Secure Scuttlebutt: An Identity-Centric Protocol
for Subjective and Decentralized Applications

Dominic Tarr (SSB, New Zealand)

Erick Lavoie (McGill University, Montreal)
Aljoscha Meyer (TU Berlin, Germany)
Christian Tschudin (U of Basel, Switzerland)

September 25, 2019

Secure Scuttlebutt:
probably the most radical decentralized protocol

® No central authority, data structure, consensus or trust infrastructure

® one source of truth: per-I1D cryptographically secured append-only logs

® o |0g consists of signed events

® Hey, it's named datal The name of a single event is “1d: segno”,
events also have an intrinsic name (hash)
® cvent content can be encrypted, no leaking of recipient 1D

® “distributed app thinking”: events for Linda-like “buftered broadcast”

® created in 2014, currently 10'000 users, ca 20-30 core developers

® clients for Win, Mac, Linux, Android, iOS soon

SSB h Ich
@00 < Public Private More | v Patchwork word, @key, #channel Profile Mentions

| u
social media |

. : When | first saw these robots, | immediately imagined how easily they'd be defeated by
C Ie n S Active Channels

teenagers. skateboard up, put a cardboard box or trashbag over it's head. Or draw comedic

#cat-pics mustash on it.

#ssb Unlike Reply

#new-people

® Javascript/Electron #ooats

Neauoire 3 likes

#flume 4 hours ago

#dystopia

#documentation

® Several other clients

#patchless

and ||brar|es More Channels...

_ QUSt, C, DythOn, Kotlln Connected Pubs

kas B

(bUt nOt fU”‘ﬂedged yet) - h.transitiontech.ca @

A ssb.alarum.de t ;|
e NaCl crypto library, JS ho tofollow |

and heavy DB ops

Overview

1. SSB as a technology:
motivation, log replication, subjective reader concept

2. Some example applications

3. The human dimension;
log replication along the social graph, trust and the onboarding problem

4. A comparison of SSB and NDN

5. Challenges, future work

1a) SSB tech: motivation

SSB started with a wish list, empowering the human user:

* No ads, no irrelevant chatter (dial down buddies), yet have social media
* must work offline (offline-first)

* secured with user-controlled trust (no Cert Authority, please)

* permissionless naming (no Naming Authority, please)

* not dependent on consensus (beyond common packet format)

 SSB name: water cooler is where news travels
on ship: water cooler is called scuttlebutt, which also is lingo for gossip

1b) SSB tech: log replication

Trd()

wr()l rd() wr ()

replica

Alice’s lo¢, I I ' '
' replica

incremental, mutual log replication Bob’s log I I

e Application (=frontend) only works on local log replicas

 Log updates are automatically replicated (backend), somehow and at some time

1c) SSB tech: subjective reader

Ground truth are the individual
append-only logs

 Log = hash-chained signed event list
—> causality-preserving

* Applications locally compute their T
state from events in the available logs:

- reconstruct e.g. chat dialogue T
from events in multiple logs ‘
(a ‘map-reduce task’)

* “subjective reader” (the ‘map’ step):
- app/user to choose which logs to consider

- app/user could also lack the replica of some logs that others see

1d) SSB tech: the protocol

* The thin waist of SSB:
- ED25519 public keys as IDs
- log event: up to 4KB, including ID
- events MUST be signed, chained
= reliable in-order delivery

 Current SSB: an IP overlay
- epidemic broadcast tree (EBT) routing
- peering uses a ‘secure handshake
protocol’ between trusted nodes

apps
and
libs

SSB

dissemi-
nation

and
storage

app1

oo | -

nax

tangle

metadata—protecting
encryption wrapper

log format, peer IDs, blob objs

SSB-over-IP:
SHS, muxrpc,
peer-discovery,
EBT

file system

sneakernets

other
replication
and
storage
means ...

Figure 2: Secure Scuttlebutt’s protocol stack.

* Plus a separate “blob” replication protocol (a hack, more NDNish client/server)

appN

content =

Q: How to have a SSB-wide user directory ..
without consensus or central data aggregation?
A: Be subjective like humans are }

 SSB app = common content format
SSB app state = some reduction of all such events

2a) SSB app: user directory

{ // by Alice

type = “about”,

author = “@Ah88Hb.ed25519",
about = “@B2gg34.ed25519",
name = “Bob”

content = { // by Alice
type = “about”,
author = “@Ah88Hb.ed25519",
about = “@B2gg34.ed25519",
name = “Bob the quy”

}
 The “about” app: content = { // by Bob
type = “about”,

- people assign names to IDs, publish in their log

- for given about target and log, remember the last

- from these per-log assignments, pick as you like }
(self-assigned first, if absent then name given by
a friend, else name given by a random person etc)

In other words: a directory of display names where IDs are the underlying unique names

author = “@B29gg34.ed25519",
about = “@B2gg34.ed25519",

name = “cool Bob”
content = { // by Carl
type = “about”,

author = “@Ca92c2.ed25519",
about = “@B2gg34.ed25519",
name = “Bob the enemy”

}

2b) SSB app: Chat, Git, Chess,..

