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Secure Scuttlebutt:  
probably the most radical decentralized protocol
• no central authority, data structure, consensus or trust infrastructure 

• one source of truth: per-ID cryptographically secured append-only logs 

• a log consists of signed events 

• Hey, it’s named data! The name of a single event is “id:seqno", 

events also have an intrinsic name (hash) 

• event content can be encrypted, no leaking of recipient ID 

• “distributed app thinking”: events for Linda-like “buffered broadcast”  

• created in 2014, currently 10'000 users, ca 20-30 core developers 

• clients for Win, Mac, Linux, Android, iOS soon



SSB has rich 
social media  
clients

• Javascript/Electron  

• Several other clients 
and libraries 
- Rust, C, Python, Kotlin  
(but not full-fledged yet)  

• NaCl crypto library, JS 
and heavy DB ops



Overview
1. SSB as a technology: 

motivation, log replication, subjective reader concept


2. Some example applications


3. The human dimension: 
log replication along the social graph, trust and the onboarding problem


4. A comparison of SSB and NDN


5. Challenges, future work



1a) SSB tech: motivation
SSB started with a wish list, empowering the human user:


• no ads, no irrelevant chatter (dial down buddies), yet have social media


• must work offline (offline-first)


• secured with user-controlled trust (no Cert Authority, please)


• permissionless naming (no Naming Authority, please)


• not dependent on consensus (beyond common packet format)


• SSB name: water cooler is where news travels 
on ship: water cooler is called scuttlebutt, which also is lingo for gossip
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• Application (=frontend) only works on local log replicas


• Log updates are automatically replicated (backend), somehow and at some time
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incremental, mutual log replication

1b) SSB tech: log replication



1c) SSB tech: subjective reader
Ground truth are the individual 
append-only logs 


• Log = hash-chained signed event list 
—> causality-preserving


• Applications locally compute their 
state from events in the available logs: 
- reconstruct e.g. chat dialogue 
  from events in multiple logs 
  (a ‘map-reduce task’)


• “subjective reader” (the ‘map’ step): 
- app/user to choose which logs to consider 
- app/user could also lack the replica of some logs that others see
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1d) SSB tech: the protocol
• The thin waist of SSB: 

- ED25519 public keys as IDs 
- log event: up to 4KB, including ID 
- events MUST be signed, chained 
= reliable in-order delivery


• Current SSB: an IP overlay 
- epidemic broadcast tree (EBT) routing 
- peering uses a ‘secure handshake 
  protocol’ between trusted nodes


• Plus a separate “blob” replication protocol (a hack, more NDNish client/server)



2a) SSB app: user directory
Q: How to have a SSB-wide user directory .. 
     without consensus or central data aggregation?  
A: Be subjective like humans are


• SSB app = common content format 
SSB app state = some reduction of all such events


• The “about” app: 
- people assign names to IDs, publish in their log 
- for given about target and log, remember the last 
- from these per-log assignments, pick as you like 
  (self-assigned first, if absent then name given by 
   a friend, else name given by a random person etc)

content = { // by Alice 
  type = “about”, 
  author = “@Ah88Hb.ed25519”, 
  about = “@B2gg34.ed25519”,  
  name = “Bob” 
}

content = { // by Alice 
  type = “about”, 
  author = “@Ah88Hb.ed25519”, 
  about = “@B2gg34.ed25519”,  
  name = “Bob the guy” 
}

content = { // by Bob 
  type = “about”, 
  author = “@B2gg34.ed25519”, 
  about = “@B2gg34.ed25519”,  
  name = “cool Bob” 
}

content = { // by Carl 
  type = “about”, 
  author = “@Ca92c2.ed25519”, 
  about = “@B2gg34.ed25519”,  
  name = “Bob the enemy” 
}

In other words: a directory of display names where IDs are the underlying unique names



2b) SSB app: Chat, Git, Chess,..
General comment: think CRDTs (conflict-free replicated data types)


