
pgmcc: a TCP-friendly single-rate multicast
congestion control scheme�

Luigi Rizzo
Dip.Ing.Informazione, Univ. di Pisa

http://www.iet.unipi.it/ luigi/

luigi@iet.unipi.it

ABSTRACT
We present a single rate multicast congestion control scheme
(pgmcc) which is TCP-friendly and achieves scalability, sta-
bility and fast response to variations in network conditions.
pgmcc is suitable for both non-reliable and reliable data
transfers; it uses a window-based TCP-like controller based
on positive ACKs and run between the sender and a group's
representative, the acker. The innovative part of pgmcc is a
fast and low-overhead procedure to select (and track changes
of) the acker, which permits us to consider the acker as a
moving receiver rather than a changing one. As such, the
scheme is robust to measurement errors, and supports fast
response to changes in the receiver set and/or network con-
ditions. The scheme has been implemented in the PGM
protocol, and the paper presents a number of experimental
results on its performance.

Keywords
Congestion control, multicast, TCP, fairness.

1. INTRODUCTION
This paper presents a single-rate multicast congestion con-
trol scheme which is suitable for single-source multicast pro-
tocols, with or without support from network elements.

Congestion control schemes require some form of feedback,
from receivers or network elements, to adapt the source's
data rate to the network capacity. In many multicast pro-
tocols, some feedback is already available, to provide either
data integrity (as it is the case for reliable multicast proto-
cols) or gather statistics on receivers (e.g. RTCP reports),
so one would like to make use of the existing feedback infor-
mation for congestion control purposes as well.

Unfortunately, it is typical for multicast protocols to use
techniques such NAK suppression [14] or FEC-based re-

�This work has been partially supported by Cisco Systems,
and the Ministero della Pubblica Istruzione.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM'00, Stockholm, Sweden.
Copyright 2000 ACM 1-58113-224-7/00/0008...$5.00.

pairs [13, 20], which give substantial advantages from the
point of view of scalability, but result in delayed feedback.
Such delays, when introduced in the control loop, would
make the system very unresponsive to variations in the net-
work conditions. Stability issues aside, a lack of responsiv-
ity is also a potential source of unfairness: when competing
with other traÆc which reacts to congestion with shorter
time constants, the latter might be driven to a very low
throughput by the more aggressive, slow responsive
ows.

The scheme proposed in this paper tries to achieve fast re-
sponse, while retaining the scalability of existing feedback
schemes, by electing a group representative (acker), and
running a tight control loop between the sender and the
acker. The latter is chosen as the receiver with the worst
throughput (according to the scheme used in the control
loop) among group members.

The main diÆculty of this approach is that the \worst" re-
ceiver might change rapidly, and handling the switchover
between di�erent ackers might be slow and extremely diÆ-
cult as experienced by other authors [2, 6].

The key and innovative idea of our scheme is to consider
such switches not as a change in the acker, but rather as a
move of the acker to a di�erent location. By acting this way,
we can assimilate some of the e�ects of switching acker to
network perturbations (such the presence of path changes,
multipath, or changes in overall load), which we already have
to deal with in the unicast case.

Our scheme deals e�ectively with acker changes, and re-
sponds quickly to variations in network conditions. It also
does so in a way that is amenable for incremental deploy-
ment, as it can work without any assistance from network
elements yet make good use of it if available. All the com-
ponents that we include in our scheme are carefully chosen
to be scalable, both in terms of state, traÆc and process-
ing overhead. This sometimes limits performance (e.g. we
might achieve faster response by requesting positive ACKs
from all receivers), but also permits us to keep the protocol
simple, robust and scalable.

In the following we will concentrate on the discussion of our
single-rate multicast congestion control scheme. The dis-
cussion of the limitations of single-rate multicast protocols
(compared, e.g., to multi-rate multicast protocols) is beyond
the scope of this paper.

17

The paper is structured as follows. In Section 2 we present
the problem of multicast congestion control and give a short
overview of related work, also mentioning multi-rate schemes.
In Section 3 we present our scheme in detail, describing the
various components, motivating the design choices, and dis-
cussing its limitations. Experimental results are presented
in Section 4, and we draw some conclusions and present fu-
ture work in Section 5.

2. RELATED WORK
The problem we are considering in this paper is the regula-
tion of the transmit rate of a single-source multicast session,
in such a way that the source's data rate adapts to varia-
tions in network conditions and receiver population. We do
not make particular assumptions on the group size or the
heterogeneity of the links leading to the receivers, nor on
the overall reliability of the data delivery component of the
protocol. We do expect that receivers are able to send loss
reports towards the source, either directly or by means of a
intermediaries such as routers or other receivers.

The problem of multicast congestion control has received
some attention in the literature. The two dominant ap-
proaches are based on single-rate and multi-rate schemes.

2.1 Single-rate schemes
In single-rate schemes, all receivers get the same data rate,
and the source adapts to the slowest receiver. These schemes
are nice in that they do not require the source to trans-
mit multiple streams or use special data coding. Further-
more, many single-rate (reliable) multicast protocols have
been proposed which try to implement a TCP-like service
over multicast, so there is some interest in adding congestion
control to such protocols [4, 5] especially when deployment
in the Internet is desired.

Single-rate schemes have known limitations in presence of
large or heterogeneous groups: a single slow receiver can
drag down the data rate for the whole group. Furthermore,
uncorrelated losses at receivers are not easy to handle, and
an improper aggregation of feedback is likely to cause the
so called \drop-to-zero" problem [23], where the sender's
estimate of the loss rate is much higher than the actual loss
rate experienced at every single receiver.

Some researchers have proposed rate-based schemes where
the sender uses loss reports to update the transmit rate [10].
These schemes usually work on coarse timescales (1 second
or more), and are in a sense simpler to adapt to multicast
than window-based schemes as they do not need per-packet
feedback. The rate is often computed according to some
formula such as the TCP equilibrium equation [8, 15], which
relates the throughput to the loss and RTT (these schemes
are sometimes called \equation-based" for this reason).

TFMCC [4] presents some basic algorithms that can be used
within multicast rate controllers, especially with NACK and
Hierarchical ACK based protocols. Some of the mechanisms
and ideas described in TFMCC have been used in the design
of pgmcc.

Golestani [3] has studied window versus rate-based schemes
and methods on how to extend them to multicast while pre-

serving TCP fairness. The use of a window-based scheme for
multicast congestion control has been proposed by Rhee [16],
whose scheme (MTCP) requires a tree-structure for aggre-
gation of feedback from the receivers. One of the main dif-
ferences between pgmcc and MTCP is that we do not re-
quire per-packet feedback from all receivers, so pgmcc scales
much better in absence of aggregation nodes (sender agents
in MTCP terminology).

Other researchers have proposed the use of representatives
for congestion control purposes [2, 6], discussing mechanisms
for the selection of representatives. A congestion control
scheme based on representatives has been suggested in [6],
but the authors mention the weakness of their scheme when
reacting to change of representatives.

2.2 Multi-rate schemes
Multi-rate schemes are based on the ability to generate the
same data at di�erent rates over multiple streams (generally
organized as cumulative layers), either at the source, or as a
result of a �ltering/distillation process done by intermediate
elements such as routers or transcoders. Receiver try to
listen to one or more streams matching their capacity, thus
e�ectively realizing a partitioning of the set of receivers into
di�erent groups. This approach is suitable to both audio
and video streams, and to reliable data transfer by using
proper coding techniques [1, 18].

The advantage of multi-rate schemes is that receivers with
di�erent needs can be served at a rate closer to their needs,
rather than having to match the speed of the slowest re-
ceiver in the group. This
exibility is paid in terms of cod-
ing costs, some bandwidth ineÆciency, and possibly a more
coarse match of source and receiver data rate.

Several schemes have been suggested in the literature to sup-
port layered congestion control [9, 22, 7]. All of them are
generally based on estimates done by receivers on the avail-
able data rate; some of them try to achieve TCP fairness,
and include techniques to achieve synchronization among
receivers behind the same bottleneck.

3. PGMCC
The goal of our scheme is in the �rst place to make the
sender transmit no faster than the TCP-fair rate available
at the slowest (as de�ned later) receiver. Our scheme can
be quickly described as follows:

The sender continuously monitors receiver reports
embedded into NAKs, selecting (and tracking changes
of) a group's representative, the acker, as the re-
ceiver with the worst throughput according to the
control scheme being used. A window-based con-
gestion control scheme similar to TCP conges-
tion control is run between the sender and the
acker, which will send positive ACKs for each
data packet.

pgmcc operates end to end, and requires small constant state
and a minimal amount of computation at both sender and
receivers. We want to emphasize that, while our scheme in-
volves ACKs and NAKs, we do not make any assumption on

18

the reliability of the data transfer. This makes our scheme
applicable equally well to unreliable data transfers.

