
Moving fast at scale
Experience deploying IETF QUIC at Facebook

Subodh Iyengar

Luca Niccolini

• FB Infra and QUIC deployment
• Infrastructure parity between TCP and QUIC
• Results
• Future and current work

Overview

Anatomy of our load balancer infra

Edge Proxygen Origin Proxygen
HHVM

Internet

Edge POP closer to user

Datacenter closer to serviceHTTP 1.1 over QUIC

HTTP 1.1 / HTTP3
over QUIC

HTTP2 over TCP
HTTP2 over TCP

Backbone network

• QUIC requires unique infrastructure changes
• Zero downtime restarts
• Packet routing
• Connection Pooling
• Instrumentation

Infra parity between QUIC and TCP

• We restart proxygen all the time
• Canaries, Binary updates
• Cannot shutdown all requests

during restart
• Solution: Keep both old and

new versions around for some
time

Zero downtime restarts

https://www.flickr.com/photos/ell-r-brown/26112857255

https://creativecommons.org/licenses/by-sa/2.0/

https://www.flickr.com/photos/ell-r-brown/26112857255

Zero downtime restarts in TCP

Old
proxygen

Accepted
socket
Client 1

Accepted
socket

Client 2

Accepted
socket

Client 3

Listening
socket

Zero downtime restarts in TCP

Old
proxygen

Accepted
socket
Client 1

Accepted
socket

Client 2

Accepted
socket

Client 3

New
proxygen

Unix domain
socket with

SCM_RIGHTS
and CMSG

Listening
socket

Zero downtime restarts in TCP

Old
proxygen

Accepted
socket
Client 1

Accepted
socket

Client 2

Accepted
socket

Client 3

New
proxygen

Accepted
socket

Client 4

Accepted
socket

Client 5

Listening
socket

• No listening sockets in UDP
• Why not SO_REUSEPORT

• SO_REUSEPORT and REUSEPORT_EBPF
does not work on its own

Zero downtime restarts in QUIC
Problems

• Forward packets from new server to
old server based on a "ProcessID"

• Each process gets its own ID: 0 or 1
• New connections encode ProcessID

in server chosen ConnectionID
• Packets DSR to client

Zero downtime restarts in QUIC
Solution

PID bit

Server chosen ConnectionID

Zero downtime restarts in QUIC
Solution

Old
proxygen

UDP
socket 1

UDP
socket 2

UDP
socket 3

SO_REUSEPORT group

Internet

QUIC
connection

1

QUIC
connection

2

Zero downtime restarts in QUIC
Solution

Old
proxygen

New
proxygen GetProcessID

PID = 0

Choose PID = 1

UDP
socket 1

UDP
socket 2

UDP
socket 3

SO_REUSEPORT group

QUIC
connection

1

QUIC
connection

2

Zero downtime restarts in QUIC
Solution

Old
proxygen

New
proxygen

Unix domain
socket with

SCM_RIGHTS
and CMSG

Takeover
sockets

UDP
socket 1

UDP
socket 2

UDP
socket 3

QUIC
connection

1

QUIC
connection

2

Zero downtime restarts in QUIC
Solution

Old
proxygen

New
proxygen

Takeover
sockets

QUIC
connection

1

QUIC
connection

2

UDP
socket 1

UDP
socket 2

UDP
socket 3 UDP packet

Enapsulated with
original source IP

UDP packet

Zero downtime restarts in QUIC
Solution

Old
proxygen

New
proxygen

QUIC
connection

1

QUIC
connection

2 UDP packet

Results

packets forwarded during restart packets dropped during restart

The Future

https://lwn.net/Articles/762101/

Coming to a 4.19 kernel near you

Stable routing

https://www.flickr.com/photos/hisgett/15542198496
https://creativecommons.org/licenses/by/2.0/

No modifications

https://www.flickr.com/photos/hisgett/15542198496
https://creativecommons.org/licenses/by/2.0/

• We were seeing a large % of timeouts
• We first suspected dead connections
• Implemented resets, even more reset errors
• Could not ship resets
• We suspected misrouting, hard to prove
• Gave every host its unique id
• Packet lands on wrong server, log server id
• Isolate it to cluster level. Cause was

misconfigured timeout in L3

Stable routing of QUIC packets

server id

server chosen connid
processid

• We have our own L3 load balancer, katran.
Open source

• Implemented support for looking at
serverid

• Stateless routing
• Misrouting went down to 0
• We're planning to use this for future

features like multi-path and anycast QUIC

Stable routing of QUIC packets

• Now we could implement resets
• -15% drop in request latency without any

change in errors

Stable routing of QUIC packets

https://pixabay.com/en/swimming-puppy-summer-dog-funny-1502563/

Connection pooling

• Not all networks allow UDP
• Out of a sample size of 25k carriers about 4k had no

