Easy as ABC: A Lightweight Centrality-Based Caching Strategy for Information-Centric IoT

Jakob Pfender, Alvin Valera, Winston K. G. Seah

26 September 2019

School of Engineering and Computer Science Victoria University of Wellington

Introduction & Motivation

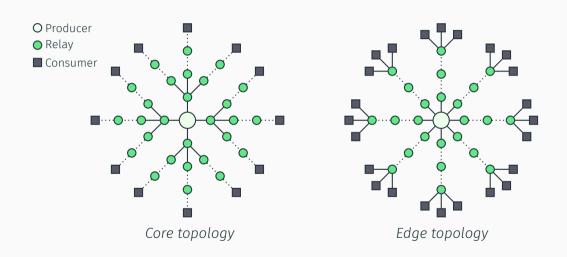
Caching in Information-Centric IoT

Benefits

- · Fast information retrieval
- Reduced congestion
- Stability
- Decentralisation

Caching in Information-Centric IoT

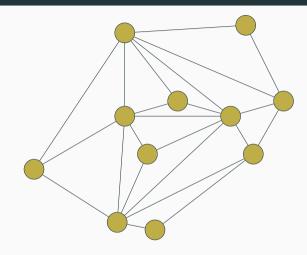
Benefits


- Fast information retrieval
- Reduced congestion
- Stability
- Decentralisation

Challenges

- · Limited memory
- · Limited processing power
- · Limited battery life
- · Limited bandwidth
- · Unreliable links

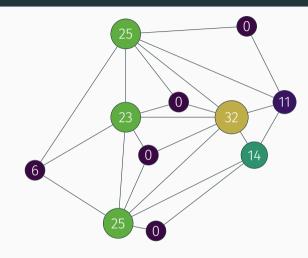
Where should content be cached?


Multihop Topology Types in IoT

Centrality-Based Caching Strategies

Centrality-Based Caching Strategies

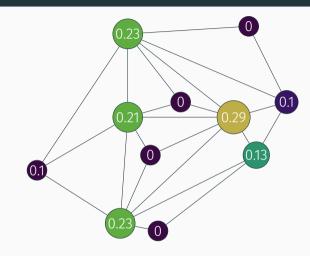
- Use caching node's betweenness centrality to decide where to cache content
- Betweenness centrality: The number of times a given node lies on one of the paths between all pairs of nodes in the network
- Centrality indicates node's importance in the network



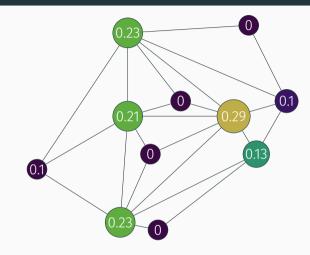
Centrality-Based Caching Strategies

$$C_B(v) = \sum_{i \neq v \neq j \in V} \sigma'_{i,j}(v)$$
, where

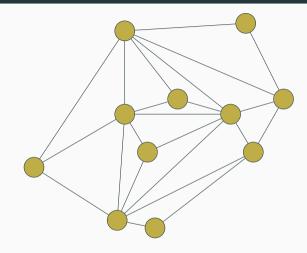
$$\sigma'_{i,j}(v) = \begin{cases} 1, & \text{if } v \text{ on path } (i,j) \\ 0, & \text{otherwise.} \end{cases}$$


- Interest packets record maximum $C_B(v)$ among nodes they encounter
- Returning Data is cached at all nodes whose $C_B(v)$ is equal to or greater than maximum

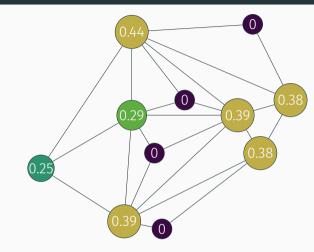
Betw and EgoBetw


Betw

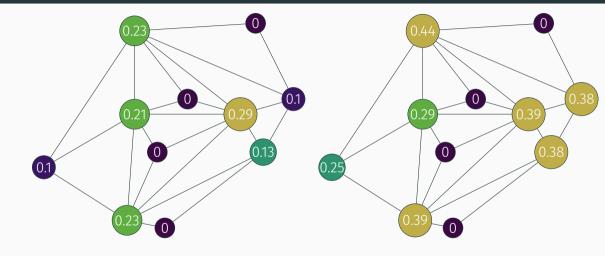
- Each node's C_B(v) is assigned manually (a priori) or through exchange of neighbour information
- For automatic assignment, every node needs full information about every other node
- Full recalculation required if topology changes