The window-based control di�ers from TCP congestion con-
trol in some small but important details, such as the use of
distinct \windows" for rate and for reliability/
ow control;
a di�erent retransmission behaviour; the use of sender-based
RTT measurements for selecting the representative, and not
just for determining timeouts; and a slightly di�erent ack
clocking scheme in presence of switchover of representatives.
The acker election/tracking mechanism is the main innova-
tion of our scheme and it allows us to handle switches of the
acker in a very robust way.

We had three main goals in this work: develop a scheme
which is scalable, responsive, and amenable to incremental
deployment.

Scalability is achieved by decentralizing functionality and
state as much as possible. This is done using solutions (e.g.
NAK suppression via randomization; the selection of a sin-
gle node in charge of sending ACKs) which only require a
constant amount of state on servers, routers and receivers,
independent of the group size.

Fast response is achieved by introducing positive ACKs from
the acker, which permit a more timely distribution of infor-
mation than NAKs.

Incremental deployment is possible because our scheme op-
erates end to end, but can take advantage of hop-by-hop
support if present, whether partially or fully available. As
an example, our scheme makes use of router-based feedback
aggregation, but can work even without that. It does not
make use of receiver-based RTT measurements, because this
would require either globally synchronized clocks (e.g. using
GPS) or a router-based protocol to support the measure-
ments.

3.1 PGM
We have developed our scheme in the context of the PGM
multicast protocol (hence the name \pgmcc"), although our
work is of general applicability and not bound in any means
to PGM. Thus we start this section with a very short de-
scription of the subset of PGM of our interest.

PGM [21] is a single-sender, multiple-receiver multicast pro-
tocol which gives improved reliability over the basic IP mul-
ticast by making use of NAK-based retransmission requests.
The usual feedback suppression techniques based on ran-
domized delays are used in PGM to achieve scalability. Fur-
thermore, PGM can make use of (but does not depend on)
router support for feedback aggregation and selective repair
forwarding. Speci�cally, PGM-enabled routers will do hop-
by-hop NAK forwarding, suppressing replicated NAKs com-
ing from the same subtree. They will also do selective for-
warding of repair traÆc only to those branches from which
a matching NAK was heard.

In order to make feedback go through the same path as the
(forward) data traÆc, PGM uses special control messages
called Source Path Messages (SPM), which are rewritten
hop-by-hop by PGM-enabled routers, and inform nodes on

NAKODATA ACK

bitmask

payload

NAK header ACK header

rx_id

DATA header

acker_id

rxw_lead

rx_loss

rx_id

ack_seq

rxw_lead

rx_loss

Figure 1: Packet formats. The grey areas corre-
spond to PGM options inserted to support conges-
tion control.

the identity of the next PGM node upstream.

Because the PGM speci�cation does not include a conges-
tion control scheme, PGM sources typically transmit at a
pre-set data rate. With the introduction of our control
scheme, the PGM rate limiter only serves to limit the max-
imum data rate of the session.

Our modi�cations to PGM involve the addition of some op-
tions to PGM packets (see Figure 1), one new packet type,
and some modi�cations to the sender and receiver proce-
dures. There is a high level of compatibility between regu-
lar PGM and pgmcc senders and receivers. A pgmcc receiver
can talk to standard PGM senders with no modi�cations;
a standard PGM receiver can listen to a pgmcc session pro-
vided that there is one pgmcc receiver acting as the acker
(otherwise the session will incur a stall on each packet for
lack of ACKs); and, in our implementation we can dynami-
cally disable the congestion control procedures on the sender
to make it act as a regular PGM sender1.

3.2 Receiver reports – RTT and loss measure-
ments

Receiver reports are a fundamental component of our scheme.
They are sent back to the sender as NAK options (see Fig-
ure 1), and are made of three �elds:

� the identity of the receiver, rx id;

� the highest known sequence number, rxw lead

� the loss rate measured locally, rx loss.

As we will see in Section 3.5, the latter two �elds can be used
by the sender to estimate the throughput of the receiver, and
select the slowest one as the representative of the group. The
estimate relies on a measurement of both the Round Trip
Time (RTT) and the loss rate for each receiver.

3.2.1 RTT Measurement
A classical way to measure the RTT without synchronized
clocks is to include a timestamp in each packet from the

1Only trivial modi�cations are needed to make a sender
dynamically recognise the absence of pgmcc receivers and
switch to a standard PGM, mode where it works in absence
of ACKs.

19

source, and let receivers echo back the most recently received
timestamp. The echoed timestamp should be corrected with
the di�erence between the time of reception and the time
the feedback is actually sent, so that delays in sending the
feedback (e.g. those used for NAK suppression) are not
erroneously interpreted as part of the RTT. This method
can give reasonably precise estimates of the RTT, but has
two drawbacks: it requires additional information in each
packet from the source, and also depends on the resolution
of the clock at each receiver. If the latter is too coarse,
the correction factor might introduce a large variance on
the RTT estimates, biasing the results of the measurements
in favour or against some receivers. Because we expect to
deal with a large population of heterogeneous receivers, we
cannot depend on the availability of a high resolution clock
at all receivers.

To avoid these problems, in pgmcc we chose to measure the
RTT in terms of packets: the sender simply computes the
di�erence between the most recent sequence number sent
and the rxw lead value coming from the receiver. To do
this we do not need to send timestamps or rely on the timer
resolution at the receiver; on the other hand, for a path
with a given RTT (measured in seconds), the value in pack-
ets computed by pgmcc will vary depending on the actual
data rate. However this variation applies in the same way
to all receivers, so it is not a source of discrimination among
receivers. Furthermore, the RTT measurement in pgmcc is
only used for comparing receivers, not for the actual selec-
tion of transmit rate, so any discrepancy between the real
and the measured RTT cannot in
uence the inter-protocol
fairness. NS simulation using both methods (with precise
clocks at the receivers) showed that the use of time-based
RTT measurements does not yield any better behaviour in
any of the con�gurations tested.

3.2.2 Loss measurement
To measure the loss rate, each receiver interprets the packet
arrival pattern as a discrete signal (1 for lost packets, 0
otherwise) and passes it through a discrete-time linear �lter
(Fig. 2), whose response (and computational costs) can be
chosen as appropriate. In our case we used a �rst-order
lowpass �lter, whose equation is

Yi = WYi�1 + (1�W)xi

(computations are done in �xed point arithmetic with 16
fractional bits, which are quickly implemented using basic
integer arithmetic operations and shifts). We chose (rather
empirically) a value for the constant W = 65000=65536,
which corresponds to a corner frequency of approximately
0.0013 packets�1, and from our simulations gives reasonable
smoothing of the input signals at the loss rates (below 10%)
of interest. The actual value of W is not terribly critical for
the operation of the protocol.

It is noticeable that in our computations we do not make
use of absolute times, but only of packet sequence numbers.
This means that the properties of our system (including re-
sponsivity) can be evaluated independently of the actual
data rates at which the scheme is being used.

An example of the output of the �lter is shown in Figure 2,
for three di�erent values of the constant W (the one we

FilterArrival pattern

input signal

6000

4000

2000

0

162001610016000159001580015700

Filter output

Seq

Loss measurement with congested link

............
......

..
..

.
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
....

...
...

.
..

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
....

..
..

..
.

.
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.....

..
..

.
.

.
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

6000

4000

2000

0
5600540052005000

Filter output

Seq

Loss measurement with lossy link

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......
...

..
..

..
.

..
.

.
.

.
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.
.

.
.
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.

.
.

.
.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
...

..
..

..
.
.

.
.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.
.
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.........
.....

....
...

..
..

..
.
.

.
.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2: Loss rate computation at receivers.
Above: principle of operation. Below: two exam-
ples with non-lossy and lossy links, and three di�er-
ent values for W . The y axis is the output of the
�lter multiplied by 216

used correspond to the thick square marker), and two dif-
ferent loss patterns. The y axis is the output of the �lter
multiplied by 216, whereas the vertical bars correspond to
actual losses. The top graph presents a sample of the loss
behaviour of a 60Kbit/s link with a single session { losses
are rather sparse and the overall loss rate is low. The bot-
tom graph instead represent a link with 5% random loss,
modeling the opposite case of an overloaded link with very
high statistical multiplexing.

In both cases, we note that loss measurements (the outputs
of the �lter) are a�ected by relatively large deviations, un-
less one takes averages on a very high number of samples.
However by doing this, our estimates would become too in-
sensitive to short term variations. We will discuss the e�ects
of these uncertainties in Section 3.5. We also plan to inves-
tigate, as future work, the techniques used in TFRC [12] for
measuring losses.

3.3 Acknowledgements
For each data packet (but not for retransmissions), one of
the receivers is in charge of sending positive acknowledge-
ments (ACKs). The identity of the acker is carried as a
PGM option in each data packet (Figure 1).

