Secure Scuttlebutt: An Identity-Centric Protocol
for Subjective and Decentralized Applications

Dominic Tarr
ssb:@EMovhfIrFk4aNihAKnRNhrf
RaqlhBv1W;j8pTxJNgvCCY=.ed25519

Aljoscha Meyer
TU Berlin, Germany
aljoscha.t. meyer@campus.tu-berlin.de

ABSTRACT

Secure Scuttlebutt (SSB) is a novel peer-to-peer event-sharing proto-
col and architecture for social apps. In this paper we describe SSB’s
features, its operations as well as the rationale behind the design.
We also provide a comparison with Named Data Networking (NDN),
an existing information-centric networking architecture, to moti-
vate a larger exploration of the design space for information-centric
networking primitives by formulating an identity-centric approach.
We finally discuss SSB’s limitations and evolution opportunities.

CCS CONCEPTS

» Networks — Network architectures; « Software and its engi-
neering — Publish-subscribe / event-based architectures; « Com-
puter systems organization — Peer-to-peer architectures; « In-
formation systems — Linked lists.

KEYWORDS

Secure Scuttlebutt, Information-Centric Networking, Push vs. Pull

ACM Reference Format:

Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Christian Tschudin. 2019.
Secure Scuttlebutt: An Identity-Centric Protocol for Subjective and De-
centralized Applications . In 6th ACM Conference on Information-Centric
Networking (ICN ’19), September 24-26, 2019, Macao, China. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3357150.3357396

1 INTRODUCTION

A simple conceptual architecture for community applications con-
sists of a global data pool to which every person can contribute and
where every person can tap into the shared data - data sharing be-
ing the purpose of such applications. This model still is valid if one
adds access control to the picture, either tied to the data (encryption
giving access to content only to entitled holders of the decryption
keys) or encrypting data in transit (login and TLS). Facebook and
other centrally organized social app service providers fit well under

For any reuse or distribution, you must make clear to others the
@ @ @ license terms of this work. The best way to do this is with a link
VBTN to the web page http://creativecommons.org/licenses/by-sa/4.0/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICN ’19, September 24-26, 2019, Macao, China

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6970-1/19/09.

https://doi.org/10.1145/3357150.3357396

Erick Lavoie
McGill University, Montreal, Canada
erick.lavoie@mail megill.ca

Christian Tschudin
University of Basel, Switzerland
christian.tschudin@unibas.ch

this global data pool model but have been strongly criticized for
abusing their central provisioning position. The “decentralized web
movement” [18] is the most visible technical response to this cri-
tique, pointing out implementation alternatives.

One of these alternatives is a project called Secure Scuttlebutt
(SSB) that started in 2014. After several iterations of protocol design
and implementation, SSB has become a stable service for over 10,000
users offering them rich media community applications with strong
cryptographic protection (end-to-end encryption and metadata
privacy) and running in pure peer-to-peer mode.

Selective Complete Log Replication

SSB relies on the core insight that each participant is only interested
in a subset of the global data pool, thus it is feasible to locally store
all the data a participant is interested in. To partition the data pool,
all data is associated with the identity that produced it. Participants
select their slice of the data pool by specifying the set of identities
whose data they care about. This creates a “social graph” along
whose edges data flows (Figure 1). Even as the overall system scales,
the amount of data any single peer is interested in and thus needs
to handle stays roughly the same.

Each participant can publish data to their single-writer, append-
only log. This choice of data structure allows efficient replication
and verification of the integrity of received data. Replicating these
larger slices of the data pool comes with an unusual set of tradeoffs,
discussed throughout the paper. As it turns out, replicated logs form
a solid foundation for implementing many classes of applications.

@é}/é\\//,C:\ /—~/%é -
A" B8 o
w2 Tor @ o

Figure 1: SSB’s “Internet of Identities” — Users A, B and C replicate
logs (a, b, ...) based on whom they follow: C does not follow A, hence has
no log a. A and B follow each other such that when A follows C, A will
get C’slog c via B: new content is pushed directly if possible and through
intermediary friends if necessary.