Betw

- · Significant overhead:
 - Communication
 - Memory
 - Computation
- · Complexity:
 - Messaging: $\mathcal{O}(n^2)$ • Memory: $\mathcal{O}(n^2)$
 - Computational: $\mathcal{O}(n^2)$
- Not feasible for constrained networks


EgoBetw

- · Distributed solution
- Ego network: A node's one-hop neighbours and the links between them
- Centrality is calculated only for each node's ego network
- Approximates actual centrality

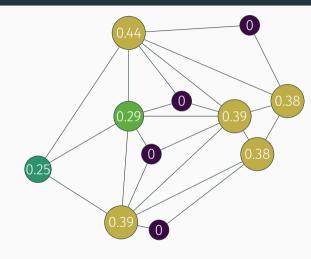


EgoBetw

- · Distributed solution
- Ego network: A node's one-hop neighbours and the links between them
- Centrality is calculated only for each node's ego network
- · Approximates actual centrality

Betw and EgoBetw — Comparison

Betw and EgoBetw — Comparison


- Loss of granularity between absolute node centralities, but relative centralities mostly preserved
- Reduced complexity

• Messaging: $\mathcal{O}(n)$

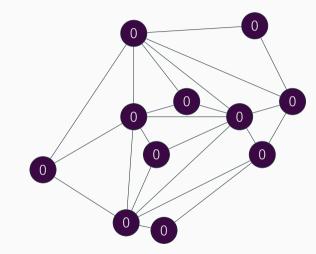
• Memory: $\mathcal{O}\left(d^2\right)\left(d \leq n-1\right)$

• Computational: $\mathcal{O}(d^2)$

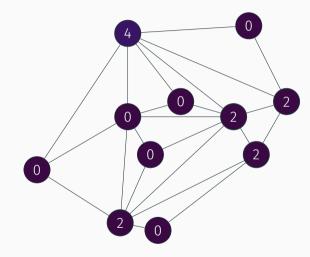
Dynamic topologies slightly easier to manage

Betw and EgoBetw — Summary

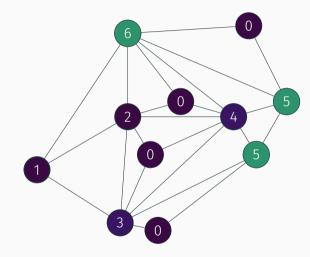
- · Betw is infeasible for constrained hardware
- Existing research finds that *EgoBetw* delivers **satisfactory** approximation
- But its overhead is still **significant!**

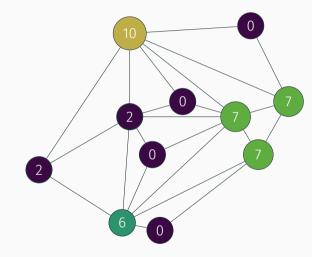


Our Goal


Our Goal

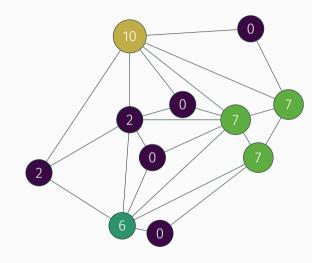
Find a caching strategy that **approximates** the advantages of centrality-based caching while subject to the constraint that it **must be feasible** to implement and run on typical IoT hardware with **extremely limited memory and processing power**.