ACKs (see Figure 1) contain the same loss report as NAKs,
and a couple of additional �elds, namely the sequence num-

20

ber (ack seq) of the data packet which elicited this ACK,
and a 32-bit bitmap (bitmask) indicating the receive sta-
tus of the most recent 32 packets. This scheme serves to
transmit each ACK multiple times, thus allowing the sender
to recover lost ACKs, and deal properly with out-of-order
ACK delivery.

Compared to TCP, the format and handling of acknowledge-
ments is peculiar for two reasons. First, in our scheme (and
in PGM) repair packets can be transmitted with a signi�cant
delay from the loss detection. Thus we cannot implement a
cumulative acknowledgement mechanism a-la TCP, and we
need an alternate scheme to take care of loss of ACKs and
out-of-order delivery of data and ACK packets. Secondly,
we want to support quick switch of ackers, and this again
might cause phenomena which are very similar to multipath
e�ects in unicast communication, such as sudden changes in
RTT, and out of order ACK delivery. The presence of the
bitmap gives us a better chance to deal with these e�ects.

3.4 Window-based controller
We use a window-based congestion control scheme which is
run between the sender and the acker, and mimics TCP con-
gestion control. Because of the late delivery of repairs and
the absence of cumulative acknowledgements, the \window"
used for congestion control purposes does not correspond to
the \window" used for reliability or
ow control.

In our scheme, the sender manages two state variables: a
window W , and a token count T , both initialized to 1 when
the session starts or restarts after a stall (i.e. ACKs stop
coming in, and a timeout expires). The windowW managed
by our controller can be interpreted as an estimate of the
number of packets in
ight (although the latter could be
much lower than W in many cases. The real role of W is
to determine how fast the window opens, same as in TCP).
Tokens are instead used to regulate the generation of data
packets: one token is necessary (and consumed) to transmit
one packet, and tokens are regenerated by incoming ACKs.

In detail, W and T are updated as follows:

� on session restart, W = 1; T = 1;

� on transmit, T = T � 1 (consume one token);

� on ACK, W =W + 1=W; T = T + 1 + 1=W ;

� on loss detection, W =W=2, ignore next W=2 acks.

The behaviour on normal ACKs mimics TCP's linear in-
crease { the window expands by one for each round trip
time. Similar to TCP, we assume a packet loss when a
given packet has not been ACKed in a number of subse-
quent ACKs (this dupack threshold is set to 3 in our tests),
and reproduce TCP's multiplicative decrease by halving the
window. In order to match the number of outstanding pack-
ets to the window count, we need to avoid incrementing the
token count for W=2 acks2. Also, we do not react to further

2This can be done either at once, or by counting only 1/2
token per ACK for the next W acks, or by other similar
strategies.

congestion events for the next RTT (this is easily achieved by
recording the sequence number of the most recently trans-
mitted packet).

Since ACKs carry the rxw lead value, on a loss detection we
can also realign W to the actual number of packets in
ight
before halving the value. This serves to avoid that errors
accumulate over time, leading to window estimates which
are much larger than reality, and thus would result in less
aggressive window opening.

TCP does exponential window opening after a stall, up to
a threshold which is computed adaptively. To avoid stalls
when competing with TCP
ows in presence of low bu�ering
in the network, pgmcc also does exponential opening of the
window up to a small, �xed size (6 packets). This is done
to quickly open the window beyond the dupack threshold.
Whether to make the slow-start threshold adaptive (and
possibly let it grow much higher than our value) is a sub-
ject for future investigations. The exponential opening of
the window is an extremely aggressive behaviour, and very
likely to cause congestion. Especially on session startup,
there is relatively low con�dence on the fact that the se-
lected acker is really the slowest receiver in the group, so we
want to keep a more cautious behaviour than TCP.

3.5 Acker Election and Tracking
The procedure to elect and track changes in group represen-
tatives is critical to the correct operation of our scheme, and
is based on the reports received by the sender. The elected
acker will control the throughput of the session through its
feedback, so we want to switch to a new one when its maxi-
mum throughput (allowed by the control scheme when com-
peting with other
ows) will be lower than the one of the
current acker.

The approach we use is based on the steady-state charac-
terization of the control scheme. Let Xi be the operating
parameters (e.g. loss rate, round trip time, etc.) for receiver
i, and assume that we can (at least approximately) compute
the throughput T (Xi) of a receiver with given parameters.
We then select the acker as node i in the set fRg of receivers
such that

i : T (Xi) � T (Xj)8j 2 fRg

The exact formula to be used for T () depends on the control
scheme in use. TCP congestion control has been studied by
several researchers, who have derived various versions of the
TCP equilibrium equation [8, 15]. A simpli�ed form which
suits our needs3 is

T () / 1

RTT
p
p

(1)

3at loss rates roughly above 5%, the simple equation largely
overestimates the throughput of the session. Thus, a re-
ceiver with high loss might be erroneously elected as the
acker instead of another one with lower loss but higher RTT.
This can be �xed by using the more precise formula pre-
sented in [15]. We plan to conduct further investigations in
order to determine the likelihood of a scenario where the use
of the full formula leads to a more correct behaviour of the
protocol.

21

and NAKs and ACKs carry suÆcient information for the
sender to compute T () and let it choose the acker (in par-
ticular, we compare the RTT 2 � p values as this is cheaper
to compute).

Equation 1 models a window-based controller with linear in-
crease and multiplicative decrease, which is exactly the one
we use. Note that di�erent controllers yield di�erent rela-
tions, e.g. using multiplicative increase produces a relation
of the form T / 1

RTT �p
. Also remember that for a given

controller, the same throughput could be achieved with dif-
ferent combinations of the input parameters.

The selection process does not require knowledge of the
whole population of receivers, or the evaluation of T () for
all of them. When we receive a NAK from node j, we can
decide whether to switch to a new acker from the current
one (node i) by just comparing T (Xi) and T (Xj).

We should remark that the acker selection process is un-
avoidably approximate. While we know some information
(possibly including the current data rate) about the current
acker, we might be far away from steady-state behaviour.
For new candidates the situation is even worse, as we are
likely to know only the information supplied in the most re-
cent report. Also, as noted in Section 3.2, the RTT and p
estimates are a�ected by large uncertainties. This might
cause frequent switches which do not correspond to real
packet losses. Furthermore, the formula used to elect the
acker is approximate and derived under assumptions which
might not be valid during the switch. As a consequence, it
is essential that we do not interpret a change of acker as to
a congestion signal. Rather, we assimilate the selection of a
new acker to a move of the node in charge of sending ACKs
to a path with di�erent features. This is possible because
for each data packet there is only one acker, and we have
procedures to deal with duplicate, out of order and missing
ACKs. Should the new acker experience congestion, we will
get a timely noti�cation by making use of the new ACKs.

It is interesting to discuss the e�ect of acker switches on the
protocol. In many cases, the presence of multiple receivers
might cause a reduction of the throughput because of the
way feedback is aggregated. pgmcc di�ers in this respect,
because the loss event leading to an acker switch is not in-
terpreted as a congestion event (unless it is also experienced
by the current acker).

As a consequence of this behaviour, an increase in the num-
ber of receivers with uncorrelated losses might even result
in a modest increase in the throughput of the session, espe-
cially if acker switches are very frequent. In order to reduce
this e�ect, and because the parameters used to compute
the throughput are subject to relatively large measurement
errors, the actual selection process only switches to a new
acker Xi if T (Xi) < cT (Xj); 0 < c < 1.

The constant c serves to bias the decision in favour of the
current acker, and in turn to reduce the number of acker
switches when two receivers are a similar throughput. Ex-
periments and simulations showed that values for c between
0.6 and 0.8 reduces the number of acker switches without
in
uencing the accuracy of the acker selection process, and

with bene�cial e�ects on the protocol itself in terms of scal-
ability and fairness with competing TCP
ows.

To evaluate the e�ect of the constant c, consider Fig. 4. In
this experiments c = 1 is used; the three receiver behind
the same bottleneck see the same loss, but even the small
variations in the RTT measurements suÆce to cause some
acker switches. Using c = 0:75 on the same experiment
removes all (unnecessary) acker switches shown in the �gure.
We have experienced a similar e�ect on all other simulation
scenarios.

3.6 Session startup
With a window based control mechanism, the session can-
not proceed without an acker to reconstruct the supply of
tokens. Also, a session might stall when, in presence of high
loss, incoming ACKs are not able to regenerate enough to-
kens. So, both at session startup and after a stall, we need
to immediately elect one acker. Since the election is based
on NAKs, we mark the �rst data packet sent, after the ses-
sion starts or after a couple of stalls in a row, to elicit a fake
NAK, resulting in the election of an initial acker to keep the
ACK clock going.

3.7 The role of network elements
In PGM and other protocols, network elements (NE) can
be used to implement some kind of feedback aggregation to
improve scalability. In the case of PGM, NAKs coming from
receivers are �ltered by network elements, so that only the
�rst instance of a NAK for a given data segment is forwarded
to the source. Subsequent NAKs are suppressed, at least
until the corresponding state in the NE is deleted.