Subjective Reader

Because replication in SSB is selective and driven by a peer’s social
graph, different end devices will have access to different sets of log
replicas, leading to different views of the world, which we call a

https://doi.org/10.1145/3357150.3357396
https://doi.org/10.1145/3357150.3357396

ICN ’19, September 24-26, 2019, Macao, China

“subjective reader” approach. SSB considers this a desirable prop-
erty: each peer is free to consider data sources of its own choosing
instead of having to feed from a centrally provisioned or other-
wise converged view. While it is possible to implement consensus
protocols over SSB, or to designate central data aggregators from
which many peers consume the consolidated outputs, the SSB net-
work itself deliberately doesn’t offer consensus services nor central
content (directories etc). In Section 3.3 we will show the implica-
tions of this technological choice on the structure of distributed
applications that can only read from and write to local logs.

Novelty

Putting complete replication of individual append-only logs at the
core of SSB’s protocol avoids several hard problems in distributed
systems. First, it is a radically decentralized approach requiring
only minimal specification-level coordination among the partici-
pants but no run-time checks or configuration management. Sec-
ond, although append-only data structures are well known for
their benefits and are at the core of crypto currencies’ consensus
finding, SSB uses logs without any consensus properties. The issue
is deliberately sidestepped, but all necessary building blocks are
provided to higher layers. Third, crafting a cryptographic ID sys-
tem and maintaining a social graph that informs routing creates a
very narrow filter: it implements a receiver-driven approach where
data only flows where it is needed and provides flexibility in the
actual data dissemination strategy. Fourth, it makes every peer a
publisher by design. This property goes beyond the decentralized
approaches like DAT [3] or IPFS [6] which assume that there exist
replication servers but keep the separation between a data trans-
port network and a server layer. Last but not least, log replication
leads to a distributed system with inherent high resilience as any
communicating element carries a persistent copy of the data. In
traditional distributed systems, coordinating the data persistence
as a basis for resilience is often an add-on task, or requires at least
a special recovery service.

Comparing SSB to NDN

Despite SSB data replication being currently implemented as an
application protocol (layer 7 in the OSI stack [8]), we believe that
its underlying principles are worth studying from a network API
perspective (layer 3 in the OSI stack) to highlight regions of the
design space that could be further investigated. We sketch here
some aspects in which SSB differs from Named Data Networking
(NDN) [5], a popular proposal for Information-Centric Networking
(ICN). A longer exposition of SSB’s underlying communication
model is available in a separate publication [42].

In SSB, the delivery of information is organized around named
data streams for signed events. The basic unit of addressing is a full
log that might still produce new event messages in the future. The
SSB streams guarantee reliable causal ordering [11] and authenticity.

Delivery of streams follows a push model: once a receiver has ex-
pressed interest in a stream, new items are transferred automatically
without being requested individually. Flow-control (back-pressure)
in the current overlay implementation is done implicitly by the
TCP connections used to deliver data among peers.

Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Christian Tschudin

Streams are tied to a single identity with a corresponding public
key: only this identity can produce new items in the stream with
the correct signature. Because the signature ensures the integrity
of the items, they can be served from anywhere and by anybody.
Moreover, users independently create the key that serves as an
identity. Streams are therefore self-certifying [24] and their integrity
does not rely on an external trust anchor nor a central naming
authority or other name coordination and allocation mechanisms.

In contrast, NDN embodies quite different design choices. First,
the basic elements of networking are single pieces of data, identified
by hierarchical names similar to paths in a filesystem. Second, data
is accessed via a pull model: a consumer issues an interest in a name,
and the network delivers the corresponding data. Third, many NDN
schemes rely on a hierarchical trust model to issue certificates that
can in turn be used to sign individual pieces of data.!

It is not clear that either design can subsume the other: one can
implement SSB over NDN or the opposite but each option comes
with significant runtime costs. Still, there could be an intermedi-
ate territory where a future synthesis of the two approaches may
emerge. We therefore analyze the trade-offs that appear in various
ways of layering NDN and SSB to enrich the discussion around
future developments in ICN.