• Chat uses event records with three fields: starting-event, in-reply-to, text 
(plus the usual per-event author and sequence number fields) 
—> chat thread = directed acyclic graph with same starting-event 
—> state reduction = your subjective linearisation of that DAG


• Git naturally is a DAG: just map commits to SSB events 
—> except the singleton decision on “head of the master branch”, 
      where in SSB conflicts are solved by humans instead of central GitHub


• Chess: initial mutual “let’s start a game” events, then publish your moves, 
simply ignore moves by others or moves from other game instances



3a) Human factor: social graph
SSB = “Internet of people” i.e., their log 
    - self-declared  follow  events 
      (mutual follow == “friend”) 
    - replicate content along the social graph


• When peering, a client subscribes to: 
- it’s own log 
- the logs of followed IDs 
- the logs of IDs followed by people whom 
   they follow (friends-of-friends)


• There are also  unfollow  and  block  events.



3b) Human factor: trust and onboarding
SSB onboarding as an “existential” experience 
 
 

• Newcomers MUST be introduced 
Some hacks exist: automated “invite codes” by SSB relay nodes


• Receiver-driven mindset, leads to very strict filtering what events you see


• “Web of trust” instead Cert Authority 
“follow” declarations replace PGP’s signing parties

    HELP - nobody is following me, hence nobody will see what I post ! 



4) Comparing SSB with NDN
Different planets?


• SSB: 
- no consumers, only producers 
- no pull: new content is pushed 
- no hierarchical name space 
- no mutable name binding 
- strict data structure rules (log) 

• In the paper: 
three attempts to “emulate” or layer



4a) SSB over NDN
Select insights (about the pain)


• Emulate SSB’s push with either polling, 
or long-lived-interest (reverse pull, parallel pre-registration for efficiency)


• (not in the paper): NDN offers “read” but has unclear “write” operation, 
linked to “SSB only has producers” property: 
—> perhaps use NDN’s mobile producer support? 
 
Still does not match SSB’s replication property: 
in SSB, your followers are your log’s backup



4b) NDN over SSB
“Pull”: read in your local replicas 
or introduce per-data structure IDs, then “subscribe at runtime to a file”


But have to emulate two other NDN aspects: global namespace, forw+trust


• Namespace: SSB must implement a “NDN name authority” ID, plus 
app-level protocol how to register a NDN name 
(but how does the authority “follow” all potential requestors?)


• NDN follows IP mindset: “free forwarding”, where free=ISP ecosystem 
SSB would need to introduce “contractual friends”, happy to replicate 
your “real friends”’s content



4c) NDN + SSB
Combining the two approaches?


• NDN as “data access” pull protocol, best effort: 
- get random content out of a hierarchical name space 
- or pull single events from logs (out of a flat ID space) 
- optional caching


• SSB integrated as a push service, event streams: 
- a natively supported pub/sub service 
- beyond long-lived interests: “controlled push” 
- reliable, only for signed event chains, some kind of TCP receive window 
- caching mandatory for logs



5) SSB challenges, future work
• Is SSB a risk for “people at risk”? 

- pseudonymous, exposes IDs 
- events are immutable and not refutable 
Only for the privileged “who have nothing to hide”? (Google’s Eric Schmidt)


• Scaling concerns from a caring community: What will be the (economic) force that 
turns SSB into a disruption, could abandon its goals?


• Still global singletons in the system design: e.g. “type” field of events


• Evolution of SSB: 
binary encoding schema / off-chain content (can delete payload, but keep the event 
trace) / event-level tangle support / scalable encrypted chat groups / log compaction 
/ log life cycle management / alignment with DAT..



6) Conclusions
SSB’s tech choices seem contrarian, but identified a very convincing spot 
in ICN’ solution space 
 
- value system - disintermediation, plurality (SSB a “neutral” infrastructure) 
- push - vs pull 
- event-source integrity - way better than signing anything 
- trustful - instead of trustless crypto currencies: info bubbles are ok 
- consensus-avoidance - yet comes with powerful low-level sync


When push comes to shove - does not need a network - sneakernet ok