At �rst sight, this kind of �ltering might interfere with the
acker election process, in that the receiver report for a node
with worse throughput might be suppressed by the router.
In practice, this possibility is mitigated by the fact that a
node with a worse throughput will eventually send more
NAKs, and thus has more chances of not being suppressed.
Our NS simulations so far showed that suppression does not
pose problems, at least in small scale con�guration. How-
ever, a detailed investigation of this problem is left for fur-
ther study.

A possible approach to reduce even further the e�ect of sup-
pression is the following: NE will store the rx loss value for
each NAK they have forwarded (since there is already state
for that sequence number, the additional amount of state is
very limited). Suppression will not occur if a NAK for the
same sequence number carries an rx loss higher than the
one forwarded upstream.

Because NAK suppression is only used for performance im-
provement, not doing suppression will not alter the opera-
tion of the protocol. While rx loss alone does not permit
the estimate of the throughput, it can still give a good indi-
cation of a potential acker. Also, this approach is extremely
inexpensive for the NE in terms of additional state or com-
putation.

3.8 Regulation of repair packets
The mechanism illustrated so far is only in charge of regulat-
ing the transmission of data packets, and it does not a�ect

22

the pacing of retransmissions (RDATA packets)4. These are
handled in the same way as TCP { i.e. as soon as a NAK
comes in, we sent the RDATA packet only subject to the
throughput of the rate limiter.

The regulation of retransmissions is being investigated sep-
arately, as it also has other implications, e.g. in increasing
the e�ectiveness of NAK suppression in some pathological
cases where the delays in the system cause RDATA to cancel
state in network elements right before a NAK from another
receiver comes in.

However, provided that the congestion control mechanism
works for (original) data packets, the lack of regulation of
repairs does not render our congestion control scheme in-
e�ective. In fact, as long as the acker is really the slowest
receiver, then the percentage of retransmission is kept low by
the controller, and the occasional retransmissions will slow
down the data
ow on the path, and thus the ack clock.

Uncorrelated losses for nodes not slower than the acker also
pose no problem (of course within the limits of scalability
of the repair method being used), because of the small per-
centage of retransmissions. If the number of NAKs from re-
ceivers slower than the acker becomes large, then they will
likely cause a change of acker and bring us in the situation
detailed in the previous paragraph.

The only problematic case is that of NAK storms. These can
result by a single receiver joining in the middle of a session
and trying to recover the initial data (this can be allowed by
a speci�c PGM option), or by bursty losses. These two cases
can be dealt with relatively eÆciently within the receivers
themselves, e.g. by appropriately pacing the generation of
NAKs when a large number of repairs is needed.

3.9 Use with unreliable protocols
The reliability component of the protocol might be com-
pletely absent in some cases, e.g. when it is not necessary
that all data reach all recipients. There are several reasons
for doing so, e.g. when the information which is transmit-
ted has a limited lifetime, or there is enough redundancy in
the data stream to recover from occasional losses (which are
kept low by the corrective actions of the congestion control
scheme).

In such cases, pgmcc can provide to the source some feedback
about the throughput, which the application can then use to
control the data being transmitted (e.g. amount of redun-
dancy, quality of encoding in case of audio or video streams,
etc.). This can be of particular importance for applications
with real-time requirements where the source must adapt its
rate to the session's rate to avoid the building of very large
queues.

The �rst kind of feedback is the content of receiver reports,
i.e. loss rate and round trip time, contained into NAKs and
ACKs. Using these parameters, for example, a source using
FEC can set the amount of redundancy to be used for the
session, or a real-time application such as a distributed game

4Note that some protocols might not even use repairs (see
Section 3.9).

can tune its timings, etc.. A second kind of feedback comes
from the token generation process. As data transmissions
are triggered by the generation of tokens, it is possible for
the transport protocol to signal the availability of new tokens
to the application, so that the latter can generate new data
on the
y and exercise a better control on the information
which is transmitted, rather than leaving the transport layer
the task of selecting which packet to drop in order to keep
queues short.

4. EXPERIMENTAL RESULTS
We have tested the behaviour of pgmcc using both simula-
tions with the NS simulator [11] and experiments with an
implementation of the protocol on a real testbed.

Large scale experiments involving up to 200 receivers have
been performed with NS. These experiments were used mainly
to test the scalability of the protocol, and to analyse the sen-
sitivity to features such as time vs. sequence number-based
RTT measurements etc. Also, NS simulations have been
performed to validate the results of the experiments which
have been run using an actual implementation of the proto-
col on a real network.

Small scale experiments were performed on an experimental
testbed made of a number of hosts running an actual im-
plementation of pgmcc, and communicating through some
bottleneck links. The bottleneck links were emulated us-
ing dummynet[17], a
exible link emulator which allowed
us to run the experiment in a tightly controlled and repro-
ducible testbed. During experiments, we have distributed
senders and receivers (both for pgmcc and for TCP) on mul-
tiple workstations, and run the tests on a number of di�er-
ent topologies with various con�gurations of the bottleneck
link(s).

For the experiments discussed in this paper, two main con-
�gurations have been used for the bottleneck links. In the
�rst one, which we call non-lossy, the link has �xed capacity,
a small propagation delay and FIFO queue (unless otherwise
speci�ed, we used 500 Kbit/s bandwidth, 50 ms delay, 30
queue slots). Packet drops in this case are only due to con-
gestion. Because of the relatively large queues, the queueing
delay can become as large as 500 ms one way, thus being the
dominant component of the RTT.

The second con�guration (lossy) has a higher bandwidth, a
higher delay and some amount of randomly generated losses,
again with FIFO queueing (unless otherwise speci�ed, we
used 2 Mbit/s, 230 ms delay, 30 KBytes queue, 3% packet
loss). This second con�guration tries to emulate a link with
a high degree of statistical multiplexing. Here the band-
width available to the
ow is determined by the controller's
response to the loss and RTT, and is much lower than the
link's capacity. Because of this reason, congestion-related
packet drops rarely (if ever) occur in this con�guration, and
the RTT is dominated by the propagation delay component.

Unless otherwise speci�ed, the pgmcc
ows use a payload of
1400 bytes, whereas TCP packets have a payload of 1460
bytes (pgmcc headers and options are slightly larger than
TCP headers, so the two packets have approximately the
same size).

23

PR1

PR2

PS1 PR1

L1

PS2

6000000

4000000

2000000

0
 11:14:30 11:14:00 11:13:30 11:13:00 11:12:30 11:12:00

seq

time

2 PGM, 1 PGM, 500 Kbit/s 50ms 30 slot

...

...................

...............

..................

..............

.................

.............

................

............

...............

............

..............

...........

..............

..........

.............

.........

............

.........

...........

........

.................

.......

...................

...............

...................

...............

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

...........

............

..........

............

.........

...........

........

..........

........

............

................

.................

.................

.................

................

................

................

...............

...............

..............

..............

.............

.............

............

............

.............

...........

......................

...........

......................

..........

.....................

.........

....................

........

...................

.............

..................

...............

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

...........

............

..........

...........

.........

..........

........

...............

........

..................

...............

..................

................

.................

...............

................

..............

...............

.............

..............

.............

.............

............

............

...........

............

..........

...........

.........

..........

........

.................

.................

.................

.................

.................

................

................

...............

...............

..............

..............

.............

.............

............

............

...........

...........

..........

..........

................

..................

................

..................

...............

..................

..............

.................

.............

................

............

...............

...........

..............

..........

.............

........

.....................

.......

.......................

...........

.......................

...........

......................

..........

.....................

.........

....................

........

...................

.........

..................

................

.................

................

................

...............

................

..............

...............

.............

..............

............

.............

...........

............

..........

...........

.........

..........

........

.........

.......

..............

..........

................

.................

................

.................

...............

................

..............

...............

.............

..............

............

.............

...........

............

..........

...........

..........

..........

.................

................

.................

................

................

...............

................

..............

...............

.............

..............

............

.............

...........

............

..........

...........

.........

..........

........

.........

.......

.........

..........

................

.................

................

.................

...............

................

..............

...............

.............

..............

............

.............

............

............

...........

...........

..........

..........

................

................

.................

................

.................

...............

................

..............

...............

.............

..............

............

.............

...........

............

..........

...........

.........

..........

........

..........

...........

.........

..........

...............

..................

...............

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

..................

...............

..................

...............

.................

..............

................

..............

...............

.............

..............

............

.............

...........

............

..........

...........

.........

..........

.................

................

.................

................

................

...............

...............

..............

..............

.............

..............

............

.............

...........

............

..........

...........

.........

..........

........

.........

.........

.................

................

.................

................

................

...............

...............

..............

...............

.............

..............

............

.............

...........

............

..........

...........