Structure of this paper

We start out by giving an overview of the SSB protocol in Section 2.
Next we describe common patterns of how applications can be built
on SSB (Section 3). We show how SSB relates to other networking
protocols, first through a detailed comparison with NDN (Section
4) and then in the broader context of related work (Section 5).
We conclude the paper with an outlook on some of the “work in
progress” (Section 6) and an evaluation of the problems (Section 7)
and benefits (Section 8) of the SSB approach.

2 SSB ARCHITECTURE AND PROTOCOL

In SSB, each user is identified by an ed25519 [7] keypair. Since
anybody can generate a random keypair with very low probability
of multiple peers generating the same keypair, no central authority
is necessary for introducing users to the system. Conceptually,
SSB is a network of identities that connect to each other (physical
topology) and share mutual or unilateral interest in the other peer’s
data (social graph), as shown in Figure 1. A node running the SSB
protocol is called a relay. The identity that holds the private key of
a log is called its author.

The single-writer append-only logs of SSB consist of entries (called
messages) that include a backlink in the form of a cryptographic
hash of the previous message (or a special indicator for the first
message of a log). The most distinguishing feature of this linked
list, when compared to a regular blockchain, is that each SSB user
maintains their own log and cryptographically signs all their (and
only their) messages. Messages whose backlink points to a message
in a different log (i.e. by a different author) are considered invalid
and will be rejected by SSB relays.

These constraints still allow creation of arbitrary trees rather
than logs. To enforce log structure, each SSB relay checks that every

!See [44] for a proposal that leverages a web of trust model in a decentralized chat
application built on top of NDN.

Secure Scuttlebutt: An Identity-Centric Protocol for Subjective and Decentralized Applications

message has exactly zero or one incoming backlinks. If it has more
than one, the log is considered forked. All messages from the point
of the fork onwards are ignored, the log cannot be appended to
anymore.

Concretely, each message, which may not exceed 4 KB, contains
the following pieces of data [28]:

o the backlink to the previous message, or a null value

o the public key of the message’s author

o the sequence number of the message, which must be one
more than the sequence number of the previous message, or
exactly one if it is the first message of the log

o a claimed timestamp of when the message was created

e a hash indicator that specifies the concrete hash function
that was used to compute the backlink

o the content of the message

e the author’s signature over all the previous data

In the current version of SSB, content is a JSON object that must
contain a typekey that serves as a hint for how the content should be
interpreted. SSB enforces that the content is valid JSON by rejecting
any malformed message. Encrypted content is represented as a
base64-encoded string, together with a tag that signifies which
encryption algorithm was used.

SSB defines a format for encoding specifically the public keys
of identities and the hashes of messages and blobs (see below) as
strings. This allows applications to scan the content of messages
from other authors for such references, e.g. in order to create data-
base indices (see Sect. 3.3).

Replication

The principal function of SSB relays is to connect to other relays
and exchange log updates. To do so, relays maintain a point-to-
point encrypted [4] overlay network over which they run a gossip
protocol. When two relays start gossiping, they exchange the cur-
rent sequence numbers of all logs they are interested in. If a relay
receives a lower sequence number for a log than it sent, it transmits
the messages that the other relay is lacking. If at a later point a new
message of the log becomes available to a relay, it is automatically
pushed to the connected relays. As an optimization, this eager gos-
sip is only performed over the edges of a spanning tree, which itself
is maintained via the plumtree [22] protocol. In classic peer-to-peer
fashion, clients (leaf nodes) are no different than relays except that
they usually include some graphical user interface and perform
application logic.

In addition to this primary replication mechanism, SSB pro-
vides two other ways of exchanging information. Blobs are content-
addressed pieces of free-form data, typically images or other docu-
ments larger than the 4KB limit, that are referenced from messages
but are not part of any log. They are not widely disseminated
automatically, but rather fetched on demand via a simple request-
flooding protocol. Out-of-order messages are a similar mechanism
to address and fetch messages on demand via their hashes.

