

2.1 Subcast-Based Fault I solation

The first fault isolation technique we describe, subcast based
fault isolation, relies on two capabilities. First, it relies on
the ability of a session watcher W, to specify a hop limit
h on an mtrace request. This feature already exists in m-
trace [7]. A hop-limited request travels on the reverse path
from receiver to source, terminating at a router R which is
h hops away from the receiver. That router generates the
corresponding response. We say that R is W,'s turnaround
router. When the hop limit on an mtrace response is 0o, the
turnaround router is the root (the router directly connect-
ed to the source). Second, this technique uses subcast, or
subtree multicast [17]. This form of router support allows a
sender to specify that a packet be multicast to the subtree
rooted at a specified router. In particular, we assume that
we can specify that the corresponding mtrace response be
subcast at the turnaround router. Subcast is illustrated in
Figure 2(b).

We should emphasize that subcast is not yet widely de-
ployed in the Internet’s multicast infrastructure. However,
because it has wide applicability for reliable multicast, there
is some reason to believe that it will be implemented in fu-
ture multicast-capable internets. Furthermore, as we show
later, this subcast based scheme helps us calibrate the per-
formance tradeoffs of other immediately deployable designs.

Overview

Our subcast-based session watcher coordination leverages
the following observation. If the path from two session
watchers to the source overlaps, it suffices for one of them
to monitor the overlapped segment of the path. Thus, one
session watcher, say W, can monitor the entire path to the

31

source. The other, W} can terminate its multicast traceroute—
using the hop-limit field in the mtrace request—at the com-
mon ancestor between W, and W, (Figure 2(a)). An earlier
version of this algorithm appears in [22].

How does W, determine (1) that W, is tracing its path all
the way to the source, and (2) the identity of the common
ancestor? When W, starts up, it mtraces its path once to
the source?. Further, W,’s response is sent to the entire tree
and is therefore heard by W;. More generally, if W, itself
terminates its mtrace at some non-root node, it subcasts its
response at that router. Using this subcast response, W; can
determine the answers to both these questions. Having de-
termined its common ancestor, W; then subcasts its mtrace
response down the subtree rooted at the common ancestor.
Could W, (instead of W) have terminated its mtrace re-
quest at the common ancestor, allowing the latter to send a
multicast traceroute to the source? In our scheme, we use a
simple metric (the number of hops to the common ancestor)
to determine which of W, or W, traces all the way to the
source.

Finally, what happens if W, fails? When W, fails to hear
a small number of subcast mtrace responses from W,, it
extends its mtrace request all the way to the source. (If
several session watchers terminated their mtraces at that
common ancestor, then—as we describe below—only one of
them mtraces beyond the ancestor.) This is a conservative
action. For example, W, may not have failed; rather, several
of W, ’s subcasts may have been dropped. In that case, Wj's
action only results in redundant monitoring; for a short time,
Wy and W,’s mtraced paths may overlap. Once W, hears
W, subcasts again, it backs off its mtrace requests to the
common ancestor.

Protocol Description

In the following paragraphs, we describe subcast based co-
ordination of path monitoring. We do this by describing the
sequence of actions executed at each session watcher W,.
First, we describe some notation:

2This is a simplified description. On startup, a session watcher
actually “hunts” its path to find an ancestor. This behavior is
described later in this section.
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Figure 2: Subcast-based monitoring coordination

e The term current hop limit denotes the hop limit that
W, will use on its next mtrace request.

o W, sets a periodic probe timer. The duration of this
timer is some fixed protocol constant 7', randomized to
avoid synchronization effects. This timer defines the
periodicity of sending mtrace requests.

e W, maintains a current turnaround router. The cur-
rent turnaround router is the furthest known ancestor
to which W, is closer than all other session watchers
who share that ancestor. In addition, W, maintains
an ancestor list. This list, sorted by the number of
hops to an ancestor, contains all ancestors that are
turnaround routers for any other session watcher W,

e W, also sets a backoff timer. The duration of this timer
is a small integer multiple of T'. As shown below, this
timer is used to recover from failures.

e Finally, W, also maintains a history buffer which is a
time-stamped list of mtrace responses it has seen.

Startup: Upon startup, W, initializes its current hop limit
to 1. It empties the ancestor list and the current turnaround
router, and starts the probe timer. The basic idea here is
that a session watcher “hunts” its path to the source slowly
until it finds another session watcher with a common ances-
tor. This behavior is necessary in order to prevent all ses-
sion watchers from simultaneously sending mtraces to the
root after, for example, a major tree reconfiguration.

Probe timer erpiration: When a probe timer fires, W, sends
an mtrace request. The hop limit on this request is W,'s
current hop limit. W, also ensures that the response is sub-
cast from the router that is at a distance indicated by the
current hop limit. If W, has no current turnaround router,
it doubles its current hop limit (unless its current hop limit
is already sufficient to reach the source). This last step expo-
nentially increases the hop limit until a suitable turnaround
router is found.