General comment: think CRDTs (conflict-free replicated data types)

 Chat uses event records with three fields: starting-event, in-reply-to, text
(plus the usual per-event author and sequence number fields)
—> chat thread = directed acyclic graph with same starting-event
—> state reduction = your subjective linearisation of that DAG

o Git naturally is a DAG: just map commits to SSB events
—> except the singleton decision on “head of the master branch”,
where in SSB conflicts are solved by humans instead of central GitHub

 Chess: initial mutual “let’s start a game” events, then publish your moves,
simply ignore moves by others or moves from other game instances

3a) Human factor: social graph

SSB = “Internet of people” i.e., their log ——
- self-declared follow events g
(mutual follow == “friend”)

- replicate content along the social graph

A B
® — @ means A follows B

 When peering, a client subscribes to:
- It’'s own log
- the logs of followed IDs
- the logs of IDs followed by people whom
they follow (friends-of-friends)

e There are also unfollow and block events.

3b) Human factor: trust and onboarding

SSB onboarding as an “existential” experience

* Newcomers MUST be introduced
Some hacks exist: automated “invite codes” by SSB relay nodes

* Receiver-driven mindset, leads to very strict filtering what events you see

e “Web of trust” instead Cert Authority
“follow” declarations replace PGP’s signing parties

4) Comparing SSB with NDN

Different planets? >5B-over-NDN: | 5B app SSB app
—[st — st
e SSB: plain NbN e wt 0[@IN NDN = === plain NbN
- N0 consumers, only producers
- no pull: new content is pushed NDN-over-SSB: NDN app NDN app
- no hierarchical name space "1 TNDN 7 1TNDN
- N0 mutable name binding P pllain SISB e plain SSB == - pllain SISB
- strict data structure rules (log) - — -
NDN + SSB: ICN app ICN app
 |nthe paper. P NDN+éSB— == NDN+SSB e == NDN+éSB

three attempts to “emulate” or layer - — -

4a) SSB over NDN =

—{ SSB —{ 9B

plain NDN = === 0[3in NDN pe= === p|ain NDN

Select insights (about the pain)

 Emulate SSB’s push with either polling,
or long-lived-interest (reverse pull, parallel pre-registration for efficiency)

e (not in the paper): NDN offers “read” but has unclear “write” operation,
linked to “SSB only has producers” property:
—> perhaps use NDN’s mobile producer support?

Still does not match SSB’s replication property:
iIn SSB, your followers are your log’s backup

4b) NDN over SSB

“Pull”: read In your local replicas =

NDN app NDN app
/.. || NDN /.. || NDN
plain SSB == == plain SSB == == plain SSB

— —

or introduce per-data structure IDs, then “subscribe at runtime to a file”

But have to emulate two other NDN aspects: global namespace, forw+trust

 Namespace: SSB must implement a “NDN name authority” ID, plus

app-level protocol how to register a NDN name

(but how does the authority “follow” all potential requestors?)

 NDN follows IP mindset: “free forwarding”, where free=ISP ecosystem
SSB would need to introduce “contractual friends”, happy to replicate

your “real friends”’s content

4c) NDN + SSB ON ap ON o

NDN+SSB = === NDN+SSB M= === NDN+SSB

7 1 7

- - -

Combining the two approaches?

« NDN as “data access” pull protocol, best effort:
- get random content out of a hierarchical name space
- or pull single events from logs (out of a flat ID space)
- optional caching

 SSB integrated as a push service, event streams:
- a natively supported pub/sub service
- beyond long-lived interests: “controlled push”
- reliable, only for signed event chains, some kind of TCP receive window
- caching mandatory for logs

5) SSB challenges, future work

* |s SSB arisk for “people at risk”?
- pseudonymous, exposes IDs
- events are immutable and not refutable
Only for the privileged “who have nothing to hide”? (Google’s Eric Schmidt)

* Scaling concerns from a caring community: What will be the (economic) force that
turns SSB into a disruption, could abandon its goals?

o Still global singletons in the system design: e.g. “type” field of events

* Evolution of SSB:
binary encoding schema / off-chain content (can delete payload, but keep the event

trace) / event-level tangle support / scalable encrypted chat groups / log compaction
/ log life cycle management / alignment with DALT..

6) Conclusions

SSB'’s tech choices seem contrarian, but identified a very convincing spot
in ICN’ solution space

- value system - disintermediation, plurality (SSB a “neutral” infrastructure)
- push - vs pul

- event-source integrity - way better than signing anything

- trustful - instead of trustless crypto currencies: info bubbles are ok

- consensus-avoidance - yet comes with powerful low-level sync

When push comes to shove - does not need a network - sneakernet ok