SSB Relays as an Application Platform

Beyond replicating logs and checking the validity of update mes-
sages, an SSB relay offers an API to its peers. Peers can host arbitrary
programs that issue remote procedure calls (RPCs) to the relay. The

ICN ’19, September 24-26, 2019, Macao, China

exposed functionality includes appending to a log (if you know
its private key), reading from logs, requesting which logs a relay
should replicate, and fetching blobs and out-of-order messages.

The reference implementation of the SSB relay [40], written in
JavaScript, also includes a mechanism for loading plugins into the
relay to extend its functionality. There are a few default plugins:
conceptually these can be thought of as client programs that are
always running. Of particular importance are those that guide the
replication process. The friends plugin [41] scans the relay’s log for
specific messages that indicate which other identities the author
follows. The plugin then instructs the relay to fetch and replicate
these logs. These other logs might of course also contain some
of these messages. The friends plugin transitively replicates these
friends-of-a-friend logs as well, up to a configurable maximum
distance in the friends graph.

Beyond “befriending” other authors through follow messages
(i.e. messages of type follow), an SSB user can control the shape
of their social graph via special block messages which limit the
transitive log replication. Both the follow as well as block mes-
sages are overheard by relays, through scanning all received log
updates, and inform them about where updates should be delivered
(or not). Decisions about whom to replicate can be —and in the
current system is— guided by the content of the very data that is
replicated. By storing the relevant information inside the author’s
log (as opposed to a local or central database), other peers can use
this informtion to guide their decisions.

The overlay network also makes use of logs to store configura-
tion information, in this case the SSB_ID-to-IP_address mapping:
operators publish the static IP addresses of highly-available relays
(called pubs) to their log. When an SSB relay needs to connect to
the overlay, the responsible plugin can scan any locally available
log replica for this information.

SSB’s Layered Architecture

It is worth noticing that SSB spans three independent layers of
protocols. The most fundamental protocol is the message format: all
peers need to agree on what constitutes identities, valid messages,
and how to compute hashes to address messages and blobs. This is
the “thin waist” of SSB (see figure 2).

apps appl ‘ app2 ‘ appN
and
libs metadata—-protecting
tangle encryption wrapper

SSB log format, peer IDs, blob objs
dissemi- SSB-over-IP: c % othe.r .
nation SHS, muxrpc, 8| 2 replication

peer-discovery, | £] and
and EBT o | §| storage
storage = | &% | means..

Figure 2: Secure Scuttlebutt’s protocol stack.

Next (below) is the specific mechanism by which relays exchange
data. The default RPC mechanism is one option, but alternative

ICN ’19, September 24-26, 2019, Macao, China

mechanisms such as distribution via a sneakernet could also be used.
Different peers that do not share a common replication mechanism
could still interact indirectly, as long as there are some relays that
understand multiple replication protocols.

In other words, the core logical replication protocol by which a
relay serves its clients is fully independent from the actual dissemi-
nation protocols. And finally, the publishing and interpretation of
application data in such messages is again a separate affair that is
layered on top of the thin waist.

3 DISTRIBUTED APPS AND DATA
STRUCTURES OVER SSB

The replication model of SSB enables many collaborative applica-
tions to be implemented easily by abstracting much of the com-
plexity in distributing the updates. However, implementing such
applications still comes with challenges. To introduce them, we first
discuss in detail the implementation of a user directory to introduce
the implementation approach, then briefly cover other applications
currently in use, and finally discuss some core issues that are shared
between all applications.

