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Secure Scuttlebutt:
probably the most radical decentralized protocol

® No central authority, data structure, consensus or trust infrastructure

® one source of truth: per-I1D cryptographically secured append-only logs

® o |0g consists of signed events

® Hey, it's named datal The name of a single event is “1d: segno”,
events also have an intrinsic name (hash)
® cvent content can be encrypted, no leaking of recipient 1D

® “distributed app thinking”: events for Linda-like “buftered broadcast”

® created in 2014, currently 10'000 users, ca 20-30 core developers

® clients for Win, Mac, Linux, Android, iOS soon
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Overview

1. SSB as a technology:
motivation, log replication, subjective reader concept

2. Some example applications

3. The human dimension;
log replication along the social graph, trust and the onboarding problem

4. A comparison of SSB and NDN

5. Challenges, future work



1a) SSB tech: motivation

SSB started with a wish list, empowering the human user:

* No ads, no irrelevant chatter (dial down buddies), yet have social media
* must work offline (offline-first)

* secured with user-controlled trust (no Cert Authority, please)

* permissionless naming (no Naming Authority, please)

* not dependent on consensus (beyond common packet format)

 SSB name: water cooler is where news travels
on ship: water cooler is called scuttlebutt, which also is lingo for gossip




1b) SSB tech: log replication
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e Application (=frontend) only works on local log replicas

 Log updates are automatically replicated (backend), somehow and at some time



1c) SSB tech: subjective reader

Ground truth are the individual
append-only logs

 Log = hash-chained signed event list
—> causality-preserving

* Applications locally compute their T
state from events in the available logs:

- reconstruct e.g. chat dialogue T
from events in multiple logs ‘
(a ‘map-reduce task’)

* “subjective reader” (the ‘map’ step):
- app/user to choose which logs to consider

- app/user could also lack the replica of some logs that others see



1d) SSB tech: the protocol

* The thin waist of SSB:
- ED25519 public keys as IDs
- log event: up to 4KB, including ID
- events MUST be signed, chained
= reliable in-order delivery

 Current SSB: an IP overlay
- epidemic broadcast tree (EBT) routing
- peering uses a ‘secure handshake
protocol’ between trusted nodes
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Figure 2: Secure Scuttlebutt’s protocol stack.

* Plus a separate “blob” replication protocol (a hack, more NDNish client/server)

appN



content =

Q: How to have a SSB-wide user directory ..
without consensus or central data aggregation?
A: Be subjective like humans are }

 SSB app = common content format
SSB app state = some reduction of all such events

2a) SSB app: user directory

{ // by Alice

type = “about”,

author = “@Ah88Hb.ed25519",
about = “@B2gg34.ed25519",
name = “Bob”

content = { // by Alice
type = “about”,
author = “@Ah88Hb.ed25519",
about = “@B2gg34.ed25519",
name = “Bob the quy”

}
 The “about” app: content = { // by Bob
type = “about”,

- people assign names to IDs, publish in their log

- for given about target and log, remember the last

- from these per-log assignments, pick as you like }
(self-assigned first, if absent then name given by
a friend, else name given by a random person etc)

In other words: a directory of display names where IDs are the underlying unique names

author = “@B29gg34.ed25519",
about = “@B2gg34.ed25519",

name = “cool Bob”
content = { // by Carl
type = “about”,

author = “@Ca92c2.ed25519",
about = “@B2gg34.ed25519",
name = “Bob the enemy”

}




2b) SSB app: Chat, Git, Chess,..

General comment: think CRDTs (conflict-free replicated data types)

 Chat uses event records with three fields: starting-event, in-reply-to, text
(plus the usual per-event author and sequence number fields)
—> chat thread = directed acyclic graph with same starting-event
—> state reduction = your subjective linearisation of that DAG

o Git naturally is a DAG: just map commits to SSB events
—> except the singleton decision on “head of the master branch”,
where in SSB conflicts are solved by humans instead of central GitHub

 Chess: initial mutual “let’s start a game” events, then publish your moves,
simply ignore moves by others or moves from other game instances



3a) Human factor: social graph

SSB = “Internet of people” i.e., their log ——
- self-declared follow events g
(mutual follow == “friend”)

- replicate content along the social graph

A B
® — @ means A follows B

 When peering, a client subscribes to:
- It’'s own log
- the logs of followed IDs
- the logs of IDs followed by people whom
they follow (friends-of-friends)

e There are also unfollow and block events.