Receiving own mirace response: When W, receives a re-
sponse to an mtrace request that it originated, it stores the
response in its history buffer. If the current response has a
different list of routers than the response elicited by W,'s
previous request, W, sets its current hop limit to 1 and clears
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out its ancestor list and its current turnaround router. In
this way, it resumes its hunting behavior to find a suitable
turnaround router. Obviously, during this hunting, the list
of routers in the response is different from the response in
its history buffer. Therefore, during hunting, the current
hop limit is not reset to 1 although the list of routers in the
response and the history buffer are different.

Receiving another watcher’s response: When W, receives a
response to an mtrace request sent by W:

1. W, tries to determine the ancestor r,; that is common to
both W, and W}. It can determine this using the received
response and its history buffer. From this information, W,
can also determine its own distance (in terms of hops) to rqs
(call this d%;,) and W’s distance to 745 (call this dC;).

2. If rqp is not in the ancestor list, W, inserts ry, and its
associated distances into the list.

3. W, sets its current hop limit to dj, such that rq, is the
nearest ancestor for which d3, > d7, (ties are broken by
lower IP address). It also sets the current turnaround an-
cestor to be rqz, if such a router exists.

Intuitively, this step might cause W, to backoff to the cur-
rent turnaround router.

Backoff timer expiration: Suppose that, when the backoff
timer expires, W,’s current turnaround router is rqp. Clear-
ly, the backoff timer must have expired because successive
subcasts from W}, were not received. In this case, W, deletes
rqb» from the ancestor list, then recomputes its current hop
limit and current turnaround router according to Step 3 in
the previous paragraph. W, restarts its backoff timer. This
step essentially renders the mechanism robust to receiver
leaves and network partitions. It also ensures that, of all
the session watchers for whom r,; is an ancestor, at most
one session watcher mtraces beyond that router when Wj is
perceived to have failed.

Figure 2(a) shows the operation of the subcast based pro-
tocol in the steady state. The following are some of the
interesting properties of this protocol. First, in the steady
state, at most one session watcher monitors a link in the
multicast distribution tree. Second, a session watcher W,
knows all other watchers that have turnaround routers on
W.’s path to the source. This information can be obtained
from the subcasts that W, receives. This property is crucial
for fault isolation and is described below. Third, this proto-



col automatically adapts to receiver joins and leaves. When
a receiver joins the group, the corresponding session watch-
er initiates mtraces using the hunting behavior described
above. Eventually, it backs off to the appropriate ancestor.
When a receiver leaves, the corresponding session watcher
stops sending mtraces. Eventually, a backoff timer expires
at some watcher, which then appropriately adjusts its hop
limit to enable complete tree monitoring. Fourth, the pro-
tocol behaves conservatively in the face of packet loss, or
watcher failure. For example, when mtrace responses are
frequently lost, a session watcher may terminate its mtrace
requests further away than it otherwise might have. This
can result in redundant link monitoring. Watcher failure
is analogous to receiver leaves. Failure of a single watcher
affects only the receivers located on the same LAN. Final-
ly, the state maintained at a session watcher is proportional
to the number of messages seen at that watcher within one
monitoring interval. This state is highly compressible when
there are no changes in the receivers’ paths or in losses ob-
served at routers. However, in the worst case the amount
of state that needs to be maintained is proportional to the
maximum monitoring overhead.

Fault Isolation

We have, thus far, described a technique for scalably moni-
toring a multicast distribution tree. This technique has one
key property: from its history buffer, a session watcher W,
can compute its ancestor list. For each ancestor in the list,
it can also compute the single session watcher whose mtrace
extended beyond that ancestor. We use the term W, to
denote this set of session watchers. This property is very
useful for isolating a fault. We now describe how a session
watcher may (1) locate a lossy link in its path to the source
and (2) approximately locate the origin of an observed route
change.

To isolate a lossy link, W, need only refer to its history
buffer. From the most recent mtrace responses received from
each session watcher in W,, W, can determine the mtrace
response that it would have received if it had sent an mtrace
to the source. This information suffices to infer lossy links
on the path from W, to the source. Thus, our session watch-
er coordination protocol isolates lossy links without loss of
spatial fidelity.

Suppose W, notices a route change in an mtrace response.
Suppose further that W', is the value of W, before a route
change. Then, the router that originated the route change
must lie between the nearest ancestor r., in the ancestor
list for which W,’s path to the source has not been affected
by the route change, and the ancestor closer to W, than rq,
(Figures 3(a) and 3(b)). (Recall that rq, is the common
ancestor for W, and W,—here we refer to the ancestor rela-
tionship before the route change). Thus, in order to isolate
a route change, W, will need to query, in the worst case, all
the watchers in W', .