3.1 Example: SSB’s user directory

‘about’ is SSB’s user database i.e., an application that associates
cryptographic IDs with (typically) human-readable attributes. A
single message format has been defined to this end:

'content': {

"type' : 'about',
'about' : about_id,
attr_name : attr_value // multiple times

}

The about app scans all logs for messages of type ‘about’ and
constructs a database as shown in Figure 3, retaining the most
recent attribute assignment found. In this database, an about_id is
associated with a list of key/value pairs which are prepended by the
publishing author’s ID. It is left to the end user’s “about’ application
to subjectively select which of these bindings should be displayed.
Currently the name, textual description and image attributes are
understood by most SSB user interfaces and are used to substitute
or decorate the cryptographic ID. If about_id and author_id are
identical, this means that an attribute was self-chosen and then
is usually rendered with a higher preference over key/value pairs
assigned by others.

key | val
author_id_A

about_id_1
author_id_B

about_id_2

Figure 3: SSB’s user directory data structure (after extraction
from the logs).

In terms of CRUD? actions, creation happens once a new SSB iden-
tity adds its own about message to its log; reading the user database

2Create, Read, Update, Delete

Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Christian Tschudin

is performed on the above data structure; updates are expressed
by adding an about message —regardless whether it relates to the
author itself or to another identity- to one’s own (!) log and all
peers updating their extracted database; deleting a user entry is not
possible, at least not directly (one would have to block that user ID
as well as all IDs which wrote an update for that user).

There can never be confusion about the sequence or scope of
attribute assignments because they are orderd by the log (and thus
in time) and kept separate, per author ID. Note also the presence
of the “subjective reader” property: the content of a peer’s user
database is dependent on their position in the social graph. The
“subjective” mindset is also visible by letting every user assign
attributes to anybody, leaving it to the user interface (and human
viewer) to select which of the self-chosen or given display names
and images is most suitable for a given ID.

3.2 Profiles of other selected SSB apps

Multiple applications have been written by contributors and are
used daily by the SSB community. The following selected examples
represent alternatives to well-known services and they illustrate
both opportunities and challenges of communication through repli-
cated append-only logs.

Git-ssb [21] is an alternative to GitHub [2] that replicates git-
based version-controlled code repositories through contributors
logs. It provides an encoding of repositories in SSB logs, a bridge to
interoperate with git repositories, and a web-based viewer to browse
repositories. The object model of Git [14] has a similar structure to
SSB’s logs. Other git operations, such as creating repository, are all
SSB messages. Since any user can independently update the same
repository, as defined by its creation message, consensus on the
“official” master branch and its latest commit is enforced through
social coordination. In case of concurrent updates to the same
branch in the same repository [32], referencing both concurrent
updates in a later merge commit in effect resolves the ambiguity.

Ssb-chess [23] is a correspondence chess application in which
players can invite one another to play, alternatively share their next
move until the game ends, and external observers can comment on
the game. Because the rules of chess preclude concurrency, i.e. at
any time there is always only one of the two participants that is
permitted to modify the state of the chess board, a game can easily
be represented as a linked list with nodes representing chess moves
alternating between the two participants’ logs. Moreover only the
participants, explicitly mentioned in the original invitation, are
allowed to modify the state of the game. The implementation does
not require concurrency management and is therefore conceptually
straight-forward.

Gatherings [16] are alternatives to Meetup [1] that enables par-
ticipants to signal their intention to attend or not attend to physical
events. A gathering is defined by its creation message but otherwise
has no fixed properties. Anyone that has a reference to the creation
message may change its properties, such as location, start and end
dates, description, and image, by publishing an update message.
The value of those properties are the most recent set by anyone. Ini-
tially, recency was determined by the time of creation, as reported
by the user’s client implementation (self-stated creation time). To be
more robust to potential invalid timestamps however, some client

Secure Scuttlebutt: An Identity-Centric Protocol for Subjective and Decentralized Applications

implementations have started using the time at which message up-
dates are received, then disambiguate using the self-stated creation
time.

3.3 Running Distributed Applications over
Replicated Logs

“Infrastructure-less” distributed application as presented above be-
come possible because central servers can be fully replaced by each
peer working on its local set of replicated logs. In this subsection
we discuss the particularity of this approach and its constraints.

A common pattern of SSB’s applications is that they heavily
rely on local database support for organizing the data contained in
the logs. Typically a map-reduce strategy is used where the map
phase filters the logs and the reduce actions computes the latest
application state.