QUIC usage
• Need to race QUIC vs TCP
• We evolved our racing algorithm
• Racing is non-trivial

Pooling connections

• Start TCP / TLS 1.3 0-RTT and
QUIC at same time

• TCP success, cancel QUIC
• QUIC success, cancel TCP
• Both error, connection error
• Only 70% usage rate
• Probabilistic loss, TCP

middleboxes, also errors:
ENETUNREACH

Naive algorithm

pool

TCP QUIC

Cancel QUIC o
n TCP success

Cancel TCP on
QUIC success

• Let's add a delay to starting TCP

• Didn't improve QUIC use rate

• Suspect radio wakeup delay and
middleboxes

• Still seeing random losses even in
working UDP networks

Let's give QUIC a head start

pool

TCP

QUIC

Cancel QUIC o
n TCP success

Cancel TCP on
QUIC success

Delay 100ms

• Don't cancel QUIC when TCP success
• Remove delay on QUIC error and add

delay back on success
• Pool both connections, new requests go

over QUIC
• Complicated, needed major changes to

pool
• Use rate improved to 93%
• Losses still random, but now can use

QUIC even if it loses

What if we don't cancel?

pool

TCP
QUIC

Add to pool on
success

Add to pool on
success

Delay 100ms

• No chance to test the network
before sending 0-RTT data

• Conservative: If TCP + TLS 1.3
0-RTT succeeds, cancel requests
over QUIC

• Replay requests over TCP

What about zero rtt?

pool

TCP

QUIC

Replay over TCP

• Need to race TCPv6, TCPv4, QUICv6 and
QUICv4

• Built native support for Happy eyeballs in
mvfst

• Treat Happy eyeballs as a loss recovery
timer

• If 150ms fires, re-transmit CHLO on both
v6 and v4.

• v6 use rate same between TCP and QUIC

What about happy eyeballs?

• We have good tools for TCP
• Where are the tools for QUIC?
• Solution: We built QUIC trace
• Schema-less logging: very easy to add

new logs
• Data from both HTTP as well as QUIC
• All data is stored in scuba

Debugging QUIC in production

• Find bad requests in the requests
table from proxygen

• Join it with the QUIC_TRACE table
• Can answer interesting questions like

• What transport events happened
around the stream id

• Were we cwnd blocked
• How long did a loss recovery take

Debugging QUIC in production

• ACK threshold recovery is not
enough

• HTTP connections idle for most of
time

• In a reverse proxy requests /
responses staggered ~TLP timer

• To get enough packets to trigger Fast
retransmit can take > 4 RTT

Debugging QUIC in production
Response packet 1

Response packet 2

Response packet 3

1 RTT

2 RTT

Response packet 4

3 RTT

4 RTT

Fast retransmit

Lost

ACK

ACK

ACK

https://github.com/quicwg/base-drafts/pull/1974

• Integrated mvfst in mobile and proxygen
• HTTP1.1 over QUIC draft 9 with 1-RTT
• Cubic congestion controller
• API style requests and responses

• Requests about 247 bytes -> 13 KB
• Responses about 64 bytes -> 500 KB
• A/B test against TLS 1.3 with 0-RTT

• 99% 0-RTT attempted

Results deploying QUIC

Results deploying QUIC

Latency p75 p90 p99

Overall latency -6% -10% -23%

Overall latency
for responses  

< 4k
-6% -12% -22%

Overall latency
for reused conn -3% -8% -21%

Latency reduction at different percentiles for successful requests

https://www.flickr.com/photos/bitboy/246805948
No modifications

https://creativecommons.org/licenses/by/2.0/

Bias

https://www.flickr.com/photos/bitboy/246805948

What about bias?

Latency p75 p90 p99

Latency for  
later requests -1% -5% -15%

Latency for rtt  
< 500ms -1% -5% -15%

Latency reduction at different percentiles for successful requests

• Initial 1-RTT QUIC results are very encouraging
• Lots of future experimentation needed
• Some major changes in infrastructure required

Takeaways

Questions?