The subcast based scheme (and indeed other schemes de-
scribed in subsequent subsections) can only localize a fault
to between branch points in a multicast tree. There may be
many routers between two branch points. Thus, the spatial
fidelity of locating a route change depends upon the distribu-
tion tree. However, as discussed before, W, at least knows

33

the identities of these routers and can use other techniques
(e.g., SNMP) to more precisely locate the fault.

Metrics

Before we proceed to describe other approaches, we must
clearly define what determines the performance of these fault
isolation schemes.

Our first metric describes the overhead of the mtrace path
probing. We define the overhead on a link I, O;, to be the
number of messages (requests and responses) seen on [ in
a time window T, the probe timer interval. Intuitively, O;
measures the number of messages that would be seen on
link [, in the absence of losses, if every session watcher sent
an mtrace (with its current hop limit in the subcast-based
scheme, of course) exactly once. Given that probe timer ex-
pirations at session watchers are not synchronized, we mea-
sure O; as a long-term average number of messages seen on
l within an interval of T'.

For our performance analyses (Section 3), we define two
overhead measures: the mazimum overhead, and the average
overhead, defined across all links. These overhead measures
are clearly dependent on the characteristics of the multicast
trees; the number of session watchers, and the distribution
of router fanout. The overhead is also dependent on link
losses; in the subcast based scheme, if some responses are
lost, receivers may redundantly monitor links in the distri-
bution tree, resulting in increased overhead.

In this paper, we make two simplifying assumptions in eval-
uating overhead. First, we count only individual messages,
and ignore message size. To a first approximation, we ex-
pect mtrace requests and responses to be relatively small
(a few tens to a few hundreds of bytes). Furthermore, the
costs of processing mtrace requests are, again to a first ap-
proximation, per packet not per byte. Second, we model
multicast tree links as point-to-point links. In some cases,
several downstream routers may be attached to the same
LAN as their upstream neighbor. In these cases, Ogye will
be different from—and could be higher or lower than—the
true average overhead. For the example in Figure 2(a), the
average overhead is 3.33 and the maximum overhead is 4.

Our second metric defines the accuracy of fault isolation.
In the subcast scheme, depending on tree characteristics, a
session watcher W may be able to isolate a fault at router
R to within n routers on the same tree branch as R. In
this case, we say that the fault isolation error for R with
respect to W is n — 1. We define the fault isolation error
of a router R as the maximum fault isolation error with
respect to all session watchers affected by the fault at R.
We then define the average error over all routers R on the
tree. Intuitively, the average error gives the erpected fault
isolation inaccuracy if each on-tree router were equally likely
to fail (or not have a route to the source). We emphasize
that this metric is only relevant for isolating a failed router
or the origin of a route change. Receivers can always isolate
lossy links with perfect fidelity, modulo inaccuracies in the
loss data provided by mtrace [7].

Clearly, for the subcast scheme, both the overhead and the
error are dependent on tree characteristics. However, as we
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Figure 3: Fault Isolation Scenarios

show later, the fault isolation error for subcast is lower than
the other schemes we now describe.

2.2 Fault Isolation Using Directed Multicast

Directed multicast [20] is a proposed router assist mechanis-
m for reliable multicast applications. Unlike subcast, where
a packet is multicast down all branches of the subtree root-
ed at a specific node, directed multicast allows receivers to
multicast the packet along a specific branch. A directed
multicast message sent by a turnaround router is received
by all members of the subtree downstream of the link by
which the corresponding query arrived at the turnaround
router. This is illustrated in Figure 4(a).

Directed multicast can be used as a drop-in replacement
for subcast in the previous algorithm. Specifically, when
the probe timer expires, a session watcher indicates that
the mtrace response be directed-multicast at its turnaround
router. No other change need be made to subcast-based
coordination of path monitoring.

Directed multicast based fault isolation has very differen-
t characteristics compared to subcast based fault isolation.
First, the overhead of this scheme can be significantly less
than subcast based fault isolation. Second, the fault iso-
lation error can be higher. In some cases, the maximum
error can equal the distance from a receiver to the source.
However, as we show later, the average error for the direct-
ed multicast based scheme is quite acceptable over a wide
variety of multicast trees. Finally, in the directed multi-
cast based scheme, the fault isolation error of a router R
with respect to a session watcher W is asymmetric; i.e., two
session watchers might isolate the same fault with different
error values.

2.3 Fault Isolation Using Scoped Multicast

The schemes presented in the previous sections rely on router
support for directionally forwarding mtrace responses. An
alternative approach, which doesn’t require router support,
uses T'TL-based scoping. Essentially, this approach leverages
the feature of multicast traceroute to both multicast the re-
sponse, and to hop-limit the response. This approach, then,

is almost identical to the subcast based approach—rather
than subcast the response, a session watcher indicates that
its turnaround router should multicast the response with a
large enough response hop limit. This hop limit should be
sufficient to reach all session watchers that have R as an
ancestor (Figure 4(b)).