In the user directory application (Sect. 3.1), the filtering is done
by selecting only about messages for a specific target ID and the
reduce action consists in accumulating the latest key-value pairs
such that a more recent key-value pair replaces an older one if
it was signed by the same author_id. The size of the replicated
logs, although locally stored, would lead to very long response
times if the map-reduce would be executed at render-time. Instead,
almost each application will build indexes and aggressively cache
state that was already aggregated. Should the indexes ever become
corrupted (e.g. because the user interface app crashed in the middle
of a complex indexing step), they can be fully regenerated from
scratch.

An important aspect is whether the reduction step can be done in
an incremental fashion by reusing previously computed application
state. For example, counting the “likes” that a post receives works
fine: incoming log extensions are indexed and if they are of the
like type, the counter corresponding to the referenced message is
incremented.

Other applications, however, may need a full re-evalution of
the reduce function each time the underlying index changes. An
example for this case is a chat in form of sequence of post messages:
if some identity is added to the set of followed identities, its log
is incrementally replicated, and so are the posts of this identity.
For each incoming new post, which may have been written very
long ago, one has to insert it at the right place. This problem is
shown in Figure 4 where a message has not yet been replicated to
a client and, once it arrives, has to be properly inserted into the
application-level data structure.

A simple solution (adopted in some SSB client software) is to use
the timestamp claimed by the author of the post, and in this case
one can reuse the existing time-sorted list and insert the new post.
However, because an author could lie about the timestamp, the
reduce function should do a topological sort based on the causal-
ity relationship with other posts and their replies, which form a
directed acyclic graph.3 Insertion into the dependency graph may
or may not lead to having to rerun the sort on the whole graph of
postings. Clearly, the lack of a central server hosting the reference
list of posts and being able to record a post’s submission time, leads

3Writers can facilitate the causal ordering by explicitly referring to the most recent
messages in other logs they were aware of at the time of writing, regardless of whether
the content was directly relevant to their own message. We call the graphs resulting
from this pattern “tangles”.

ICN ’19, September 24-26, 2019, Macao, China

_ [

AT

LI

IogB__

¢ T fﬁ%ﬁ

Do late delivery:
- N

extracted

logical time

Figure 4: Example of extracting application data spread
over multiple collaborating logs and dealing with not-yet-
delivered data.

to more complex client software that must prepare for and defend
against a broad range of adversarial data found in the logs.

3.4 Synchronization and Eventual Consistency

SSB’s basic log replication service synchronizes peers in a consistent
way: due to the hash chaining, events (represented by messages
in a log) will be delivered in the order they happened and replica
content will be consistent. This does not instantly lead to consistent
shared data structures, though, if the corresponding events are
spread over multiple logs. Instead, the natural guarantee is that
of partial eventual consistency where all peers will see the same
reduced application state if they share the same log set after sufficient
replication progress. Because of the eager, push-based forwarding
of messages, consistency can be reached quickly, even if there is no
end-to-end connectivity.

Eventual consistency is the hallmark of Conflict-free Replicated
Data Types (CRDTs, see [38]) which are directly applicable to the
SSB setting as they only assume a reliable and (sometimes) in-
order delivery of update messages. Potentially, CRDTs permit to
implement global data structures featuring eventual consistency
without coordination effort (thus are fully scalable). The caveat here
is that SSB peers do not necessarily see all involved logs due to their
position in the social graph which controls replication wherefore
consistency is always modulo that fact. For example, like counts will
be eventually consistent with respect to the same set of followed
authors but not globally, at least if they are directly counted. Other
applications relying on reduction via set union may learn from state
that stems from beyond the circle of followed authors.

More research is needed to understand the constraints brought
by the combination of coordination-less interaction with partial log
replication, but SSB’s rich set of applications used on a daily basis is
an encouraging sign that eventual consistency in combination with
subjective replication is a “good enough” basis for real decentralized
services.