.........

..........

........

.........

.......

.........

..........

................

.................

.................

.................

................

................

...............

...............

..............

..............

.............

.............

............

............

...........

...........

...............

.........

..................

................

..................

................

.................

...............

................

..............

...............

.............

..............

............

.............

...........

............

..........

...........

.........

............

...............

..................

...............

..................

..............

.................

.............

................

............

...............

...........

..............

..........

.............

.........

............

........

...........

.........

..........

.........

..................

...............

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...............

........

.....................

............

.....................

............

....................

...........

...................

..........

..................

.........

.................

........

................

......

..................

......

............................

......

............................

...

...........................

.

..

..

.............................

.

................................

.

..

1500000

1000000

500000

0
 17:39:00 17:38:40 17:38:20 17:38:00

seq

time

2 PGM, 1 PGM, 3% loss
...

.........

....

........

........

........

........

....

.......

.....

.....

....

....

.....

....

.....

..

...

......

........

.......

........

.......

......

......

......

....

......

.........

..............

.........

..............

........

............

.......

...........

......

...........

....

..........

.......

.........

.......

........

......

.......

....

......

........

....

........

.......

.......

......

......

......

.....

....

........

......

.......

...

.......

.....

......

.........

...

.........

........

.......

.........

......

........

......

.......

....

.........

..

..

.

..

.

.

.

.........

..

..

.

.

.

.

.

...........

.......

.

..

.

.

...........

.........

.

.

.

.

............

.........

.

.

............

.........

...........

........

...........

.......

..........

.....

.........

......

.......

............

.......

............

......

..........

.....

.........

.....

.........

....

........

..

.......

.....

......

.....

....

.........

...

.........

.......

.........

.......

.........

......

........

..............

.......

............

.....

...........

.....

............

...........

...........

...........

..........

..........

.........

.........

........

........

.......

.......

......

......

......

...

....

........

.......

........

........

........

.......

......

......

......

.....

...

.....

.........

....

.........

....

........

.....

.......

......

...........

...

............

........

.............

........

............

.......

...........

......

..........

....

.........

..

......

.

...

Figure 3: Intra-protocol fairness, with non-lossy
and lossy links. Two pgmcc receivers on one session
(started �rst), one on another session, sharing the
same bottleneck.

Some initial experiments, which we will not discuss in this
paper, have also been run with topologies presenting mul-
tiple paths between sender and receiver. This was done to
verify the robustness of the scheme to out-of-order data or
ACK delivery. Finally, a few test sessions have also been run
over the MBone between sites in di�erent countries. How-
ever, these experiments were mostly aimed at verifying the
correctness of the implementation in term of packet formats
and recovery procedures, as the lack of knowledge about
the path and the presence, over the MBone, of mostly non-
congestion-controlled traÆc did not give us any chance of
performing signi�cant performance evaluations.

4.1 Interpreting graphs
In the rest of this section we will show packet traces logged
on the sender side of the bottleneck(s). Above each trace we
show the topology used for the experiment; TCP sender and
receivers are labeled TS and TR, whereas the PGM senders
and receivers are labeled PS* and PR*, the index being the
session they belong to.

For both pgmcc and TCP sessions, the traces show data
and ACK packets (though they can be clearly distinguished
only on Figure 5 where we zoom some parts of the trace).
In the case of PGM, we also show NAKs, represented by
diamonds in the plots. Vertical bars correspond to change
of the acker for the PGM sessions. Sequence numbers in
the graphs are measured in payload bytes both for TCP
and PGM (sequence numbers in PGM headers count pack-
ets, not bytes), so we can compare the throughput of the

various
ows by looking at the slope of the curves. In the
experiments shown in Fig. 3 and 4 we have used c = 1 to
control the switch threshold (see end of Section 3.5) { these
were small scale experiments and we wanted to show that
switches did not harm the behaviour of the protocol. The
remaining experiments and simulations have been run with
c = 0:75.

4.2 Intra protocol fairness
Intra-protocol fairness has been studied by running multiple
instances of the protocol through the same bottleneck link,
using the topology at the top of Figure 3. Multiple sessions
have been run through the same bottleneck link, optionally
by adding di�erent delays on the paths to the receivers. As
expected, the various instances share bandwidth in a fair
way, and with roughly inverse proportionality to their RTT.
The graphs in Figure 3 show the evolution of two compet-
ing PGM sessions through the same bottleneck, with two
di�erent con�gurations: above is the non-lossy case, below
is the lossy case. One of the sessions (the one started �rst)
has two receivers, the other one only has one receiver.

On the non-lossy link, we see the �rst session reduce its
throughput when the second one starts, and then both share
the link evenly. The presence of a second receiver on the �rst
session has no other e�ect than causing some acker switches,
but no impact on the throughput (we will discuss the e�ect
of multiple receivers in Sec. 4.5). On the lossy link, the
second session does not appreciably change the response of
the �rst one because there is really no congestion, and the
throughput is only determined by the loss rate.

The behaviour of the sessions in both cases is pretty much
what we expected. The fact that we run multiple instances
of the same protocol, makes this kind of experiment not
very sensitive to the setting of parameters such as the du-
pack threshold, window opening slope, slow start threshold,
and retransmission behaviour. These parameters will signif-
icantly in
uence inter-protocol fairness.

4.3 Inter protocol fairness
A much more critical set of experiment involves competition
with other protocols. In this case, even small deviations in
the behaviour of the two protocols might cause systematic
phenomena leading to starvation of one of them, or to a
signi�cant amount of unfairness.

We were particularly interested in a good behaviour of our
scheme in presence of competing TCP
ows. While we
mimic TCP congestion control, there are minor di�erences
among the two schemes. On startup, TCP's exponential
window opening is slightly di�erent from the one used in
pgmcc; there are no delayed ACKs in pgmcc; and, after a
loss detection, TCP can do an immediate retransmission,
whereas pgmcc cannot retransmit until a NAK arrives and
sets state in routers.

In order to verify the behaviour of competing TCP and
pgmcc
ows, we have run a large number of experiments
with the two types of
ows and di�erent bottleneck con�g-
urations in terms of rate and queue size, both for lossy and
non-lossy links.

24

PRTR

PR

PS

TS

PR

L1

10000000

8000000

6000000

4000000

2000000

0
 10:10:00 10:09:00 10:08:00 10:07:00 10:06:00

seq

time

1 TCP, 3 PGM, 500 Kbit/s 30 slots

 PGM

 TCP

..

.

.............

.........

..............

........

.............

........

............

.......

...........

......

..................

.......

................

..............

...................

...............

...................

..............

..................

.............

.................

.............

................

............

...............

...........

..............

..........

.............

..........

............

.........

...........

........

..................

.......

..................

.......

....................

..............

....................

..............

...................

..............

..................

.............

.................

............

................

...........

...............

..........

..............

..........

.............

.........

............

........

...........

........

..................

...........

................

...............

...................

...............

...................

..............

..................

.............

.................

.............

................

............

...............

...........

..............

..........

.............

..........

............

.........

...........

........

..................

.......

..................

.......

....................

..............

....................

..............

...................

..............

..................

.............

.................

............

................

...........

...............

..........

..............

..........

.............

.........

............

........

...........

........

..................

.......

................

...............

...................

...............

...................

..............

..................

..............

.................

.............

................

............

...............

...........

..............

..........

.............

..........

............

.........

...........

........

..................

........

..................

..........

...................

...............

...................

...............

..................

..............

.................

.............

................

.............

...............

............

..............

...........

.............

..........

............

..........

...........

.........

..........

........

.................

...............

................

................

..................

................

..................

...............

.................

..............

................

.............

...............

.............

..............

............

.............

...........

............

..........

...........

..........

..........

.........

.................

........

..................

............

..................

................

..................

................

.................

...............

................

..............

...............

..............

..............

.............

.............

............

............

...........

...........

..........

..........

..........

.........

.........

...............

........

.............

.................

................

.................

................

.................

...............

................

..............

...............

.............

..............

............

.............

...........

.............

..........

............

.........

...........

........

..........

........

.............

.................

....................

..............

....................

..............

...................

.............

..................

............

..................

...........

.................

..................

................

................

...............

...................

..............

...................

..............

..................

.............

.................

............

................

...........

...............

..........

..............

..........

.............

.........

............

........

...........

........

..................

.......

................

...............

...................

...............

...................

..............

..................

..............

.................

.............

................

............

...............

...........

..............

..........

.............

..........

............

.........

...........

........

..................

........

..................

.......

...................

...............

...................

...............

..................

..............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

..........

...........

.........

..........

........

.................

........

................

..........

..................

................

..................

................

.................

...............

................

..............

...............

.............

..............

.............

.............

............

............

...........

...........

..........

..........

.........

.................

.........

................

................

..................

................

..................

................

.................

...............

................

..............

...............

.............

..............

............

.............

...........

............

...........

...........