How does a session watcher W, compute its response hop
limit? It initially sets the response hop limit to the curren-
t hop limit (Section 2.1). Suppose that W,’s turnaround
router is R. Suppose further it sees a response from some
other session watcher whose turnaround router is also R,
and the length of the path in the response is L. If W,’s
response hop limit is smaller than L, it sets it to L. In this
manner, all session watchers that share R as an ancestor
rapidly converge to the correct response hop limit. Various
details of this scheme such as current hop limit determina-
tion and the response hop limit decrease algorithms are not
described here due to space constraints.

Clearly, the scoped multicast based scheme has greater over-
head than subcast. Its responses not only traverse the sub-
tree rooted at the turnaround router, they also traverse
up the multicast tree. However, the fault isolation error
of scoped multicast is identical to subcast based schemes.
The scoped multicast scheme has one important drawback—
TTL-based scoping does not work with multicast routing
protocols that construct unidirectional shared trees, such
as PIM-SM version 2 [5]. PIM-SM is deployed in parts of
the Internet infrastructure today. More recent versions of
this protocol [6, 9] are likely to support bidirectional shared
trees. Such trees do not invalidate TTL-scoping semantics.

2.4 Fault Isolation Based on Limited Multi-
casts

In this section, we consider a solution in which only a rel-
atively small number of session watchers multicast, to the
entire group, their mtrace response (the mtrace protocol al-
ready allows a receiver to multicast mtrace responses to the
group). Every other session watcher mtraces along part of
its path to the source; the response is returned to that ses-
sion watcher. This solution is attractive because it would, if
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its performance were acceptable, not require router support
and not depend on multicast routing protocol characteristic-
s. This solution also differs qualitatively from the previous
solutions.

Consider the simple scenario where two session watchers
share a common ancestor (Figure 2(a)). Suppose that one
session watcher, say W, mtraces to the root, and multicas-
ts the response. The other, W}, terminates its mtrace at
the common ancestor between W, and W,. W, does not
multicast its mtrace response; thus, W, is unaware of W;’s
existence (Figure 4(c).

Suppose now that a single fault occurs somewhere on the
tree. As a result of this fault, W,’s multicast response after
the fault will be different from that before the fault. Sup-
pose now that W, determines its new path to the source.
If its path to the source is unchanged, then Wj can infer
that the fault must have occurred downstream of rg;. If its
path too has changed, then W, can infer that the fault must
have occurred between 7., and the source. Finally, if W,'s
path to the source is unchanged, but W;’s has changed, then
Wy infers that the fault must have occurred on some router
between itself and rgp.

There are two noteworthy features of limited-multicast based
fault isolation. First, its fault isolation capability is asym-
metric. While W}, can infer the location of the fault, W,
may not be able to infer anything based on received mtraces
alone. The directed multicast based scheme has a similar
feature. Omne obvious fix is to design a separate mechanis-
m by means of which W, informs W, of the location of
an affected fault. We do not consider the design of such a
mechanism in this paper. Second, suppose that W, and W,
share a common ancestor r,q which lies between 74, and Wp,.
In this case, assuming only W, multicasts its response, both
Ws and Wy terminate their mtraces at r,,. This is because
neither session watcher knows the existence of the other.
This scheme, even in steady state, can result in redundan-
t monitoring of tree segments unlike the previous schemes
presented above.

How does W, independently determine that it needs to mul-
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ticast its response? For simplicity, we separate this ques-
tion into two related questions: How many session watch-
ers should multicast their response? Which of them should
multicast their response? For now, assume a somewhat sim-
plistic answer to the first—that some fixed fraction (say 5%
or 10%) of the session watchers multicast. An approximate
count of the number of session watchers may be known ei-
ther from RTCP reports, or other estimation techniques [8].
We will revisit the scaling implications of this assumption in
Section 3. As for the second question, the heuristic we use
ensures that session watchers with higher values of current
hop limit are the ones that multicast their responses.

The details of the limited multicast scheme are similar to
that of subcast. We refer the reader to [23] for a description
of the technique.

The limited-multicast based fault isolation technique biases
those session watchers with higher hop-limits towards multi-
casting. In general, we would expect that the fault isolation
error of this scheme is higher than that of subcast, and other
schemes. Furthermore, the overhead of this scheme is also
likely to be higher than that of subcast. Some interesting
questions, which we explore in Section 3, include: Is there
a regime in which the overhead of limited-multicasts is ac-
ceptable? How much worse is it than schemes that rely upon
router assist?

