
Sensing Content Correlation-aware In-network Caching Scheme
at the Edge for Internet of Things

Ngoc-Thanh Dinh
Soongsil University, Seoul, Korea

thanhdcn@dcn.ssu.ac.kr

Nhu-Ngoc Dao
Chung-Ang University, Seoul, Korea

dnngoc@uclab.re.kr

Younghan Kim
Soongsil University, Seoul, Korea

younghak@ssu.ac.kr

ABSTRACT
Existing caching schemes process content objects (COs) individu-
ally based on the exact matching without considering the semantic
correlation among content objects. We argue that this approach
is inefficient in the Internet of Things (IoT) due to the highly re-
dundant nature of IoT device deployments and the data accuracy
tolerance of IoT applications. Therefore, the cache of a different
CO having a high semantic correlation with another requested one
by an application can be reused if the CO meets the data accuracy
requirement of the application. In this case, caching both COs is in-
efficient. This paper extends the concept of cache hit and proposes
a caching scheme considering the semantic content correlation of
nodes to evaluate, construct, and enable the re-usability of available
cached items to serve more diverse requests based on informa-
tion correlation. For demonstrating its benefits, we implement the
proposed scheme on the top of LFU (Least Frequently Used) for
IoT data caching at the edge. Obtained experimental results show
that the proposed scheme achieves a significant cache hit ratio
improvement in comparison with LFU.

1 INTRODUCTION
In existing ICN caching schemes [4], a cache hit occurs only when
the requested content name and the cached content are matched
exactly. This approach is inefficient in IoT, where a sensor normally
produces a type of content over time, due to the following reasons.
Sensing data of different IoT nodes may have a high correlation due
to the redundant nature of IoT device deployment. In addition, IoT
applications and users are interested in receiving sensing content
with a given data accuracy requirement [3]. It means that a given
level of error tolerance is acceptable. Therefore, a cached content
object (CO) of a sensor can be reused to serve similar application
interest requests for other sensors of the same type (i.e., temper-
ature, humidity, image, video, accelerometer,...) as long as the CO
meets data accuracy requirements of applications.

For that reason, this paper extends the concept of a cache hit
considering the semantic correlation among COs as follows. For
a given application content request, a cache hit occurs at a node
when the node contains a cached CO that satisfies the requirement
of the request, not necessarily the exact object that the application

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICN ’19, September 24–26, 2019, Macao, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6970-1/19/09. . . $15.00
https://doi.org/10.1145/3357150.3357413

requests for. In particular, if a cached item, regardless of any content
publisher of the same type has a high correlation with the requested
one, that satisfies the application requirement, a cache hit also
occurs.

This paper presents a novel content correlation-based caching
(CC) scheme which is proposed to evaluate, construct, and enable
the re-usability of available cached items to serve more diverse
requests based on information correlation. The objective of CC
is to improve the cache hit ratio within a limited cache capacity
by 1) caching only necessary items to optimize the storage, thus
reserving caching capacity for diverse items 2) exploiting available
cached items to serve eligible requests. In the former, CC is used
to assess further the cache decision for optimizing. If requests for
a CO c can be served by reusing available cached items of oth-
ers, then c is not necessarily cached. In the latter, CC discovers
content correlated communities (CCC) of nodes with given correla-
tion levels, constructs CCC cache tables and implements a cache
matching mechanism based on not only the exact name but also
the information correlation.

For demonstrating benefits of CC, we implement CC on the
top of LFU (Least Frequently Used) [?] for IoT data caching at
the edge. Obtained experimental results show that the proposed
scheme achieves a significant cache hit ratio improvement in com-
parison with LFU. The concept of correlation-based caching can be
extended for other scenarios like advertising contents, searching,
or multimedia applications, which are our future works.

2 THE PROPOSED CC CACHING SCHEME
2.1 Application model
Assume we have a set N of n application requests for sensing con-
tent. Each request ai contains a set of sensing data types of interest
sti provided by a wireless sensor network (WSN) and a specification
for the Data Accuracy (DA) level DAi . For example, some applica-
tions request content with a DA level of 95% while other applica-
tionsmay accept a DA level of 90%. n summary, the set of application
requests is denoted asN = (a1, st1,DA1), (a2, st2,DA2), ..., (an, stn,DAn).

2.2 Node Naming and Content Object Naming
We use the naming structure presented in our previous work [2]
for sensor nodes and their content objects. The name includes
two parts. The first part expresses the real-world category name
of sensors, called the category prefix (CP). The latter part is the
ID which makes the name persistent and unique. The name of a
sensor is also used to name its content objects (COs) because a
sensor normally produces a type of content over time. A CO has an
additional sequence number which indicates the version of the CO.
For example, a temperature sensor has the name of "Temp::8734"

161

https://doi.org/10.1145/3357150.3357413

ICN ’19, September 24–26, 2019, Macao, China Ngoc-Thanh Dinh, Nhu-Ngoc Dao, and Younghan Kim

while one of its COs has the name with a sequence number of
"Temp::8734/p=0045".

2.3 CCC discovery
The CCC of a node k (i.e., CCCdak) is defined as a set of nodes h
that have sensing content correlation greater than or equal to da
compared to k . Therefore, the sensing data of k can be exploited
for serving application content requests for nodes in CCCrk with
the DA requirement ≤ da . The CCC discovery was presented in
detail in our previous study [3].