- Each node approximates its own centrality during runtime
- Using information piggy-backed onto normal ICN packets
- Interest packets are extended to carry UID of original requesting node


- Receiving an Interest means a node knows it is on the path between producer and consumer
- Each Interest from a new consumer or to a new producer increases the node's knowledge
- Over time, nodes can approximate their own centrality

- Receiving an Interest means a node knows it is on the path between producer and consumer
- Each Interest from a new consumer or to a new producer increases the node's knowledge
- Over time, nodes can approximate their own centrality

- Receiving an Interest means a node knows it is on the path between producer and consumer
- Each Interest from a new consumer or to a new producer increases the node's knowledge
- Over time, nodes can approximate their own centrality


- Introduces a convergence time (≤ 60s), but gets rid of a priori setup phase
- · Significantly reduced complexity:

• Messaging: $\mathcal{O}(1)$

• Memory: $\mathcal{O}(p) (p \le n (n-1))$

· Computational: $\mathcal{O}(1)$

- Can handle dynamic topologies by using time-outs
- Centrality values reflect actual traffic patterns

ABC — Complexity Comparison

Strategy	Messaging overhead	Memory overhead	Computational overhead
Betw	$\mathcal{O}(n^2)$	$\mathcal{O}\left(n^2\right)$	$\mathcal{O}\left(n^2\right)$
EgoBetw ABC	$\mathcal{O}(n)$ $\mathcal{O}(1)$	$\mathcal{O}\left(d^2\right)$ $\mathcal{O}\left(p\right)$	$\mathcal{O}\left(d^2\right)$ $\mathcal{O}\left(1\right)$

d: Node degree $(d \le n - 1)$

p: Number of paths ($p \le n (n-1)$)

Evaluation

Evaluation — Experiment Setup

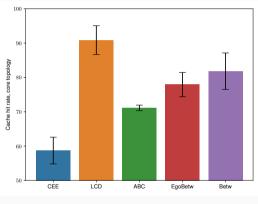
- All experiments conducted on FIT IoT-LAB open testbed using M3 nodes
 - STM32 (ARM Cortex M3), 512 kB ROM, 64 kB RAM, Atmel AT86RF231 2.4 GHz transceiver on IEEE 802.15.4
- Simple RIOT-OS application using CCN-lite as ICN implementation, modified to support the different caching strategies

Evaluation — Experiment Setup

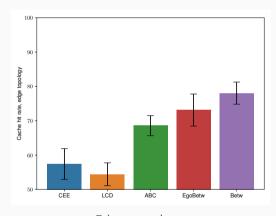
- All experiments conducted on FIT IoT-LAB open testbed using M3 nodes
 - STM32 (ARM Cortex M3), 512 kB ROM, 64 kB RAM, Atmel AT86RF231 2.4 GHz transceiver on IEEE 802.15.4
- Simple RIOT-OS application using CCN-lite as ICN implementation, modified to support the different caching strategies

- Grenoble site: ~ 380 M3 nodes distributed evenly in a single building, realistic indoor conditions (multipath, reflection, absorption, interference)
- Choose 50 nodes randomly for each experiment
- · Nodes can cache **up to 5 objects**

Evaluation — Experiment Description

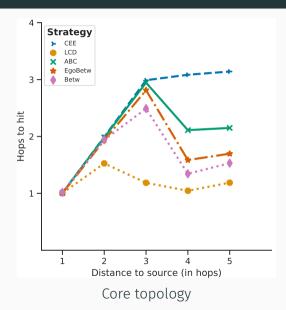

- Build core and edge topologies using routing algorithms and FIB assignment
- All nodes act as producers, consumers, and relays
- Multihop setup, average path length 3-4 hops

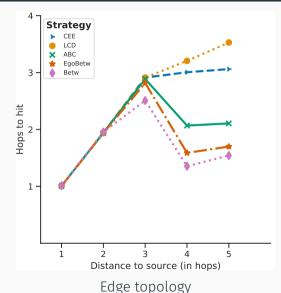
Evaluation — Experiment Description

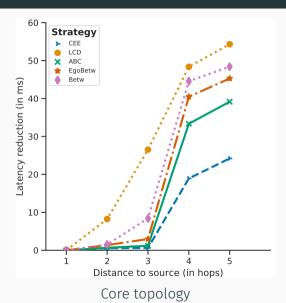

- Build core and edge topologies using routing algorithms and FIB assignment
- All nodes act as producers, consumers, and relays
- Multihop setup, average path length 3–4 hops