Isolating faults in the limited-multicast approach is similar
to that in the subcast approach (Section 2.1). In this case as
well, W, can determine, at any instant, the session watchers
We who collectively monitor segments of W,’s path to the
source. Armed with this information, the techniques that
W, uses to isolate lossy links, or routing changes and link
failures are as described before. The only difference, in this
case, is that W, determines W, from the multicast responses
it has received.

2.5 Discussion

We now turn to some practical considerations and limita-
tions of our proposed schemes.

In many of our schemes, the load on a router is proportional



to the fan out of the multicast tree at that router. Thus,
if there are k tree links incident on a router, k — 2 mtrace
requests will terminate at that router in the subcast-based
scheme. The processing overhead imposed by these mes-
sages is a function of T. We expect that, in practice, T
will be on the order of tens of seconds. As such, we do not
expect that processing these multicast traceroute messages
will add significantly to router overhead.

Our approach to fault isolation in multicast distribution
trees assumes a relatively simple network primitive—the
multicast traceroute. Unfortunately, mitrace may be admin-
istratively disabled in some parts of the network. In these
cases, the affected receivers will clearly lack fault isolation
capability. Other receivers will be able to isolate faults albeit
with possibly reduced fidelity. Alternate techniques such as
MINC (Section 4) might also be applicable in such cases.

All the results we show in later sections are for a single-fault
model. Note that when multiple simultaneous faults occur,
the faulty router identified using the single-fault model can
be incorrect. Also, when multiple simultaneous faults are
assumed the fault isolation error increases. We refer the
reader to [23] for the fault isolation algorithm for the single
and multiple fault models. Evaluation of fault isolation error
in the multiple-fault scenario is the subject of future work.

The Internet multicast routing infrastructure continues to e-
volve. Proposed protocols, like BGMP [14] and Express [11],
may be deployed as solutions for inter-domain multicast
routing. We believe that these developments will not in-
validate the work presented in this paper. The multicast
traceroute has continued to evolve well with the addition of
new kinds of routing protocols, and we see no reason why it
will not do so in the future.

Finally, note that our mechanism for inferring the location of
a route change can only pinpoint an on-tree router respon-
sible for the change. In fact, the route change may have
originated at a distant router; our techniques cannot infer
this. However, knowing the on-tree router, an administrator
can use SNMP-based techniques to unravel the cause of the
fault.

3. EVALUATIONOFFAULT ISOLATIONAP-

PROACHES

In this section, we evaluate the performance of the fault iso-
lation schemes described in Section 2. First, we analytically
examine the performance of fault isolation for n-ary trees—
complete trees with a fanout of n at each internal node.
From this analysis, we gain some insight into the scaling be-
havior of various approaches, as well as their behavior under
packet loss. We then examine the performance of these fault
isolation schemes for irregular trees, just to verify whether
the qualitative behavior revealed by analysis holds over a
wider range of trees.

3.1 Analytic Evaluation

In an earlier section (Section 2.1), we introduced metrics

that determine the performance of our fault isolation schemes.

These metrics include maximum and average overhead, and
the expected error. In this section, we obtain expressions for
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these metrics given complete n-ary trees with depth d and
session watchers located at the leaves of the tree. We study
the variation of these metrics as a function of the number
of session watchers, in order to get a sense of the scaling
properties of the various fault isolation schemes.

To more clearly distinguish the impact of tree characteristics
and the impact of loss, we derive two sets of expressions for
overhead. The first set considers an idealized steady-state,
non-lossy situation. In this situation, the performance of the
approaches is a function of the mechanisms they use, and
the tree characteristics. The resulting expressions impose
a lower bound on the overhead due to these approaches.
The second set considers the impact of mtrace request or
response loss on overhead. As described before, message loss
can trigger some session watchers to redundantly monitor
links, increasing overhead. We do not consider the impact of
loss on fault isolation error; while packet losses could render
some links briefly unmonitored, the effect of such transients
is harder to quantify.

Because the scoped multicast scheme is less amenable to
exact analytic evaluation, we only consider the other three
schemes in this section. Intuitively, we expect the average
overhead of scoping to be no more than twice that of subcast,
for regular n-ary trees. We discuss the performance of scope-
d multicast using simulation in Section 3.2. In what follows,
we briefly outline the steps in deriving analytic expressions
for subcast, directed multicast and limited multicasts. Then
we discuss the results revealed by our analyses.

Methodol ogy and Assumptions

In the subcast based approach, within a window of time e-
qual to the probe interval, we would see exactly one mtrace
request per link in the steady state. The number of respons-
es on a link is equal to the number of subcasts down each
node on the link’s path to the source on the multicast tree.
The number of subcasts at each node on the n-ary tree is
n — 1. From these observations, we can compute the maxi-
mum and average overhead for the subcast approach on an
n-ary tree (Figure 5). Notice that both of these terms are
O(nd). The maximum overhead occurs on the link closest
the leaves. Finally, the fault isolation error is zero for sub-
cast the subcast approach for a regular n-ary tree.

