YaNFD: Yet another Named Data Networking Forwarding Daemon

Eric Newberry, Xinyu Ma, Lixia Zhang
Forwarding in NDN

• Forwarding in IP is simple:
 • Find longest-prefix matching route in FIB → send packet on indicated NIC

• Forwarding in NDN is more complex:
 • Two pipelines: Interests and Data
 • In-network state: Pending Interest Table (PIT), Dead Nonce List (DNL)
 • In-network caching: Content Store (CS)
 • Intelligent forwarding decisions: Forwarding strategies
Existing Forwarders for NDN

• Numerous developed over the years

• Different target environments:
 • E.g., Desktop/laptop, mobile, embedded, network core

• Different goals:
 • Performance, extensibility, ease of use

• However, in existing forwarders:
 • High performance forwarders have high requirements/limited compatibility
 • Forwarders for general purpose computing generally unwieldy or complex
 • Often difficult to extend and use in novel research/development scenarios
Existing Forwarders for NDN: NFD

- Research prototype developed by the NDN team
- De-facto “official” forwarder for NDN
- C++, 156k lines of code (ndn-cxx library + NFD), ~412 MB compiled

- Strengths:
 - Extensively documented
 - Good overall design

- Limitations:
 - Single-threaded
 - Complex codebase and false modularity
Existing Forwarders for NDN: ndn-lite

• Low-overhead forwarder for embedded/constrained environments
• Integrated with a single application thread
 • Instead of being a separate process
• Written in C
• Simplifies portions of the NDN pipeline
 • Notably, removes negative acknowledgements (Nacks)
• Strengths
 • Simplified forwarder design compared to NFD
• Limitations
 • Unable to support beyond a single NDN application at once
Existing Forwarders for NDN: MW-NFD

• Fork of NFD that integrates multi-threading
• Forwarding pipeline split into n “worker” threads
• Interests dispatched to threads by hashing first k name components
• Data packets directed to threads using “PIT tokens”

• Strengths
 • Multi-threaded
 • High performance

• Limitations
 • 100% CPU polling used on input threads
Existing Forwarders for NDN: NDN-DPDK

• Extremely high performance forwarder for backbone networks
 • Up to 100 Gbps forwarding rates observed
• Uses DPDK to bypass the OS network stack
• Data plane in C, control plane in Go
• Dispatches packets via similar methods to MW-NFD

• Strengths
 • Shards data structures across threads to avoid locking
 • High performance

• Weaknesses
 • Only supports a subset of NIC hardware
 • Uses 100% CPU polling to process incoming traffic quickly
Designing a New Forwarder

• What do we want in a new forwarder?
 • High performance
 • Simple codebase to assist innovation
 • Compatibility with NDN wire format and existing applications
 • Applies “lessons learned” from existing forwarder designs

• Developed YaNFD to achieve these goals
 • Multi-threaded with sharded data structures
 • Simplified design and codebase
 • Reuses existing application and forwarder interface standards
 • Design influenced by strengths/limitations of existing NDN forwarders
Parallelizing NDN Pipelines

• Interest pipeline
 • PIT: Interests w/ different names update different entries
 • All other data structure accesses are read-only

• Data pipeline
 • Write accesses to many data structures

• Solution
 • Only read-only: Use global instances
 • Need to write: Shard data structures across threads
YaNFD Design Overview
Data Structures: Sharded PIT/CS

• Pending Interest Table
 • Interest pipeline uses exact lookups
 • Data pipeline uses longest prefix matching

• Content Store
 • Uses longest prefix matching
 • However, use of CS is entirely opportunistic

• PIT and CS both use a tree of names
 • Combine into a single data structure (like NFD)

• Can shard PIT/CS across threads
Data Structures: Global FIB/RIB

• In the forwarding pipelines, all accesses to FIB are read-only
• RIB is kept separate and periodically “flattened” into FIB
• Therefore, can have a global FIB with simultaneous access
 • Can be locked when being flattened from RIB
Evaluation: Scenario

- Simultaneously transferring three large files via ndnchunks
- Each consumer requested content from a respective producer
- Producers, consumers, and forwarder running on a single node
Evaluation: Performance

![Bar graph showing Goodput (Mbps) for different file sizes and file distribution methods: YaNFD, NFD, and MW-NFD. The graph compares the performance of these methods for file sizes of 100 MB, 1 GB, and 5 GB.](image)
Lessons Learned from YaNFD

• Multi-threaded forwarding has inherent benefits to NDN throughput
• Garbage collection overhead can be significant
• Must consider impact of NDN forwarding on other applications
 • Particularly on multi-purpose edge devices that we target
• Multi-threading doesn’t always increase forwarding performance
Future Work

• Allow forwarding strategies to be dynamically loaded at runtime
• Add support for NLSR router package for NDN
 • NLSR requires NDN management protocol features not yet implemented
• Devise way to utilize PIT tokens in producer applications
 • Avoid prefix dispatching of Data packets with missing PIT tokens
Summary

• YaNFD is able to outperform NFD with a much simpler design
• Multi-threaded forwarding in NDN is feasible and desirable
• NDN forwarders can be both lightweight and effective
• Open source! https://github.com/named-data/YaNFD