..........

..........

.........

................

........

...............

................

.................

................

.................

...............

................

...............

...............

..............

..............

.............

.............

............

............

...........

...........

..........

..........

..........

................

.........

................

.................

.................

.................

.................

................

................

................

...............

...............

..............

..............

.............

.............

............

............

...........

...........

..........

...........

.........

..........

...............

................

................

..................

................

..................

................

.................

...............

................

..............

...............

.............

..............

............

..............

...........

.............

..........

............

.........

...........

........

..........

.............

..............

..............

...................

..............

...................

..............

..................

.............

.................

............

................

...........

................

..........

...............

.........

..............

........

.............

.......

............

...........

...........

...........

............

............

......................

............

......................

...........

.....................

..........

....................

.........

...................

........

..................

.......

..................

......

.................

.....

................

.....

...............

.......

..............

........

..........................

........

..........................

.......

.........................

.......

........................

..........

.......................

...........

.......................

...........

......................

..........

.....................

.........

....................

.........

...................

........

..................

.......

.................

......

................

.....

...............

......

..............

.......

...........................

.......

...........................

.......

..........................

......

.........................

.....

.........................

....

........................

...

.......................

...

......................

...

.....................

.

..

...

................

...

..............................

....

..............................

....

.............................

...

.......................

..

......

...

......................

..

......

..

.....................

.

.....

.

...........................

.

.........................

..

........................

.

...

4000000

3000000

2000000

1000000

0
 12:26:30 12:26:00 12:25:30 12:25:00 12:24:30 12:24:00

seq

time

1 TCP, 3 PGM, 3% loss

 PGM

 TCP

..

...........

....

..

.

.

.

.....

......

.....

.....

.....

.....

....

....

....

....

.....

....

....

.....

....

.....

......

.....

.......

....

......

...

.....

..

....

..

..

..

.........

.

.........

...

........

...

.......

....

......

...

...

......

.......

.....

.......

....

......

..

.....

.

....

....

...

....

.....

......

......

......

........

.....

...........

...........

..........

..........

........

...........

....

..........

..

.........

..........

.

..

.......

..

......

.

.

.

......

...

......

.....

.

..

...

.........

....

......

.

...

....

.......

.

.

.........

.......

...........

......

..........

.....

........

.....

........

.....

.......

....

......

....

...

...

.....

....

.......

...

.......

....

...........

.....

....

.........

........

........

........

.........

.......

........

.....

......

....

.......

...

....

.

..

....

.....

..

.

.

.....

.....

.

.

.....

....

..

...

.....

...

...

...

..........

...

..

.....

............

.......

.

..

..

.

..........

........

..

.

.........

.........

.........

........

..........

.......

.........

.........

........

.........

.......

..........

.....

..........

........

.........

.......

........

.....

.....

.

..

.........

......

.........

.....

.........

....

..............

....

..............

...

.............

.....

............

......

...........

..........

.........

........

........

..........

........

..........

...........

.........

..........

........

.........

........

..........

.......

..........

.......

...........

......

...........

.....

.........

....

.......

...

.

...................................

.

....

....

...

....

...

...

..

....

..

................

.

........

...

........

...

.......

...

.......

...

......

..

.....

....

...........

.......

..........

........

..........

.......

.........

.......

........

......

........

....

.......

.....

......

......

.....

......

.....

.......

.....

......

........

.....

........

...

........

...

.......

...

...........

...

............

.

............

....

...........

....

..........

....

.........

.....

.......

.....

......

.....

......

....

....

....

....

.....

.

..............
..

....

.....

.....

.....

.......

......

.......

......

.......

.....

......

....

.....

...

.....

..

....

....

.......

..

.....

.......

....

........

.....

.........

........

.........

.........

........

........

.......

.......

........
...

......

...........

......

...........

.....

...........

....

..........

.......

........

.......

........

......

.......

.....

..........

.....

...........

....

............

....

...........

.....

...........

........

.........

.......

.........

......

.......

......

......

......

.......

.....

......

.....

.....

.........

.....

.......

....

........

......

.......

.......

.......

......

......

.....

....

....

....

...

...

..

.........

....

......................................

...

......

.....

......

.......

......

......

............

.........

............

.........

...........

........

..........

.......

.........

......

........

........

.......

........

.......

.........

......

.........

.....

.........

......

.........

.......

.......

.......

.........

......

.................

......
..

.................

.........

.................

........

...............

........

..............

.......

..............

......

............

.....

...........

....

...........

...

.........

..

.........

...

........

...

.......

....

.......

....

......

....

........

....

........

.....

.......

.....

.....

...

..

..

.....

...

....

..

....

...

......

...

...

..

.

..

.....

.......

...

..

.

.....

..

.

.

......

..

.

.

....

.

.

.

.

.

.....

.

.

...

..

.

...

.

..

..

......

....

..

.

..

.

..

.

.....

..

..

..

.

.

..

..

.......

.

.

.

.

.

..

.

..........

.

..

.

.

...

..

...............

.

.......................................

.

..

Figure 4: Inter-protocol fairness. One PGM session
(3 receivers) sharing a bottleneck link with TCP.
Top: non lossy link; bottom: lossy link.

In general, we see that there is a good sharing of band-
width between TCP and pgmcc
ows in all con�gurations
we tested, and the
ows do not starve each other. These
results hold independently of the starting order of the
ows,
and are quite reproducible. However, we should emphasize
that on very short timescales, we observed the same phe-
nomena which are present when TCP
ows compete against
each other: one of the
ow might temporarily get a much
larger share of the bandwidth because of the generation of
a burst of traÆc, or because the other
ow temporarily re-
duces its rate. These phenomena are more likely at low bot-
tleneck bandwidths, when the number of packets in transit
is low and the traÆc can become quite bursty.

A few traces will let us discuss the behaviour of pgmcc ver-
sus TCP in more detail. Figure 4 shows the behaviour of
one TCP
ow competing with one pgmcc session (with up
to 3 receivers). The top graph represents a non-lossy link,
whereas the bottom graph shows the behaviour on a lossy
link. The pgmcc receivers were started at di�erent times
(but before the TCP session).

As in the previous experiments, on the non-lossy link we see
the pgmcc
ow reducing its rate upon startup of the second
(TCP)
ow, and then both
ows progressing at approxi-
mately the same rate. At the end of the graph, when the
TCP
ow terminates, pgmcc regains its original rate. The
presence of multiple receivers on the same subnet has practi-
cally no e�ect on the data transfer: all receivers observe the
same traÆc, so they experience the same losses and mea-

sure the same loss rate. NAKs are generated by di�erent
receivers, but they are all equivalent and carry almost ex-
actly the same reports. As in the previous experiments, the
presence of multiple receivers causes some switches of acker
(shown by the vertical bars), but the data rate is not in
u-
enced by such switches.

The lossy bottleneck also produces the expected results,
with the two session proceeding at approximately the same
rate without noticeable perturbations when the second one
starts.

4.4 Acker selection
Even though the experiment in Figure 4 exercises the acker
selection procedures, that one is a simple case because all re-
ceivers are at the same location. More diÆcult cases involve
the presence of receivers on di�erent links with uncorrelated
losses and possibly di�erent link capacity or delay.

We have run several experiments and simulations to eval-
uate the behaviour of the acker election process. This was
indeed the �rst set of experiments we ran to understand the
dynamics of the acker selection and identify the best mech-
anism to respond to change in the slowest receiver. The
experiments involved a single sender with multiple receivers
connected through independent bottlenecks to the source.
The bottleneck links were con�gured with a variety of pa-
rameters involving di�erent bandwidths, propagation delays
and random loss rates. It was this initial set of tests which
evidenced the need of using all parameters of the receivers,
and not just the loss rate, for selecting the acker (In an initial
version of our scheme, we thought we could just select the
acker based on the loss measurement, but this belief was eas-
ily disproved by building some pathological situations which
caused oscillating behaviour). Also from these experiments
it soon became clear that the acker selection process was
unavoidably imprecise, and that interpreting changes in the
acker as congestion noti�cation was going to cause excessive
slowdown in the protocol.

Figure 5 shows an experiment run on a topology involving
pgmcc receivers on independent links, and competing with
a TCP session. Links L1 and L2 were both con�gured as
non-lossy, with 400 Kbit/s, 20 KBytes queue for L1, and
500 Kbit/s, 30 slot queue (approximately 45 KBytes) for
L2. The propagation delay was 50 ms in both cases. In the
graphs we show the behaviour with the real pgmcc imple-
mentation, one receiver at PR1 and one at PR2. We have
obtained identical results (including the number of acker
switches) in NS simulations with the same con�guration and
up to 10 receivers at each of PR1 and PR2, and a constant
c = 0:75 (see Sec. 3.5).

