Compute First Networking:
Distributed Computing meets ICN

Michat Krol', Spyridon Mastorakis?, Dave Oran®, Dirk Kutscher*

'"University College London/UCLouvain
2University of Nebraska, Omaha
SNetwork Systems Research & Design
“University of Applied Sciences Emden/Leer

Introduction

Why Distributed Computing?

7 .
10 1 Transistors
3 (thousands)
10"
10°
Single-thread
104 1 Performance
(SpeciINT)
3 Frequency
10 1 (MH2)
2 Typical Power
10" ¢ (Watts)
1 Number of
10" | Cores
0
10

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

source:https://medium.com/@kevalpatel2106/why-should-you-learn-go-f607681fad65

Moore’s law is failing

First Pentium 4 processor with 3.0GHz
clock speed was introduced back in 2004
Macbook Pro 2016 has clock speed of
2.9GHz

Adding more core to the processor has its
cost too

The most reliable way to speed things up
is to use multiple CPUs/machines

Compute First Networking

Joint optimization of computing and networking

Taking into account location of the data

Applications decomposed into small, mobile components
Constant adaptation to changing environment

Related work

e Multiple Distributed Computing frameworks
o But usually ignore location of the data

e Function Chaining solutions
o But usually lack the ability to adapt to changing environment

e Mobile Edge Computing frameworks
o Often simply extending the cloud computing concept to specific hosts at the edge

Use Case

e Airport health screening system

e Detect people with highly-infectious pulmonary diseases
e Collect and analyze cough audio samples

e Deployed using commodity mobile phones

Use Case

Collect samples
Remove speech
Detect cough

Extract cough features

(“wetness”, “dryness”)
Analyse multiple samples

Use Case

Ji——L

Background

Information Centric Network (ICN)

Designed for efficient content delivery

Request (Interest)/ Reply (Data) semantics

Pushes application level identifiers into the network layer
Efficient, asynchronous multicast

Can work on top of layer 2, 3, 4 OSI/ISO protocols

RICE: Remote Method Invocation in ICN

e decouples application and network time

e enables long-running computations through the concept of thunks

e providing additional mechanisms for client authentication, authorization and
input parameter passing.

e secure 4-way handshake

? &

Conflict-Free Replicated Data Types (CRDTSs)

e Independent, coordination-free
state updates

e Strong eventual consistency
guarantees - replicas have a recipe
to solve conflicts automatically.

e Enables to satisfy all the CAP
theorem properties

Conflict-Free Replicated Data Types (CRDTSs)

Problem
e Independent, coordination-free 0 - . ’
state updates

e Strong eventual consistency /
guarantees - replicas have a recipe @ .
to solve conflicts automatically.

e Enables to satisfy all the CAP
theorem properties

source:https://www.slideshare.net/KirillSablin1/crdt-and-their-uses-se-2016

Conflict-Free Replicated Data Types (CRDTSs)

Problem
e Independent, coordination-free i 0 = . .
state updates
e Strong eventual consistency +1 “
+1 !01

guarantees - replicas have a recipe
source:https://www.slideshare.net/KirillSablin1/crdt-and-their-uses-se-2016

to solve conflicts automatically.
e Enables to satisfy all the CAP
theorem properties

CFN

Design Goals

e Distributed computing environment for a general purpose programming
platform

Support for both stateless functions and stateful actors

Flexible load management

Take into account data location, platform load and network performance
No major code changes in regard to non-distributed version

Overview

........................

Task Scheduler | | N\ | NodeB ~~~~~~

/extra ctFeatures/(#
NodeC

Shared Computation Graph j
$E

Scoped resource advertisements

Terminology

Program - a set of computations requested by a user.

Program Instance - one currently executing instance of a program

Function - a specific computation that can be invoked as part of a program.
Data - represents function outputs and inputs or actor internal state.