The overhead computation for directed multicast is very
similar to that for subcast. The maximum number of re-
sponse messages on any link is d for the regular n-ary tree.
More generally, the overhead for directed subcast is % that
of subcast (Figure 5). Intuitively, this is easy to see: at each
internal node in the tree, directed subcast results in 1 mes-
sage compared to n in the subcast scheme. Computing the
extra overhead in the presence of losses is similar to that for
subcast.

Deriving the fault isolation error is slightly non-trivial. Our
computation of expected error is based on the following ob-
servation. For directed multicast, the fault isolation error at
any router at height h is h if the router is not the leftmost
child of its parent, else it equals that of its parent. This fol-
lows from our assumption that the leftmost session watcher
in any subtree is the one that mtraces beyond the root of the
subtree. The result is the involved expression for expected
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error shown in Figure 5.

To study the overhead of limited-multicast based approach,
we fix the number of allowed multicasts at n™, for some inte-
ger m. Then, all mtrace requests that go beyond a distance
of d —m are multicast. The total overhead is determined by
the multicast queries, multicast responses, the queries whose
responses are unicast, and responses to these queries. There
is exactly one multicast query on all links upto a depth m.
Beyond m, there are only n™ queries of length d — m. Fig-
ure 5 describes the maximum and average overhead of the
multicast-based scheme. The maximum overhead occurs on
the link at a depth m and is n™ + 2n¢~™*!. The average
overhead on any link on the multicast tree is dominated by
n™, the number of queries whose responses are multicast.

Fault isolation error for all faults at nodes at a height less
than m is zero. For all other nodes the fault isolation error
ranges from 0 to d — m — 1. The expected fault isolation
error is described in Figure 5.

Results

To illustrate the results of our analysis, we plot the ex-
pressions in Figure 5as function of the number of session
watchers in the n-ary tree, for different values of n. This
methodology helps us understand the scaling behavior of
the various approaches, and helps us distinguish the impact
of tree characteristics and that of loss.
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Figures 6(a) and 6(b) plot the overhead as a function of
the number of session watchers. The overhead of both sub-
cast and directed multicast scales logarithmically with the
number of session watchers. This is clearly desirable scaling
behavior. Furthermore, the maximum and average over-
heads for these schemes are very nearly indistinguishable.
The maximum and average overhead for limited-multicast
increases linearly with the number of session watchers—we
keep d —m fixed, which fixes the fraction of session watchers
that are allowed to multicast their responses (for n = 4 this
corresponds to about 6% of the session watchers multicast-
ing, for n = 8 it corresponds to about 1.5%). This is defi-
nitely undesirable scaling behavior. However, an interesting
observation is that for the larger fanout, there is a regime
(for group sizes less than about 700) where the average over-
head for limited-multicast is less than that of subcast. This
suggests that subcast is more sensitive to fanout, a subject
we explore in Section 3.2.

Figure 6(c) plots the expected fault isolation error as a func-
tion of the number of session watchers. The error for sub-
cast is zero. A surprising result is that, for n-ary trees, the
expected error of directed multicast is asymptotically con-
stant. Furthermore, the value of this constant appears to
decrease with increasing n. Furthermore, the average er-
ror for the limited-multicast scheme is independent of the
number of session watchers, and is less than 1. There is
a tradeoff between the number of allowed multicasts and

1e+07



the average error. By keeping d — m constant, as we have
done, we have kept the fraction of allowable multicasts con-
stant, keeping the fault isolation error constant but linearly
increasing overhead.

3.2 Impact of Tree Characteristics on Perfor-

mance

In the previous section we obtained analytical expression-
s for overhead and fault isolation error for regular trees of
various sizes. In such trees, all non-leaf nodes have the same
fanout, and all leaves are at the same distance from the
source. Our analysis in Section 3.1 showed that at least the
subcast scheme is somewhat sensitive to fanout. Further-
more, the limited-multicast scheme relies on path length
to determine which session watcher multicasts. For these
reasons, we now explore the performance of these schemes
across a variety of irreqular trees. The goal of this evalua-
tion is to understand whether, for any of the schemes, the
performance changes qualitatively when going from regular
to irregular trees. This evaluation also helps us examine
the performance of scoped multicast based fault isolation
(Section 2.3).

As before, to isolate the impact of tree characteristics on
performance, we first study these schemes in an idealized,
non-lossy setting. Studying the impact of loss on irregular
trees would require packet-level simulations. Because these
simulations do not allow us to scale beyond a few hundred
session watchers, we conducted only a limited evaluation of
the impact of loss. This is discussed in [23].