Receiver PR2 is started �rst, followed by PR1 and then
by the TCP connection. The expected behaviour, which
we can observe in the graph, is that the pgmcc session �rst
takes the full 500 Kbit/s, reducing to 400 Kbit/s when PR1
joins, and further down to 220 Kbit/s when the TCP
ow
starts consuming some of the bandwidth on L2. When the
TCP
ow terminates, PR2 tries to increase the session rate
to 500 Kbit/s, causing excessive congestion on PR1 and a
switch of acker, then settling to L1's bandwidth.

25

PR2

PS

TS L1

L2

PR1

TR

500000

400000

300000

200000

100000

 17:07:00 17:06:00 17:05:00 17:04:00

bw

time

bandwidth

PGM

TCP

..

8000000

6000000

4000000

2000000

0
 17:07:00 17:06:00 17:05:00 17:04:00

seq

time

1 TCP and 1 PGM on L2, 1 PGM on L1

PGM

TCP

..

.

.......

.................

.............

................

............

...............

...........

..............

..........

.............

.........

............

........

...........

........

..........

................

.........

.............

.....................

.............

.....................

............

....................

...........

...................

..........

...................

................

..................

................

.................

.................

................

.................

...............

................

..............

...............

.............

..............

............

.............

...........

............

..........

...........

..........

..........

.........

.........

........

..............

.......

.............

..................

...............

...................

...............

..................

..............

.................

.............

................

............

...............

...........

..............

..........

.............

.........

............

........

...........

.......

..........

.......

....................

...........

......................

............

......................

............

.....................

...........

....................

..........

...................

..........

..................

.....................

.................

.................

................

.................

...............

................

..............

...............

.............

..............

............

.............

...........

............

..........

...........

.........

..........

........

..........

.......

.......................

..............

..................

...............

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

..........

.......

..........

.......

..........

.....

.............

................

..................

................

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

...........

.......

..........

...............

......

....................

..............

....................

..............

...................

..............

..................

.............

.................

............

................

...........

...............

..........

..............

.........

.............

........

............

........

...........

.......

...........

......

..........

...............

........

...................

..............

...................

..............

..................

..............

.................

.............

................

............

...............

...........

..............

..........

.............

.........

............

........

....................

.......

...................

.........

.....................

.............

.....................

.............

....................

............

...................

...........

..................

..........

.................

.........

................

........

...............

.......

..............

......

.............

.........

....................
..

...........

.......................

...........

.......................

..........

......................

.........

......................

........

.....................

.......

....................

..........

...................

...............

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

..........

.......

.................

...........

................

................

..................

................

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

..........

.......

.................

...........

................

................

..................

................

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

..........

.......

.................

...........

................

................

..................

................

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

..........

.......

.................

...........

................

................

..................

................

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

..........

.......

.................

...........

................

................

..................

................

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

..........

.......

.................

...........

................

................

..................

................

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

..........

.......

.................

...........

................

................

..................

................

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

..........

.......

.................

...........

................

................

..................

................

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

..........

.......

.................

...........

................

................

..................

................

..................

...............

.................

..............

................

.............

...............

............

..............

...........

.............

..........

............

.........

...........

........

..........

.......

.........

......

........

......

........

...

.......

..

.

..

.....

..

.

......

.....

....

.

.

.

..

.

..

.

.

.

....

.

....

.

...

.

......

.

....

..

....

.

..

.

.

.

...

.

...

.

....

.

.......

.

....

..

...

.

..

.

..

.

...

.

...

.

...

.

.......

.

...

.

...

..

..

.

..

.

..

.

...

.

......

.

....

.

..

.

.

.

.

.

.

.

..

.

.......

.

..

.

.

.

.

.

.

.

.

.

.......

.

.

....

.....

.

.

...

.......

...

.

.

..........

..

.............

.......

..

.

...

...

..........

.

....

.

...

.

..

.

...

.

.

.

...

..

..

.

.....

.

.....

.

...

.

...

.

..

.

..

.

...

.

...

..

.....

.

.

.

..

.

...

.

...

.

...

.

.

.

.

.

..

.

..

.

...

.

.

.

..

.

..

.

..

.

..

.

...

.

....

.

..

.

...

.

...

..

...

.

..

.

..

.

..

.

....

.

..

.

.

.

..

.

....

..

..

.

.

.

....

.

.

.

.

..

....

..

....

.

.

.

.

.

.....

.

.....

.

....

..

....

.

...

1650000

1600000

1550000

1500000

 17:03:45 44.5000 17:03:44 43.5000 17:03:43 42.5000

seq

time

1 TCP and 1 PGM on L2, 1 PGM on L1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

4500000

4400000

4300000

4200000

4100000

 17:04:46 17:04:44 17:04:42 17:04:40 17:04:38

seq

time

1 TCP and 1 PGM on L2, 1 PGM on L1
.....

....
.

....
.....

...
...

.....
.

..
.

....
..

...
..

.......
...........................

........
.....

..
..

...
..

.......
......

...
..

.....
.................

.......
...

..
...............

...
....

..
.

....................
...

..
....................

..
...

..
....................

..
...

..
.................

..
..

..
...

...............
.....

..
..

...
.....

Figure 5: Acker selection. One TCP session, two
pgmcc receivers on di�erent paths with non-lossy
links. From top to bottom: topology, bandwidth,
time-sequence number plots for the whole session,
and close-up of �rst and second rate change.

TCP

TCP

PR

PR

SRC

Bottleneck

Figure 6: TCP and PGM session sharing a bottle-
neck. PGM receivers have di�erent RTTs, some
larger, some smaller than the TCP session.

The reader will notice that, when PR1 is controlling the ses-
sion (between the �rst and the second acker switch), there
are more frequent loss events (represented by diamonds, in-
dicating NAKs). This happens because the queue size, and
the RTT which is dominated by the queueing delay, are
much shorter for path L1 than for path L2.

It is interesting to have a closer look at the areas near the
switches of data rate. The �rst interesting event is the join
of PR1, near time 17:03:42 (roughly corresponding to the
�rst acker switch). Link L1 immediately receives a high-rate
stream which �lls the bu�er and causes a number of losses.
On the �rst two NAKs, which carry a high loss report, PR1
becomes the acker (vertical line). However, there is still a
large number of packets queued on L2, which will cause a few
more tokens to accumulate and packets to be sent beyond
the capacity of L1, thus causing further losses for the next
RTT.

When the ACKs from PR1 start coming in, there is a re-
duction in the RTT (we see the ACKs getting closer to the
data packets), which is due to the shorter queueing delay on
L1.

Note that right after the �rst acks from PR1 arrive, the
session detects congestion and momentarily stops transmit-
ting. The detection of congestion does not occur because
the ACKs are out of sequence (as the bitmap contains ACKs
for the previous segments as well), but rather because the
bitmap contains holes.

In this particular case, reacting to the switchover as to a
congestion (i.e. halving window) would prevent a few losses
that occur in the next RTT. However this kind of reac-
tion would completely ruin throughput in all other cases
described in this Section. We leave for further research the
study of mechanism to robustly tell the two di�erent cases
and allow this kind of (limited) savings, although we are
doubtful on their usefulness.

The e�ects of the startup of the TCP session is also inter-
esting (Figure 5, bottom). In the session controlled by PR1,
there is spare capacity on PR2 and TCP rapidly uses it due
to the exponential window opening. This in turn causes a
number of losses for PR2 which then becomes the acker,
and after a couple of acker switches the two session settle to
their steady state behaviour. From this point onwards, the
evolution of the session with both
ows active is similar to
the one of Figure 4.

26

TS

PR

PR

PS

TR

100+1 identical links

800000

600000

400000

200000

0
5004003002001000

bw

time

100 PGM and 1 TCP, uncorr.loss 1%
PGM

TCP

.

.

.

Figure 7: E�ect of multiple receivers with uncor-
related losses. Initially 10 receivers and one TCP,
after 300s 90 more receivers join the session, all on
di�erent link with 1% random loss.

To conclude the discussion on acker selection, we want to il-
lustrate the behaviour of pgmcc in the setup of Fig. 6. Here,
a TCP session shares a bottleneck with a PGM session with
multiple receivers. We assume that the receivers have widely
di�erent RTTs, some larger and some smaller than the TCP
session, and that all losses are due to congestion and occur
on the bottleneck. Depending on the e�ectiveness of sup-
pression and the spread of RTTs of receivers, pgmcc will se-
lect as the acker one of the receivers, but not necessarily the
one with the highest RTT. As a matter of fact, in presence
of suppression from the network elements, the selected acker
will likely be one of the receivers with the shortest RTTs.
This behaviour should not be seen as a source of unfairness,
but just as a witness of the fact that, in presence of multi-
ple receivers, there is no clear de�nition of a TCP-fair rate.
Multiple TCPs with di�erent RTTs will share bandwidth
unevenly, so there is no obvious reason why, in presence of
multiple receivers, the multicast session should behave as
the slowest rather than the fastest of its members. We can
only say that, should the competition with TCP occur on
the longest path, the receiver with the highest RTT will ex-
perience more losses than the rest of the group and become
the acker, thus insuring a correct behaviour on the shared
path.

