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Motivation

* In-network caching

* Lots of research has been done about ICN/NDN caching, but mostly using
synthetic traffic.

* How much bené€fit is there for real applications?

* HDFS is a distributed file system for large-scale data processing
* Used in many big data systems, e.g.,Apache Spark, Apache
* Deployed in many large clusters in production

* A promising application for ICN/NDN
* In-network caching
* Multipath, multi-source data transfer
* Resiliency
 Security



Research questions and approach

* Does in-network caching benefit HDFS applications? If so, how
much?
* Write and Read operations
* Different applications have different I/O patterns.

* What's the impact of different cache replacement policies?

* Also have the choice of using different policies at different network
nodes.

* Approach: on AWS, run a number of Hadoop Spark apps,
collect data traces, reply the traces in simulations to evaluate
the effectiveness of in-network caching and the impact of

different replacement policies.



Write Operation

* HDFS writes data to multiple replica
* Default 3, but configurable.
* Pipelining

* Write to replica sequentially

 Can be converted to multicast in NDN

* Notify replica about the write request, and replica retrieve data from
the data source around the same time.



Traditional Pipelined Writes




Multicast




Write Traffic

Trace Written Data (MB) | Network Transfer (MB)

aggregation 3519 7038

als 24 48

gbt 99 198

join 101 202

kmeans 6 12

linear 9 19

Ir 19 38

rf 11 22

scan 19169 38338

sort 27784 55568

wordcount 5 11
Scenario Pipelining (MB) | Multicast (MB) | Reduction
Third replica on same edge switch 1024 896 12.5%
Third replica on different edge switch 1280 1024 20.0%




Read Operation

* Cache read data in the network (in the form of Data packets)

* If multiple compute nodes request same data, later requests
may hit a cache.
* Reduce delay
* Reduce overall network traffic

* Reduce load on storing at DataNodes



Read Traffic

I

Trace Unique (MB) | Total (MB)
aggregation 221 230
als 1147 1156
obt 33 43
join 1 13
kmeans 395 573
linear 20952 111195
Ir 8893 19966
rf 1084 1094
scan ~0 9
sort 740 749
wordcount 847 1499




Caching Granularity

* What should be the size of the “cache block™?
* NDN packets are the unit of caching. Need to segment and sign the
data beforehand.
* Larger Data packets

* Lower PIT, FIB, and Content Store overhead

* But, coarser caching granularity and less efficient.

* Smaller Data packets
* Higher PIT, FIB, and Content Store overhead

* Finer caching granularity

* Need to balances data processing overhead vs. caching
granularity



Block Size

Number of Requests (normalized to 8 KB)
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Network Topology is Fat Tree

Core

Aggregation

Edge

End hosts

Can use different cache replacement policies at different layers of switches.



Methodology

* Traces from Intel HiBench benchmark suite run on Apache
Spark

* 128 compute/DataNodes, one coordinator/NameNode

* Replayed traces on simulated 128 end-host fat tree network

* NDNp-like caches located on every switch in network

* Evaluated effects of using different replacement policies

* With same policy on all switches and with different policies at each
layer

* Performance metric: total network traffic over all links
* Count traffic once for every link it traverses

e Conducted 10 trials of each scenario with different host
positions, then average.



Replacement Policies

* Least Recently Used (LRU)

* One of the simplest policies — discards blocks based upon last use time

* Two Queue (2Q)

* Queue for hot blocks, queue for cold blocks, queue for recently evicted
blocks

* Adaptive Replacement Policy (ARC)

* Like 2Q, but uses dynamically-sized queues instead of fixed-sized
queues

* Multi-Queue (MQ)
* Separates blocks into multiple queues based upon access frequency

* Low Interreference Recency Set (LIRS)

* Discards blocks based upon re-use distance (how soon they are used
again)



Benchmark Applications

* Replacement policies are largely irrelevant for multicast writes,
so we focus on reads

* Two machine learning applications showed significant caching
benefits for reads:
* Linear regression (linear)
* Logistic regression (Ir)
* These applications have large amounts of intermediate data
shared between partitions running on different DataNodes

* Therefore, large number of reads



Same Replacement Policy Everywhere (Linear)
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Same Replacement Policy Everywhere (LR)

Total Network Traffic (GB)
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Layered Replacement Policies
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Layered Replacement Policies
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Conclusions

* Multicast-like mechanism can reduce HDFS write traffic

* Applications that demonstrated greatest benefit from caching
of read traffic were both learning applications that need to
share lots of data among compute nodes.

* Overall, LIRS provided the best performance for these
applications in our evaluations on fat trees

* Generally, LIRS works better with smaller,and ARC slightly better with
larger cache sizes

* When both combined, even better performance for the largest
application
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