4 COMPARING SSB WITH NAMED DATA
NETWORKING (NDN)
In this section, after a brief introduction to NDN we compare and

relate SSB to NDN in three different ways: layering SSB on top of
NDN, layering NDN on top of SSB, and a hybrid mode that combines

ICN ’19, September 24-26, 2019, Macao, China

features of both. The purpose is to shed light on the sometimes
implicit assumptions behind SSB and NDN and show a larger design
space for future ICN developments.

4.1 Named Data Networking

NDN is an evolution of the Content-Centric Networking proposal
that was publicly presented by Van Jacobson in 2006 [19]. Both aim
to address shortcomings of using the Internet Protocol (IP) [13] for
data dissemination from a single source to a number of users. In the
IP, the routing layer only deals with the delivery of data packets
from a source to a destination, regardless of their content: when
multiple users request the same content from different machines,
the routing layer therefore has to deal with redundant data transfers
and is prone to content tampering by intermediate routing nodes.
Some of the major goals of NDN are therefore to optimize data
distribution for large content providers while guaranteeing the
integrity of content. NDN currently achieves those aims by: (1)
initiating data transfers after the interested users are known by the
network (pull-model), (2) leveraging existing certificate infrastructure
to authenticate the content, and (3) naming individual pieces of data,
using a naming scheme that reflects the hierarchical organization
of major content providers, such as universities, governments, and
major media companies.

Technically, a receiver has to request content by name —in a
so called Interest packet— and at most one matching content is
returned in a corresponding Data packet. The Data packet includes
the content’s name and is signed such that a forwarding node can
verify the correctness of the name-to-content binding.

-=> I('/ndn/some/item")
<-- D('/ndn/some/item', data, signature)

Checking the validity of a signature requires additional certifi-
cation data which a forwarding node can fetch using the standard
Interest/Data packet pattern. Validated data packets are typically
cached such that subsequent requests for the same name can be
served from in-network memory.

Routing rules are based on name prefixes, which aggregates
all data items made available by a publisher. In a forwarder node,
incoming Interest packets are matched against these prefixes on
a longest-prefix matching basis, yielding the interface(s) to where
an Interest has to be forwarded. Interests for the same name that
arrive close in time are deduplicated using a PIT (pending interest
table). On the return path, a data packet is copied to all interfaces
from where a corresponding Interest came in, and the PIT entry is

deleted.

4.2 Comparison with SSB

Similar to NDN, SSB organizes distribution around content, instead
of the machines that are interacting. In contrast to NDN, the design
aims at individual users as publishers instead of larger organizations
with the following technical consequences. SSB addresses a stream
of data tied to a particular identity instead of individual data items.
SSB eagerly broadcasts content as soon as possible (push-model),
leveraging the abundant storage available in peer’s devices for
replication. The replicas are determined based on social interests
between peers, achieving a similar aim as the Interest packet but
once for an entire stream of data and with persistence by default,

Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Christian Tschudin

rather than for each individual items with temporary caching. In
SSB, there is no distinction between consumer and producer roles:
every client must be able to produce (signed) log entries. SSB avoids
the use of certificate authorities to secure the respective signing
keys, instead relying on self-generated cryptographic key pairs and
trust between peers established over repeated social interactions to
establish credibility in a particular identity.

The different application context of NDN and SSB has an impact
on ID management. In NDN, users (content consumers) are anony-
mous and their interest in the same content can be aggregated if
it comes from shared routes. In SSB however, recipients also have
an ID with an associated log in which they declare their interest in
another ID. Said differently, NDN works with repo IDs (prefixes) on
top of which we have IDs for content (= content names extending
a repo ID). In NDN, IDs have no role for the receiver or in the
replication process except that forwarding validates the origin of
data items. On the other hand, these repo IDs must be globally
routable through some unspecified routing protocol outside the
NDN specs. SSB also has producer-side IDs, but it is mandatory that
clients also have an ID because otherwise they could not publish
their replication needs (towards SSB’s routing logic).

The differences in design decisions make the combination of SSB
and NDN hard to efficiently layer one way or the other, as shown
in the next sections and illustrated in Figure 5.