4.5 Response to uncorrelated losses
A big problem with single-rate schemes is the behaviour
in presence of uncorrelated losses. Depending on how loss
reports are handled at the source, the latter might assume
an overall loss for the session much higher than the one
of each individual receivers. This could cause the so-called
\drop-to-zero" problem, i.e. the session's rate dropping to
a very low value because of this wrong estimate.

pgmcc tries to avoid this problem by not computing loss rates
at the source, but rather just using the estimates done by
the receivers, and deferring the response to losses to after
the reports from the new acker come in.

We have done some medium-scale evaluations of this be-
haviour, mostly using NS simulations. Figure 7 gives some
indications on how pgmcc works in presence of independent
losses with up to 100 receivers. This NS simulation uses one
pgmcc source and 100 receivers behind independent lossy
links with 1% packet loss rate. An additional link with the
same features is used for a TCP
ow. At time 0, the TCP
session and 10 PGM receivers are started. At time 300, 90
more PGM receivers join the session. As shown from the
graph, the presence of the 90 additional receivers does not
in
uence appreciably the throughput of the PGM session.

Much larger scale tests are certainly necessary to investigate
this behaviour in more detail. However, such tests cannot be
run with simple retransmission-based repairs, or the repair
traÆc would quickly dominate the actual data traÆc on the
link from the source.

5. CONCLUSIONS AND FUTURE WORK
We have presented pgmcc, a scheme for single rate multicast
congestion control which is designed to be scalable, fair with
TCP, and achieve fast response by decoupling the reliabil-
ity/
ow control window from the congestion control window.
The scheme is suitable for both reliable and unreliable com-
munication protocols, with or without router support.

This scheme has been used to implement congestion con-
trol in the PGM protocol, and our preliminary experimen-
tal results, part of which are discussed in this paper, show
that the system achieves the desired results at least in the
con�gurations we tested. We de�nitely believe that pgmcc,
designed and implemented as described in this paper, can
be safely used in the Internet for doing TCP-friendly mul-
ticast communication on small/medium scale. A publicly
available implementation of pgmcc for BSD-derived systems,
including the congestion control part, is available from the
author [19].

Throughout the paper we have already mentioned some ar-
eas of further investigation, such as using alternate methods
to compute the loss rate at receivers; using adaptive rather
than a �xed value for the slow-start threshold; replacing
the \simple" TCP equation with the more complete model
presented in [15]; evaluating the e�ect of suppression per-
formed by network elements. It will also be important to
identify pathological con�gurations (and their likelyhood in
a realistic setup) where pgmcc does not behave as it should.
As an example, in con�gurations where the set of receivers
includes low-rtt but lossy links together with high-rtt, con-
gested links, there might be a chance that the wrong acker
is chosen and the protocol transmits at a higher rate than
it should. While we have not been able to design such a
pathological scenario so far, we cannot exclude its existence
at this stage.

Changes of the dupack threshold are also under investiga-
tion. The main di�erence here is that TCP does a retrans-
mission right after the detection of enough duplicate acks,
whereas pgmcc immediately starts the window halving. Pre-
liminary tests do not show this di�erence to signi�cantly
impact the fairness of the protocols, but we need to gain
more con�dence on this aspect, especially in situations with
few packets in
ight.

27

Another partially open problem, although not only related
to congestion control, is the control of retransmission rate.
We have not addressed it directly, as this problem only exists
for reliable data transfers. However, it is obvious for one
that NAK suppression can become quite ine�ective if we
transmit RDATA immediately upon reception of a NAK.
Also, we de�nitely need some technique to avoid that NAK
storms result in bursts of retransmission without any form
of regulation. We have suggested in Section 3.8 some of the
strategies that we intend to explore in order to deal with
these problems.

Acknowledgements
This work builds on many ideas discussed in the IRTF RMRG
meetings. We would like to thank G. Iannaccone, L. Vi-
cisano, J. Crowcroft and M. Handley for their comments
on earlier drafts of this work; L. Conti and S. Bertoni for
their help in developing a prototype implementation; and V.
Benucci for the NS implementation of pgmcc.

6. REFERENCES
[1] J.W. Byers, M. Luby, M. Mitzenmacher, A. Rege, \A

Digital Fountain Approach to Reliable Distributioni of
Bulk Data", ACM SIGCOMM'98, Vancouver, CA,
Sep. 1998.

[2] Dante DeLucia, Katia Obraczka, \Multicast Feedback
Suppression Using Representatives", IEEE Infocom'97

[3] S.J. Golestani and K. Sabnani, \Fundamental
Observations on Multicast Congestion Control in the
Internet," IEEE Infocom'99, Mar. 1999.

[4] Mark Handley, Sally Floyd, \Strawman Speci�cation
for TCP Friendly (Reliable) Multicast Congestion
Control (TFMCC)".

[5] A. Mankin, A. Romanow, S.Bradner, V.Paxson,
\RFC2357: IETF Criteria for Evaluating Reliable
Multicast Transport and Application Protocols"
http://www.ietf.org/rfc/rfc2357.txt

[6] S.K.Kasera et. al, \Scalable Fair Reliable Multicast
using Active Services", IEEE Network, Jan./Feb.
2000.

[7] X. Li, S. Paul, P. Pancha and M. Ammar, \Layered
Video Multicast with Retransmissions (LVMR):
Evaluation of Hierarchical Rating Control", IEEE
Infocom'98, San Francisco, CA, Mar.28-Apr.1 1998.

[8] M.Mathis, J.Semke, J.Mahdavi, T.Ott, \The
Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm", ACM Computer
Communication Review, Vol.27 N.3, July 1997.

[9] S. McCanne, V. Jacobson, and M. Vetterli,
\Receiver-driven Layered Multicast", ACM
SIGCOMM'96, August 1996, Stanford, CA.

[10] Todd Montgomery, \A Loss Tolerant Rate Controller
for Reliable Multicast", NASA IV&V Technical
Report NASA-IVV-97-011, Aug. 1997.

[11] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P.
Haldar, M. Handley, A. Helmy, J. Heidemann, P.
Huang, S. Kumar, S. McCanne, R. Rejaie, P. Sharma,
K. Varadhan, Y. Xu, H. Yu, and D. Zappala,
\Improving Simulation for Network Research",
Technical Report 99-702b, University of Southern
California, March, 1999. revised September 1999, to
appear in IEEE Computer.

[12] Sally Floyd, Mark Handley, Jitendra Padhye, and
Joerg Widmer, \Equation-Based Congestion Control
for Unicast Applications", ACM SIGCOMM 2000,
Stockholm, Aug 2000.

[13] J. Nonnenmacher, E. W. Biersack, and Don Towsley,
\Parity-Based Loss Recovery for Reliable Multicast
Transmission", IEEE/ACM Transactions on
Networking, 6(4):349{361, Aug. 1998.

[14] J. Nonnenmacher, E.W.Biersack, \Scalable Feedback
for Large Groups", IEEE/ACM Transactions on
Networking 7(3):375{386, June 1999

[15] J. Padhye and V. Firoiu and D. Towsley and J.
Kurose, \Modeling TCP throughput: a simple model
and its empirical validation", ACM SIGCOMM'98,
Vancouver, CA, Sep. 1998.

[16] Injong Rhee, Nallathambi Balaguru and Goerge
Rouskas, \MTCP: Scalable TCP-like Congestion
Control for Reliable Multicast," IEEE Infocom'99,
New York, Mar. 1999.

[17] L. Rizzo, \Dummynet: a simple approach to the
evaluation of network protocols", ACM Computer
Communication Review, Vol.27, N.1, Jan. 1997

[18] L. Rizzo, \E�ective erasure codes for reliable
computer communication protocols", Computer
Communication Review, V.27 N.2, Apr. 1997.

[19] L. Rizzo, \A PGM Host Implementation for
FreeBSD" http://www.iet.unipi.it/~luigi/pgm.html

[20] Luigi Rizzo, Lorenzo Vicisano, \RMDP: an
FEC-based Reliable Multicast protocol for wireless
environments", ACM Mobile Computing and
Communications Review, Vol.2, n.2, April 1998

[21] Tony Speakman et al., \PGM Reliable Transport
Protocol Speci�cation", Internet Draft,
draft-speakman-pgm-spec-04.txt

[22] L.Vicisano, L.Rizzo, J.Crowcroft, \TCP-like
Congestion Control for Layered Multicast Data
Transfer", IEEE Infocom'98, San Francisco, CA,
Mar.28-Apr.1 1998.

[23] B. Whetten, J. Conlan, \A Rate Based Congestion
Control Scheme for Reliable Multicast", Technical
White Paper, GlobalCast Communications, Oct. 1998.

28