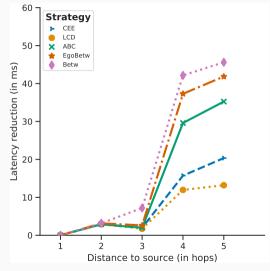
- Every node periodically requests content from producers following uniform distribution
- Content is cached according to selected caching strategy
- Strategies evaluated: Cache Everything Everywhere (CEE), Leave Copy Down (LCD), Betw, EgoBetw, ABC

Evaluation — Cache Hit Rate




Core topology


Edge topology


Evaluation — Hop Count Reduction

Evaluation — Latency Reduction

 Centrality strategies offer significant benefits for content delivery latency regardless of network topology

- Centrality strategies offer significant benefits for content delivery latency regardless of network topology
- If the topology type is known & static, other strategies may be optimal

- Centrality strategies offer significant benefits for content delivery latency regardless of network topology
- If the topology type is known & static, other strategies may be optimal
- Centrality strategies are a strong option if topology is unknown or mutable

- Centrality strategies offer significant benefits for content delivery latency regardless of network topology
- If the topology type is known & static, other strategies may be optimal
- Centrality strategies are a strong option if topology is unknown or mutable

 ABC not expected to outperform existing centrality strategies because it relies on less accurate information

- Centrality strategies offer significant benefits for content delivery latency regardless of network topology
- If the topology type is known & static, other strategies may be optimal
- Centrality strategies are a strong option if topology is unknown or mutable

- ABC not expected to outperform existing centrality strategies because it relies on less accurate information
- However, its complexity is significantly lower while results remain acceptable

- Centrality strategies offer significant benefits for content delivery latency regardless of network topology
- If the topology type is known & static, other strategies may be optimal
- Centrality strategies are a strong option if topology is unknown or mutable

- ABC not expected to outperform existing centrality strategies because it relies on less accurate information
- However, its complexity is significantly lower while results remain acceptable
- It is viable to implement on constrained devices and is consistent across topologies

Thank you!

Contact: jakob.pfender@ecs.vuw.ac.nz

Classes of constrained devices

Class	ROM	RAM
0	<< 100 KiB	<< 10 KiB
1	\sim 100 KiB	\sim 10 KiB
2	\sim 250 KiB	∼ 50 KiB

(Bormann et al: Terminology for Constrained-Node Networks, 2014)

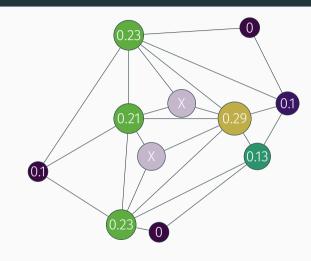
· RIOT 4.4 kB

· CCN-lite: 8.7 kB

ABC — Issues & Caveats

- Reliance on Interests that clearly identify producer and consumer
 - Strong assumption: Singular source for each prefix
 - Break in ICN principles: Carrying consumer information in Interest packets

- Single source assumption not generally true, but not unrealistic (uniquely identified sensor, rooms, etc.)
 - Can treat groups of nodes as one producer for path counting purposes
- Break with ICN principles unproblematic if application is siloed, but may break interoperability and cannot provide anonymity


ABC — Issues & Caveats

- More central nodes are put under more strain
 - Exacerbated by already having to route more traffic due to position in topology
 - May lead to failure of the most important nodes in the network, thus defeating purpose

ABC — Issues & Caveats

- More central nodes are put under more strain
 - Exacerbated by already having to route more traffic due to position in topology
 - May lead to failure of the most important nodes in the network, thus defeating purpose
- Potential solution: Off-path caching
 - Offload content to less strained neighbours
 - · Can make use of centrality