Future - objects representing the results of a computation that may not yet be
computed.

e Worker - the execution locus of a function or actor of a program instance

Naming

NodeName: /netl/nodel/
6 Framework prefix: /LA-CFN/

Program Instance: /LA-CFN/EHealth/45/
me Computation Graph: /LA-CFN/EHealth/45/graph/
Resource Advertisement: /LA-CFN/resource/

Transparent function: /EHealth/extractFeatures/(#)/
Opaque function: /EHealth/anonimizeAudio/123/

CLASS Class method: /EHealth/CoughAnalyzer/f1/(#)/
<eeal Class state: /EHealth/CoughAnalyzer/state/#/

Naming

- NodeName: /netl/nodel/
W Framework prefix: /LA-CFN/
me Program Instance: /LA-CFN/EHealth/45/

Computation Graph: /LA-CFN/EHealth/45/graph/
Resource Advertisement: /LA-CFN/resource/

deterministic

Transparent function: /EHealth/extractFeatures/(#)/
Opaque function: /EHealth/anonimizeAudio/123/

non-deterministic

(cLASS) Class method: /EHealth/CoughAnalyzer/f1/(#)/
<eeal Class state: /EHealth/CoughAnalyzer/state/#/

Futures

[execute f1 (arg)]

[Future: /f1/#/r1]

i

Futures

[execute f2(/f1/#/r1)]

Futures

A

ﬁnterest: [f1/#/r1]

\d

class CoughAnalyzer:
#class state

coughs = []
COde alert = False

def addSample(self, sample_f, features_f):
Decorators: sample, features =
coughs.append ([sample, features])
if diseaseDetected(coughs):

e (@cfn.transparent alert = True

e @cfn.opaque
def removeSpeech(sample_f):
o @Cfn.actor sample =

remove speech from the sample
return anonymized_sample

Methods:

def extractFeatures(sample_f):
e cfn.get(future) sample =

analyze the sample
return features

HHHHHHdHHHH#E main H#HHHHSHAHHH

analyzer = CoughAnalyzer ()

while True:
sample_f = recordAudio()
anonymized_sample_f = removeSpeech(sample_f)
features_f = extractFeatures(anonimized_sample_f)
analyzer.addSample (anonymized_sample_f , features_f)

Code

Decorators:

e (@cfn.transparent
e @cfn.opaque
e (@cfn.actor

Methods:

e cfn.get(future)

[@cfn.actor |

class CoughAnalyzer:
#class state
coughs = []
alert = False

|@cfn.transparent|
def addSample(self, sample_f, features_f):
sample, features = |[cfn.get(sample_f, features_f)]|
coughs.append ([sample, features])
if diseaseDetected(coughs):
alert = True

l@cfn . opaque]

def removeSpeech(sample_f):
sample = [cfn.get(sample_f) |
remove speech from the sample
return anonymized_sample

[@cfn.transparent|
def extractFeatures(sample_f):
sample :|cfn.get(sample_f)|
analyze the sample
return features
HHHHHHdHHHH#E main H#HHHHSHAHHH
analyzer = CoughAnalyzer ()
while True:
sample_f = recordAudio()
anonymized_sample_f = removeSpeech(sample_f)
features_f = extractFeatures(anonimized_sample_f)
analyzer.addSample (anonymized_sample_f , features_f)

Computation Graph

e Location of the data e Graphisa CRDT
e Chaining nodes using e Non-conflicting merge
ICN names operations (set addition)

e Different node types

—————

"""t referentially () referentially [} data # Input hash

________ » opaque — > transparent —> & unique id
lA'riél_S[ééF/ffiéééﬁd[(f#_)‘
e |
[mam/()}—»{Analyzerﬂmt/()] anonymlzeAudlo/& . (extractFeatures/(#)] [Analyzer/apend/(#)]
................................. . E M
N
'@999_3/_@_'2_%/599_'94@___ s%tr?_c_tf_%%t}fE%%ffﬂ'""i

Computation Graph

In Name: /extractFeatures/(#) Out
/removeSpeech/(#) Type: Referentially Transparent Function lextractFeatures/(#)/r1
Location: node1 /extractFeatures/(#)/r2

