
Compute First Networking: 
Distributed Computing meets ICN

Michał Król1, Spyridon Mastorakis2, Dave Oran3, Dirk Kutscher4

1University College London/UCLouvain
2University of Nebraska, Omaha

3Network Systems Research & Design
4University of Applied Sciences Emden/Leer



Introduction



Why Distributed Computing?
● Moore’s law is failing
● First Pentium 4 processor with 3.0GHz 

clock speed was introduced back in 2004
● Macbook Pro 2016 has clock speed of 

2.9GHz
● Adding more core to the processor has its 

cost too
● The most reliable way to speed things up 

is to use multiple CPUs/machines

source:https://medium.com/@kevalpatel2106/why-should-you-learn-go-f607681fad65



Compute First Networking
● Joint optimization of computing and networking
● Taking into account location of the data
● Applications decomposed into small, mobile components
● Constant adaptation to changing environment



Related work
● Multiple Distributed Computing frameworks

○ But usually ignore location of the data

● Function Chaining solutions
○ But usually lack the ability to adapt to changing environment

● Mobile Edge Computing frameworks
○ Often simply extending the cloud computing concept to specific hosts at the edge



Use Case
● Airport health screening system
● Detect people with highly-infectious pulmonary diseases
● Collect and analyze cough audio samples
● Deployed using commodity mobile phones



Use Case

● Collect samples
● Remove speech
● Detect cough
● Extract cough features 

(“wetness”, “dryness”)
● Analyse multiple samples



Use Case



Background



Information Centric Network (ICN)
● Designed for efficient content delivery
● Request (Interest)/ Reply (Data) semantics
● Pushes application level identifiers into the network layer
● Efficient, asynchronous multicast
● Can work on top of layer 2, 3, 4 OSI/ISO protocols



RICE: Remote Method Invocation in ICN
● decouples application and network time
● enables long-running computations through the concept of thunks
● providing additional mechanisms for client authentication, authorization and 

input parameter passing. 
● secure 4-way handshake



Conflict-Free Replicated Data Types (CRDTs)

● Independent, coordination-free 
state updates

● Strong eventual consistency 
guarantees - replicas have a recipe 
to solve conflicts automatically.

● Enables to satisfy all the CAP 
theorem properties



Conflict-Free Replicated Data Types (CRDTs)

source:https://www.slideshare.net/KirillSablin1/crdt-and-their-uses-se-2016

● Independent, coordination-free 
state updates

● Strong eventual consistency 
guarantees - replicas have a recipe 
to solve conflicts automatically.

● Enables to satisfy all the CAP 
theorem properties



Conflict-Free Replicated Data Types (CRDTs)

source:https://www.slideshare.net/KirillSablin1/crdt-and-their-uses-se-2016

● Independent, coordination-free 
state updates

● Strong eventual consistency 
guarantees - replicas have a recipe 
to solve conflicts automatically.

● Enables to satisfy all the CAP 
theorem properties



CFN



Design Goals
● Distributed computing environment for a general purpose programming 

platform 
● Support for both stateless functions and stateful actors
● Flexible load management
● Take into account data location, platform load and network performance
● No major code changes in regard to non-distributed version



Overview

Scoped resource advertisements

Task Scheduler



Terminology
● Program - a set of computations requested by a user. 
● Program Instance - one currently executing instance of a program
● Function - a specific computation that can be invoked as part of a program.
● Data - represents function outputs and inputs or actor internal state.
● Future - objects representing the results of a computation that may not yet be 

computed.
● Worker - the execution locus of a function or actor of a program instance



Naming



Naming

deterministic

non-deterministic



Futures

execute f1(arg)Future: /f1/#/r1



Futures

execute f2(/f1/#/r1)



Futures

Interest: /f1/#/r1



Code
Decorators:

● @cfn.transparent
● @cfn.opaque
● @cfn.actor

Methods:

● cfn.get(future)



Code
Decorators:

● @cfn.transparent
● @cfn.opaque
● @cfn.actor

Methods:

● cfn.get(future)



Computation Graph
● Location of the data
● Chaining nodes using 

ICN names
● Different node types

● Graph is a CRDT
● Non-conflicting merge 

operations (set addition)



Computation Graph
In Name: /extractFeatures/(#) Out

/removeSpeech/(#) Type: Referentially Transparent Function /extractFeatures/(#)/r1

Location: node1 /extractFeatures/(#)/r2

/extractFeatures/(#)/r3



Computation Graph

In Name: /extractFeatures/(#) Out

/removeSpeech/(#) Type: Referentially Transparent Function /extractFeatures/(#)/r1

Location: node2 /extractFeatures/(#)/r2

/extractFeatures/(#)/r3

In Name: /extractFeatures/(#) Out

/removeSpeech/(#) Type: Referentially Transparent Function /extractFeatures/(#)/r1

Location: node1 /extractFeatures/(#)/r2

/extractFeatures/(#)/r3



Computation Graph
In Name: /extractFeatures/(#) Out

/removeSpeech/(#) Type: Referentially Transparent Function /extractFeatures/(#)/r1

Location: node1, node2 /extractFeatures/(#)/r2

/extractFeatures/(#)/r3



Task Scheduler
● Functions are invoked close to the data they rely on
● Forwarding hints to steer traffic
● Dependency information + data info are in the computation graph
● Each decision can be optimized by other forwarding nodes (late binding)
● The exact node is chosen using information from scoped resource 

advertisements



Task Scheduler
● Functions are invoked close to the data they rely on
● Forwarding hints to steer traffic
● Dependency information + data info are in the computation graph
● Each decision can be optimized by other forwarding nodes (late binding)
● The exact node is chosen using information from scoped resource 

advertisements

C has the 
data

A B C

D



Task Scheduler
● Functions are invoked close to the data they rely on
● Forwarding hints to steer traffic
● Dependency information + data info are in the computation graph
● Each decision can be optimized by other forwarding nodes (late binding)
● The exact node is chosen using information from scoped resource 

advertisements

A B C

D
C is 
overloaded. 
Send to D.



Example



Results



Results

● Near linear scalability
● Data locality makes a 

significant difference



Results

● With increased number of 
input the completion time 
increases as well…

● But not that much



Result

● Input size plays much 
higher role

● The completion time is 
mostly determined by the 
largest and the furthest 
input



Results

● Location of the initial 
node does not have a big 
influence on the 
completion time



Future Work
● “Center-of-mass” approach
● Build a prototype
● Annotate real-world applications
● Automatic annotation module
● Leverage ICN mechanisms better: routing, path stitching, probing



Conclusion
● Distribute computation framework for general purpose computation
● Uses Computation Graph, Resource advertisement protocol and a scheduler 
● Join optimization of network and computation resources
● Code available at https://github.com/spirosmastorakis/CFN

https://github.com/spirosmastorakis/CFN


Thank you