To study the impact of irregular fanout and non-uniform
path lengths between session watchers and the source, we
use the random tree generator described in [21]. The input
to this generator comsists of the number of leaves, the to-
tal number of nodes, and the maximum fanout of nodes in
the tree. This generator produces randomly generated trees
whose internal nodes have a fanout between one and the
maximum fanout. Although this generator has three input
parameters, it has two degrees of freedom: the fanout and
the number of leaves or session watchers.

In this section, we separately study the impact of fanout and
the impact of scale on our fault isolation schemes. For each
dimension that we explore, we study the overhead and fault
isolation error of the various schemes. Since we consider an
idealized, non-lossy situation, we do not need packet level
simulation to compute these metrics. Instead, for a given
point in our design space (i.e., given a tree), there exists
a simple algorithm to compute the overhead and error for
each scheme. In the graphs shown below, for each point in
the space, we average the performance measures over ten
randomly generated trees.

Scaling Behavior

Figure 7 plots the performance of our fault isolation schemes
as a function of the number of session watchers, for two
different maximum fanouts.

The subcast scheme exhibits slowly increasing overhead as a
function of the number of session watchers. So does directed
multicast. For both schemes the maximum overhead is dis-
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tinguishable from the average overhead, unlike Figure 3.1.
Thus, the irregularity of the tree fanout affects the distri-
bution of link overheads, but does not qualitatively change
the scaling behavior of the two approaches. As fanout in-
creases, the disparity between subcast and directed multi-
cast increases. This is because, for a given number of session
watchers, at higher fanout the height of the tree is smaller.
Directed multicast overhead is proportional to the height,
hence the overhead of directed multicast is actually lower at
the higher fanout. Increasing the fanout adversely impacts
subcast, as we discussed in Section 3.1.

The fault isolation error of router assist schemes is also quite
low, and is independent of the number of session watchers.
With low maximum fanout, there are more likely to be tree
segments without branches. For this reason, the expected
fault isolation error for subcast is non-zero. However, with
a higher maximum fanout, the expected error for subcast
is nearly zero. By contrast, directed multicast has non-zero
error regardless of fanout. Its expected error decreases with
increasing maximum fanout. We also observed these results
in our analysis (Section 3.1).

The scoped-multicast scheme behaves differently with re-
spect to overhead than the other schemes. The average over-
head of scoped multicast exhibits identical behavior to that
of the subcast scheme, logarithmic scaling. This confirms
our intuition that, for regular trees, the average overhead
of scoped-multicast is no more than twice that of subcast.
For irregular trees, however, its average overhead is more
than a factor of two higher than subcast. The ratio ap-
proaches two at higher fanout. However, the maximum over-
head of scoped-multicast matches that of limited-multicast
at low fanout, and is higher at higher fanout. Unlike sub-
cast, scoped-multicast responses are not limited to the sub-
tree at whose root a session watcher’s mtrace terminates.
Rather, these responses can traverse links in other parts of
the tree, explaining the high maximum overhead. It is un-
clear whether the maximum overhead for scoped multicast
increases linearly or has sub-linear growth. We intend to
resolve this by conducting larger scale simulations. Finally,
the fault isolation error of scoped-multicast is identical to
that of subcast.

The overhead of limited-multicast also increases linearly with
increasing number of session watchers. This is not surpris-
ing, since the overhead is dominated by the number of al-
lowed multicasts, which is kept at a fixed fraction of the
number of session watchers. However, the maximum over-
head of the limited-multicast scheme deviates more from the
average than predicted by our analysis. As in our analysis,
too, there is a small regime where limited-multicast outper-
forms subcast.

Figure 7 attempts to calibrate the performance of our limited-
multicast heuristic (based on length of the current hop lim-
it). To do this, we compute overhead and error for an omni-
scient limited-multicast scheme. In this scheme, the session
watchers that are allowed to multicast their responses are
chosen such that redundant monitoring of links in the tree
is minimized. The omniscient scheme represents the least
overhead achievable by a limited-multicast scheme. It does
not attempt, however, minimize fault isolation error. As
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Figure 7: Performance as a function of the number of session watchers, maximum fanout = 12

the figures show, the average overhead of limited-multicast
is almost identical to that of omniscient limited-multicast.
Their maximum overheads differ for low degree of sharing,
but for higher fanouts, even this distinction disappears.

The expected error for limited-multicast is significantly worse
than either of the schemes that employ router assist. The
disparity is greater than that predicted by our analysis. In-
terestingly, however, the expected error is independent of
the number of session watchers. Also note that omniscien-
t limited-multicast has comparable fault isolation error; at
higher fanout, it has higher expected error.

To understand the practical import of our results, consider
that in Figure 7, with 8000 receivers, the average overhead of
limited multicast is about 400 messages. If we assume that
the probe interval is 10 seconds, and the average mtrace
message size is about 200, this corresponds to an overhead
of 64 kbps. By contrast, the overhead for scoped-multicast
is 16 kbps, subcast is 8 kbps and that for directed multicast
is 1.2 kbps.