2.4 CCC Caching Table
Based on the set N of application requests, the edge performs the
CCC discovery for sensor types and their corresponding DA re-
quirements. The edge then constructs a CCC caching table as shown
in Table 2.

Table 1: Illustration of an CCC caching table
Prefix Correlation CCC Lists Cache pointer
Temp L1 (ID1, ID2, ID5) 97% ID1*
Temp L2 (ID1, ID2, ID5

ID11, D17) 94% ID1*
Temp L3(ID3, ID4, ID9) 94% ID4*
Temp L1 (ID1,âĂę, ID13,

ID14) 91% ID1*
Temp L2 (ID3,âĂę,ID10) 91% NULL
Temp L3(ID6, ID7, ID15) 91% ID6*

The CCC caching table consists of lists of CCCs with their corre-
sponding content types and DA requirements. Each list has a cache
pointer which is (1) a pointer pointing to a cached CO by a member
of the list, or (2) NULL if there is no node in the list having cached
COs.

2.5 CC Caching Decision
CC can be implementedwith any existing cache replacement scheme
to improve the scheme’ performance. In this paper, we implement
CC on the top of LFU [?]. When a new CO c of a sensor arrives
at the edge and the LFU makes a decision to cache, CC is used to
assess further to optimize the cache decision of LFU as follows.

CC first checks lists in the CCC caching table that contain the
name of c . If there is no list containing the name of c or there are
application requests for c with a high DA requirement that the
existing CCCs containing c cannot satisfy, the system executes
caching for c . If there is a set s of lists containing the name of c , CC
checks if any list in the set has no cache pointer. In other words,
there is no available cached item for nodes in the lists. If it occurs,
CC executes caching for c . CC then updates the caching table by
adding a cache pointer to the cache of c for the related lists. If all
lists in s have a cached CO already, the system ignores and does
not cache c

2.6 Name Matching and Cache Hit
When the edge receives an application request with a CO interest
name c and a DA requirement, the edge checks its content store
(CS). If c is cached in the CS, the edge returns to the request with
the cached CO. If there is no cache for c , the edge further explores

LFU CCC-LFU

0

1

2

3

4

5

6

7

8

9

C
a
c
h

e
 h

it
 r

a
ti

o
 (

%
)

Figure 1: Cache hit ratio of LFU and CCC-LFU
the CCC caching table. If the table has any list containing c , that
has a cached CO with the correlation which is greater than or equal
to the DA requirement. The edge responds with the cached CO
indicated by the cache pointer. If there is no list satisfies or no cache,
the request is forwarded based on FIB following CCN/NDN [1].

In this way, we extend the concept of a cache hit in ICN. For
a given application content request, a cache hit occurs at a node
when the node contains a cached CO that satisfies the requirement
of the request, not necessarily the exact object that the application
requests for. If a cached item, regardless of any content publisher of
the same type has a high correlation with the requested one, that
satisfies the application requirement, a cache hit also occurs.

3 EVALUATION AND DISCUSSION
We implement a prototype of CC in Contiki CCN-Lite [1] on the top
of LFU. We then perform simulations using COOJA simulator [1]
with an edge node and 1000 sensors of temperature, humidity, and
accelerometer types. Sensors are deployed randomly with sensor
data collected from the real-world IntelLab sensor deployment [5]
for a natural correlation among sensors. The edge cache can store
a maximum of 20 COs. We generate randomly 1000 application
content requests following a Zipf-like distribution. Obtained results
presented in figure 1 show that CCC-LFU achieves a significant
improvement in term of the cache hit ratio compared to LFU.

Due to resource constraints, we perform experiments with light-
weight sensing data and limited cache capacity. Experiments can
be conducted similarly for other types of sensing data like image
or video. We plan to conduct extensive experiments to show more
benefits in terms of data retrieval delay, diversity metrics, and
energy efficiency for sensors. For future works, we extend the
concept of content correlation-based caching for other scenarios
like advertising contents, searching, and multimedia applications.

REFERENCES
[1] Bengt et al. Ahlgren. 2016. Demo: Experimental Feasibility Study of CCN-lite on

Contiki Motes for IoT Data Streams. In Proceedings of the 3rd ACM Conference on
Information-Centric Networking. ACM, New York, NY, USA, 221–222.

[2] N. Dinh and Y. Kim. 2013. Potential of information-centric wireless sensor and
actor networking. In 2013 International Conference on Computing, Management
and Telecommunications (ComManTel). 163–168.

[3] N. Dinh and Y. Kim. 2019. An Energy Efficient Integration Model for Sensor Cloud
Systems. IEEE Access 7 (2019), 3018–3030.

[4] A. Ioannou and S. Weber. 2016. A Survey of Caching Policies and Forwarding
Mechanisms in Information-Centric Networking. IEEE Communications Surveys
Tutorials 18, 4 (2016), 2847–2886.

[5] S. Madden. 2018. Intel Berkeley Research Lab Data. [Online]. Available:
http://db.csail.mit.edu/labdata/labdata.html.

162

	Abstract
	1 Introduction
	2 The Proposed CC Caching Scheme
	2.1 Application model
	2.2 Node Naming and Content Object Naming
	2.3 CCC discovery
	2.4 CCC Caching Table
	2.5 CC Caching Decision
	2.6 Name Matching and Cache Hit

	3 Evaluation and discussion
	References

