

NDN in Large LEO Satellite Constellations: A Case of Consumer Mobility Support

Teng Liang, Zhongda Xia, Guoming Tang, Yu Zhang, Beichuan Zhang

2021/09/23

Large LEO Satellite Constellations

They intend to provide low-latency and high-bandwidth connectivity

- Satellites are launched at low altitudes (e.g., 340 miles)
 - they are moving fast, resulting in a handover every 2-5 minutes
 - require a massive number of satellites

Large LEO Satellite Constellations

- Hardware resources
 - SpaceX disclosed that each launch carries 60 satellites containing 4000 Linux computers in June 2020.
- Connectivity
 - Stage one
 - No inter-satellite links
 - only uplink and downlink

Large LEO Satellite Constellations

Connectivity

- Stage two
 - Four inter-satellite links (ISL)
 - Uplink and downlink
- Two ISLs on the same plane
- Two ISLs on different planes

Why NDN?

Adaptive forwarding

- multiple paths
- the uplink and downlink can use both RF and FSO communication technologies,
- inter-orbital optical links change over time and take non-trivial time to set up
- In-network Caching
 - built-in multicast reduces network traffic
 - in-network data caching reduces both delay and network traffic
- Off-the-grid Communication
 - NDN provides a unified data retrieval protocol no matter it is on or off the grid

Why NDN?

- Data mule services
 - store-and-forward capability can be easily supported in NDN

- In-network/edge computing
 - NDN can reduce the complexity of such infrastructure
- Consumer Mobility Support

Data-centric Security

Consumer Mobility Support

- Native Consumer Mobility Support
 - Because of NDN's pull communication model
 - Applications can simply retransmit Interests after timeouts, which deals with handovers naturally
 - Interest timeout in applications can be too long to negtively impact users' quality of experience, and congestion control mechanisms
- A better solution: In-network Interest retransmission
 - When the end node detects a handover, it retransmit pending Interests to the newly connected satellite
 - No need to wait apps to take actions

Consumer Mobility Support

- Can we do better?
- The performance depends on if retransmitted Interests are forwarded to the previously connected satellites

Does the routing paths overlap?

When will two routing paths overlap?

Direct forwarding using hint

In-network Interest Retransmission + forwarding hint

Evaluation

- Goal: evaluate the performance of the three mechanisms
 - Application Interest retransmission (AIR)
 - In-network Interest retransmission (IIR)
 - In-network Interest retransmission + forwarding hint (IIR+FW)

• Metrics:

- The average data retrieval delay
- The number of the retrieved data
- Effective data retrieval ratio

Scenario:

- One consumer downloads a file from a producer at a different geolocation
- Collect data in a period of 2 seconds, one before and one after the handover

Evaluation: the avarage data retrieval delay

Evaluation: the number of retrieved data

Evaluation: Effective data retrival ratio

Q/A

Thanks!