In experiments discussed in more detail in [23], the behavior
of increased fanout for most schemes is as one might expec-
t. For example, subcast overhead increases linearly with
fanout, but its fault isolation error drops significantly.

3.3 Summary of Performance Evaluation

In summary, then, our evaluation of irregular trees largely
confirms our analysis and provides some insight into the per-
formance of scoped-multicast based fault isolation. While in
some cases, the distribution of link overhead appears to be
different, the qualitative behavior of the various schemes
is not altered. Our three primary findings follow. First,
router assist allows very desirable scaling behavior for fault
isolation. Both subcast and directed multicast scale loga-
rithmically as a function of the number of session watch-
ers. Directed multicast is a better choice of router assist
for fault isolation; its overhead is lower than that of sub-
cast, its expected error is not significantly greater, it is rel-
atively insensitive to fanout, and is the most loss tolerant
of our schemes. Second, our carefully designed, deployable
alternative, limited-multicast, works with acceptable over-
head for small groups of fewer than a few hundred partici-
pants. In this regime, it sometimes has less overhead than
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subcast, for certain kinds of trees. Even there, however,
its fault isolation error is high. This means that limited-
multicast cannot be used to isolate routing changes. It can,
however, be used to locate lossy links . Finally, as a de-
ployable solution—modulo the routing protocols that break
TTL-scoping semantics—scoped-multicast performs well on
average. The one caveat to this, however, is the relatively
high maximum overhead induced by scoped-multicast.

This paper has almost exclusively concentrated on the im-
pact of scale. However, our techniques all share several
mechanisms which can impact the latency of fault isola-
tion. For example, session watchers initially “hunt” in order
to find their turnaround router. Furthermore, all schemes
have mechanisms that eventually react to receiver leaves,
response losses and session watcher failures. These mecha-
nisms determine how long routers in the tree go “unmon-
itored” and impact the temporal fidelity of fault isolation.
Evaluating this is the subject of future work.

4. RELATED WORK

Little prior work has been done in automated multicast tree
fault isolation. Currently, when receivers in a multicast ses-
sion observe problems, system administrators manually send
several ad-hoc mtrace requests between arbitrary receivers
and sources to detect faults. The mhealth tool [18] effective-
ly conducts mtraces from every receiver to the source, and
does provide similar functionality to our algorithms, albeit
in a centralized, non-scalable fashion.

Of most relevance to our work on fault isolation is MINC.
In MINC, bottleneck links and the multicast logical tree
topology are inferred by correlating packet losses observed
at receivers. Such inference is either based on rigorous sta-
tistical techniques [2] or on heuristics [21]. By correlating
loss patterns at each receiver, both approaches can deter-
mine which receiver (or sets of receivers) share a common
ancestor, thus determining the logical tree topology. The
same technique can be used to determine the location of the
bottleneck link in this logical topology. Unlike our approach,
these approaches do not rely on any diagnostic functionality
(such as mtrace). However, in theory, MINC can be used

3Recall that fault isolation error is only relevant to locating failed
routers or the origin of a routing change.



in conjunction with our approach to improve fault isolation
accuracy or to “cover” regions without mtrace support.

Multicast traceroute has been used in protocols for reliable
multicast to determine tree topologies [15, 16]. In these
schemes, receivers use multicast traceroutes to discovers the
nearest peer on the other side of a bottleneck link.

Of relevance to our work are techniques for proactive fault
isolation. One such approach [12] learns normal behavior of
the network by developing estimates for router state, then
detects and flags deviations from these estimates. Such a
system can detect abnormal behavior before a fault actually
occurs. Similar learning techniques can be employed in our
algorithms as well.

Some of our techniques for robust coordination between re-
ceivers draw inspiration from earlier work on techniques for
multicast application design [19]. Specifically, our period-
ic probing combined with subcast or multicast responses is
an instance of the announce-listen technique for robustness.
This also enables shared learning of the location of faults.

5. CONCLUSIONS

In this paper, we explored the design space of fault-isolation

schemes for large single-source multicast trees, given a receiver-

driven path probing primitive. We explored router-assist
for selective forwarding of probe responses, and considered
carefully designed deployable alternatives. Our technique
for fault isolation uses path probe history, and shared learn-
ing of probe results to scale well and infer the location of
route changes, router failure, or lossy links.

We find that, while one deployable alternative exhibits some
attractive scaling behavior, schemes that employ router as-
sist outperform deployable alternatives. Our work repre-
sents an important contribution to the debate over selective
forwarding strategies for multicast. So far, the need for such
strategies had just been considered for reliable multicast.
We show that selective forwarding can qualitatively change
scaling behavior of fault isolation.
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