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Motivation

• In-network caching
• Lots of research has been done about ICN/NDN caching, but mostly using 

synthetic traffic.
• How much benefit is there for real applications?

• HDFS is a distributed file system for large-scale data processing
• Used in many big data systems, e.g., Apache Spark,  Apache
• Deployed in many large clusters in production

• A promising application for ICN/NDN
• In-network caching
• Multipath, multi-source data transfer
• Resiliency
• Security

2



Research questions and approach

• Does in-network caching benefit HDFS applications? If so,  how 
much?
• Write and Read operations
• Different applications have different I/O patterns.

• What’s the impact of different cache replacement policies?
• Also have the choice of using different policies at different network 

nodes.

• Approach: on AWS, run a number of Hadoop Spark apps, 
collect data traces, reply the traces in simulations to evaluate 
the effectiveness of in-network caching and the impact of 
different replacement policies.
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Write Operation

• HDFS writes data to multiple replica
• Default 3, but configurable.

• Pipelining
• Write to replica sequentially

• Can be converted to multicast in NDN
• Notify replica about the write request, and replica retrieve data from 

the data source around the same time.
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Traditional Pipelined Writes
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Multicast
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Write Traffic
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Read Operation

• Cache read data in the network (in the form of Data packets)

• If multiple compute nodes request same data, later requests 
may hit a cache.
• Reduce delay
• Reduce overall network traffic
• Reduce load on storing at DataNodes
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Read Traffic
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Caching Granularity

• What should be the size of the “cache block”?
• NDN packets are the unit of caching.  Need to segment and sign the 

data beforehand.

• Larger Data packets
• Lower PIT, FIB, and Content Store overhead
• But, coarser caching granularity and less efficient.

• Smaller Data packets
• Higher PIT, FIB, and Content Store overhead
• Finer caching granularity

• Need to balances data processing overhead vs. caching 
granularity
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Block Size
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Use 128KB packet size in simulations.



Network Topology is Fat Tree
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Aggregation

Edge

End hosts

Can use different cache replacement policies at different layers of switches.



Methodology

• Traces from Intel HiBench benchmark suite run on Apache 
Spark
• 128 compute/DataNodes, one coordinator/NameNode
• Replayed traces on simulated 128 end-host fat tree network

• NDN-like caches located on every switch in network

• Evaluated effects of using different replacement policies
• With same policy on all switches and with different policies at each 

layer

• Performance metric: total network traffic over all links
• Count traffic once for every link it traverses

• Conducted 10 trials of each scenario with different host 
positions, then average.
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Replacement Policies

• Least Recently Used (LRU)
• One of the simplest policies – discards blocks based upon last use time

• Two Queue (2Q)
• Queue for hot blocks, queue for cold blocks, queue for recently evicted 

blocks

• Adaptive Replacement Policy (ARC)
• Like 2Q, but uses dynamically-sized queues instead of fixed-sized 

queues

• Multi-Queue (MQ)
• Separates blocks into multiple queues based upon access frequency

• Low Interreference Recency Set (LIRS)
• Discards blocks based upon re-use distance (how soon they are used 

again)
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Benchmark Applications

• Replacement policies are largely irrelevant for multicast writes, 
so we focus on reads

• Two machine learning applications showed significant caching 
benefits for reads:
• Linear regression (linear)
• Logistic regression (lr)

• These applications have large amounts of intermediate data 
shared between partitions running on different DataNodes
• Therefore, large number of reads
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Same Replacement Policy Everywhere (Linear)
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Same Replacement Policy Everywhere (LR)
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Layered Replacement Policies
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Linear, (edge=2Q, aggr=LIRS)



Layered Replacement Policies
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LR, edge=LIRS, aggr=MQ



Conclusions

• Multicast-like mechanism can reduce HDFS write traffic

• Applications that demonstrated greatest benefit from caching 
of read traffic were both learning applications that need to 
share lots of data among compute nodes.

• Overall, LIRS provided the best performance for these 
applications in our evaluations on fat trees
• Generally, LIRS works better with smaller, and ARC slightly better with 

larger cache sizes
• When both combined, even better performance for the largest 

application
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