On the Power of In-Network Caching
in the Hadoop Distributed File System

ERIC NEWBERRY, BEICHUAN ZHANG

THE UNIVERSITY
. OF ARIZONA

Motivation

* In-network caching

* Lots of research has been done about ICN/NDN caching, but mostly using
synthetic traffic.

* How much bené€fit is there for real applications?

* HDFS is a distributed file system for large-scale data processing
* Used in many big data systems, e.g.,Apache Spark, Apache
* Deployed in many large clusters in production

* A promising application for ICN/NDN
* In-network caching
* Multipath, multi-source data transfer
* Resiliency
 Security

Research questions and approach

* Does in-network caching benefit HDFS applications? If so, how
much?
* Write and Read operations
* Different applications have different I/O patterns.

* What's the impact of different cache replacement policies?

* Also have the choice of using different policies at different network
nodes.

* Approach: on AWS, run a number of Hadoop Spark apps,
collect data traces, reply the traces in simulations to evaluate
the effectiveness of in-network caching and the impact of

different replacement policies.

Write Operation

* HDFS writes data to multiple replica
* Default 3, but configurable.
* Pipelining

* Write to replica sequentially

 Can be converted to multicast in NDN

* Notify replica about the write request, and replica retrieve data from
the data source around the same time.

Traditional Pipelined Writes

Multicast

Write Traffic

Trace Written Data (MB) | Network Transfer (MB)

aggregation 3519 7038

als 24 48

gbt 99 198

join 101 202

kmeans 6 12

linear 9 19

Ir 19 38

rf 11 22

scan 19169 38338

sort 27784 55568

wordcount 5 11
Scenario Pipelining (MB) | Multicast (MB) | Reduction
Third replica on same edge switch 1024 896 12.5%
Third replica on different edge switch 1280 1024 20.0%

Read Operation

* Cache read data in the network (in the form of Data packets)

* If multiple compute nodes request same data, later requests
may hit a cache.
* Reduce delay
* Reduce overall network traffic

* Reduce load on storing at DataNodes

Read Traffic

I

Trace Unique (MB) | Total (MB)
aggregation 221 230
als 1147 1156
obt 33 43
join 1 13
kmeans 395 573
linear 20952 111195
Ir 8893 19966
rf 1084 1094
scan ~0 9
sort 740 749
wordcount 847 1499

Caching Granularity

* What should be the size of the “cache block™?
* NDN packets are the unit of caching. Need to segment and sign the
data beforehand.
* Larger Data packets

* Lower PIT, FIB, and Content Store overhead

* But, coarser caching granularity and less efficient.

* Smaller Data packets
* Higher PIT, FIB, and Content Store overhead

* Finer caching granularity

* Need to balances data processing overhead vs. caching
granularity

Block Size

Number of Requests (normalized to 8 KB)

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1+

I ="' =

Read (I'inear) -
Read (Ir) —<— |

500 1000 1500 2000
Cache Block Size (KB)

Use 128KB packet size in simulations.

2500

Network Topology is Fat Tree

Core

Aggregation

Edge

End hosts

Can use different cache replacement policies at different layers of switches.

Methodology

* Traces from Intel HiBench benchmark suite run on Apache
Spark

* 128 compute/DataNodes, one coordinator/NameNode

* Replayed traces on simulated 128 end-host fat tree network

* NDNp-like caches located on every switch in network

* Evaluated effects of using different replacement policies

* With same policy on all switches and with different policies at each
layer

* Performance metric: total network traffic over all links
* Count traffic once for every link it traverses

e Conducted 10 trials of each scenario with different host
positions, then average.

Replacement Policies

* Least Recently Used (LRU)

* One of the simplest policies — discards blocks based upon last use time

* Two Queue (2Q)

* Queue for hot blocks, queue for cold blocks, queue for recently evicted
blocks

* Adaptive Replacement Policy (ARC)

* Like 2Q, but uses dynamically-sized queues instead of fixed-sized
queues

* Multi-Queue (MQ)
* Separates blocks into multiple queues based upon access frequency

* Low Interreference Recency Set (LIRS)

* Discards blocks based upon re-use distance (how soon they are used
again)

Benchmark Applications

* Replacement policies are largely irrelevant for multicast writes,
so we focus on reads

* Two machine learning applications showed significant caching
benefits for reads:
* Linear regression (linear)
* Logistic regression (Ir)
* These applications have large amounts of intermediate data
shared between partitions running on different DataNodes

* Therefore, large number of reads

Same Replacement Policy Everywhere (Linear)

650

OX

Total Network Traffic (GB)

w I IN U u o
Ul o U o o o
o o o o o o
1 1 I I 1 1

w

o

o
T

Unlimited (min) ---+---
No Cache (max) -—>--
2Q (avq)

ARC (avg)

LIRS (avg)

LRU (avg) —6—
MQ (avg) —@—

-

L+

-

1

—

250
64

128 256
Cache Size (MB)

512

1024

Same Replacement Policy Everywhere (LR)

Total Network Traffic (GB)

115

X

Unlimied_(min).

m——jee—

No Cache (max) -~

-X

110 2Q (avq) .
ARC (avg)
LIRS (avq)
105 LRU (avg) —&— |
MQ (avg) —@—
100
95+
90 |
85
80 —t L R - e -— =
75 1 1 1
64 128 256 512

Cache Size (MB)

1024

20

Layered Replacement Policies

650

X
X A
X

Total Network Traffic (GB)

w IS S w () (@)}
w (@] u o (8 o
o o o o o o
| 1 I

w

o

o
T

Unlimited (min) ---+---

No Cache (max) ——>—
2Q (avg)

ARC (avg)

LIRS (avg)

LRU (avg) —o—
MQ (avg) —@&—

-

-t -4
H H H

250
64

128 256 512 1024
Cache Size (MB)

Linear, (edge=2Q, aggr=LIRYS)

21

Layered Replacement Policies

115 : l |
110 .
— 105 — |
o
2
O
& 100 |
O
-
< 95 |
o
-
9]
z 90 |
2 Unlimited (min) ---+---
o]
F g5l NoCache (max) -->-
2Q (avg)
ARC (avg)
80.L LIRS (ayg) 4 . |
LRU (avg) —oe—
75 MQ (avg) —®— 1

64 128 256

Cache Size (MB)

LR, edge=LIRS, aggr=MQ

1024

22

Conclusions

* Multicast-like mechanism can reduce HDFS write traffic

* Applications that demonstrated greatest benefit from caching
of read traffic were both learning applications that need to
share lots of data among compute nodes.

* Overall, LIRS provided the best performance for these
applications in our evaluations on fat trees

* Generally, LIRS works better with smaller,and ARC slightly better with
larger cache sizes

* When both combined, even better performance for the largest
application

23