3b) Human factor: trust and onboarding

SSB onboarding as an “existential” experience

* Newcomers MUST be introduced
Some hacks exist: automated “invite codes” by SSB relay nodes

* Receiver-driven mindset, leads to very strict filtering what events you see

e “Web of trust” instead Cert Authority
“follow” declarations replace PGP’s signing parties



4) Comparing SSB with NDN

Different planets? >5B-over-NDN: | 5B app SSB app
—[st — st
e SSB: plain NbN e wt 0[@IN NDN = === plain NbN
- N0 consumers, only producers
- no pull: new content is pushed NDN-over-SSB: NDN app NDN app
- no hierarchical name space "1 TNDN 7 1TNDN
- N0 mutable name binding P pllain SISB e plain SSB == - pllain SISB
- strict data structure rules (log) - — -
NDN + SSB: ICN app ICN app
 |nthe paper. P NDN+éSB— == NDN+SSB e == NDN+éSB

three attempts to “emulate” or layer - — -




4a) SSB over NDN =

—{ SSB —{ 9B

plain NDN = === 0[3in NDN pe= === p|ain NDN

Select insights (about the pain)

 Emulate SSB’s push with either polling,
or long-lived-interest (reverse pull, parallel pre-registration for efficiency)

e (not in the paper): NDN offers “read” but has unclear “write” operation,
linked to “SSB only has producers” property:
—> perhaps use NDN’s mobile producer support?

Still does not match SSB’s replication property:
iIn SSB, your followers are your log’s backup



4b) NDN over SSB

“Pull”: read In your local replicas =

NDN app NDN app
/.. || NDN /.. || NDN
plain SSB == == plain SSB == == plain SSB

— —

or introduce per-data structure IDs, then “subscribe at runtime to a file”

But have to emulate two other NDN aspects: global namespace, forw+trust

 Namespace: SSB must implement a “NDN name authority” ID, plus

app-level protocol how to register a NDN name

(but how does the authority “follow” all potential requestors?)

 NDN follows IP mindset: “free forwarding”, where free=ISP ecosystem
SSB would need to introduce “contractual friends”, happy to replicate

your “real friends”’s content



4c) NDN + SSB ON ap ON o

NDN+SSB = === NDN+SSB M= === NDN+SSB

7 1 7

- - -

Combining the two approaches?

« NDN as “data access” pull protocol, best effort:
- get random content out of a hierarchical name space
- or pull single events from logs (out of a flat ID space)
- optional caching

 SSB integrated as a push service, event streams:
- a natively supported pub/sub service
- beyond long-lived interests: “controlled push”
- reliable, only for signed event chains, some kind of TCP receive window
- caching mandatory for logs



5) SSB challenges, future work

* |s SSB arisk for “people at risk”?
- pseudonymous, exposes IDs
- events are immutable and not refutable
Only for the privileged “who have nothing to hide”? (Google’s Eric Schmidt)

* Scaling concerns from a caring community: What will be the (economic) force that
turns SSB into a disruption, could abandon its goals?

o Still global singletons in the system design: e.g. “type” field of events

* Evolution of SSB:
binary encoding schema / off-chain content (can delete payload, but keep the event

trace) / event-level tangle support / scalable encrypted chat groups / log compaction
/ log life cycle management / alignment with DALT..



6) Conclusions

SSB'’s tech choices seem contrarian, but identified a very convincing spot
in ICN’ solution space

- value system - disintermediation, plurality (SSB a “neutral” infrastructure)
- push - vs pul

- event-source integrity - way better than signing anything

- trustful - instead of trustless crypto currencies: info bubbles are ok

- consensus-avoidance - yet comes with powerful low-level sync

When push comes to shove - does not need a network - sneakernet ok