/extractFeatures/(#)/r3

Computation Graph

In Name: /extractFeatures/(#) Out
/removeSpeech/(#) Type: Referentially Transparent Function lextractFeatures/(#)/r1
lextractFeatures/(#)/r2
/extractFeatures/(#)/r3

In Name: /extractFeatures/(#) Out
/removeSpeech/(#) Type: Referentially Transparent Function lextractFeatures/(#)/r1
lextractFeatures/(#)/r2
lextractFeatures/(#)/r3

Computation Graph

In Name: /extractFeatures/(#) Out

/removeSpeech/(#) Type: Referentially Transparent Function lextractFeatures/(#)/r1

lextractFeatures/(#)/r2

/extractFeatures/(#)/r3

Task Scheduler

Functions are invoked close to the data they rely on

Forwarding hints to steer traffic

Dependency information + data info are in the computation graph

Each decision can be optimized by other forwarding nodes (late binding)
The exact node is chosen using information from scoped resource
advertisements

Task Scheduler

Functions are invoked close to the data they rely on

Forwarding hints to steer traffic

Dependency information + data info are in the computation graph

Each decision can be optimized by other forwarding nodes (late binding)
The exact node is chosen using information from scoped resource
advertisements

C has the

8 E<E

Task Scheduler

Functions are invoked close to the data they rely on

Forwarding hints to steer traffic

Dependency information + data info are in the computation graph

Each decision can be optimized by other forwarding nodes (late binding)
The exact node is chosen using information from scoped resource
advertisements

Cis

veﬂoaded
A E

Example

def f1():
return random()
3)schedule f1 on NodeB f1()

-
-

def (future):

7)update graph

Task Scheduler

s > f1/() :NodeB

my_input = get(future) :
SR RC UL R e 9) request f2 input

NodeB

def)5 1) execute /f1/() >

f1_future = f1() < 5) future JAL0/L a main® 8)get f2 input thunk a 20
Shared Computation Graph

4) execute /f2/(#)
- >
5) future /f2/(#)/r1

Y

£2(1_future) | Task Scheduler 6)schedule 2 on NodeC | Task Scheduler

NodeA NodeC

Results

Results

-O- Tree-no locality -O- Mesh-no locality -4+~ Line-locality

-{}- Line-no locality -/x- Tree-locality Mesh-locality
1600{ = c AL
14501 220
©'1300- 4201
g 320
o 11507 220
E 1000 | | | | ‘ e Near linear scalability
c 850 \ 30 e Data locality makes a
© 700- \ significant difference
o
g 2201 = —F1
O 400 -
250- =
100 | . | . ' =
0 5 10 15 20 25 30

Number of Nodes

Results

With increased number of
input the completion time
increases as well...

But not that much

450

N w w &
(6)] o (9 o
o o o o

Completion Time (sec)

=
Ul
o

100

-O- Tree Topology

-[}- Line Topology

-O- Mesh Topology

N
o
o

— 1

11
1

0 3 6 9 12 15

Number of Inputs

Result

-O- Input Size=5MB -O- Input Size=15MB
-}~ Input Size=10MB -7x- Input Size=20MB
350-
T ke
T
9300
&
.)
e Input size plays much E 250
higher role c
. . . (@)
e The completion time is & 2004
mostly determined by the &
largest and the furthest S 155
input
100 — . . . , .
0 10 20 30 40 50

Number of Inputs

Results >

Location of the initial
node does not have a big
influence on the
completion time

Future Work

“Center-of-mass” approach

Build a prototype

Annotate real-world applications

Automatic annotation module

Leverage ICN mechanisms better: routing, path stitching, probing

Conclusion

e Distribute computation framework for general purpose computation
e Uses Computation Graph, Resource advertisement protocol and a scheduler
e Join optimization of network and computation resources

e Code available at https://github.com/spirosmastorakis/CFN

https://github.com/spirosmastorakis/CFN

Thank you