SSB-over-NDN:

NDN-over-SSB:

/l plain SSB)— j plain SSB)— j plain SSB ‘
= = =

| NDN+SSB = = NDN+SSB = = NDN+SSB
= = =

NDN + SSB:

Figure 5: Three different layerings of SSB and NDN.

4.3 SSB over NDN

Emulating SSB over NDN means emulating a push-based system
over a pull-based one, and an identity-centric system over a name-
based one. Both turn out to be problematic.

Implementing push with the pure request-reply model of NDN
comes down to two basic options [12]: the producer could send an
Interest to the consumer, to signal that the consumer should itself
issue an interest in the newly available data. This approach incurs
a high latency penalty and leaves a trail of in-network state.

The other approach is regular (per-item) polling: the consumer
periodically signals interest for some data the producer may or
may not have created yet. In its simplest form, this can be done by
publishing data under a name that ends with a sequence number

Secure Scuttlebutt: An Identity-Centric Protocol for Subjective and Decentralized Applications

that is incremented with each produced piece of data. Under this
model, the consumer can decide how many items into the “future”
to poll for simultaneously. This whole process can be abstracted
over with a consumer-side library [29, 35].

With the current design of NDN, polling is resource intensive. A
natural extension of per-item polling is the inclusion of long-lived
or persistent Interests [30]. But even then, a pull implementation
would be inefficient: polling ahead for multiple items effectively
amounts to controlling back-pressure through a sliding window,
comparable to TCP. But unlike TCP, this window could only be
manipulated by one item per (interest) packet. Introducing some
form of sequence number arithmetic to increase efficiency would
necessitate to drop the concept of purely opaque names.

Implementing the pull aspects of SSB over NDN would therefore
cost either time (interests triggering interests), space (polling), or
it would require significant changes to NDN (long-lived interests
+ non-opaque names) that would effectively bend NDN towards
a “name-based SSB”. We will explore this option in more depth
section 4.5.

4.4 NDN over SSB

While the current design of NDN is not well suited for implement-
ing SSB, implementing NDN over SSB would also be inefficient.
SSB would have to implement three distinct NDN features: the
hierarchical name space, the pull-model and NDN’s trust system.

Again assuming rough equivalence of NDN data packets and SSB
messages, i.e. a triple (name, content, signature), the pull-model
part is easy to answer: either some item is already in one of the
eagerly replicated local logs, or it is not available yet (because SSB
is push-based).

The major problem is NDN’s hierarchical namespace which is a
globally shared construct with the service level agreement that any
(existing) item referenced through this tree can be fetched. Even if
a delegation model is used, this global resource introduces a central
authority, or at least a consensus algorithm, to allocate prefixes.
This entity would have a “well-known” SSB id and a log from where
the rest of the SSB world would inform itself about its decisions.
Once these prefixes are handled (by a special SSB app for supporting
NDN'’s namespace, depicted as in the third subfigure of Fig. 5),
repo IDs can be introduced such that an end device can address
them and request content from them. However, in SSB’s worldview,
a repo would have to follow all potential customers i.e., to learn
about their IDs, otherwise these customers cannot express interest
in some content (which could be delivered through log replication
of transient SSB IDs, for example). When looking at NDN from the
viewpoint of SSB, we realize that NDN has a social contract along
the interest path: an NDN forwarder accepts any downstream node
as a friend, accepts its interest packets (= pushed replica of the
requests), and then relies on a similar contract with its upstream
node. Following this insight, our NDN emulation would have to
introduce “NDN forwarding providers” at SSB level. Once these
“NFPs” are in place, we would also let them implement NDN’s trust
model by validating content through NDN’s certificate authorities.

While it doesn’t seem strictly impossible to continue that emula-
tion argument, it is already obvious from the above discussion that
one would not benefit from SSB’s social graph replication mindset.

ICN ’19, September 24-26, 2019, Macao, China

4.5 Combining NDN and SSB

While in the previous sections we tried to layer the two ICN net-
work architectures, NDN and SSB, on top of each other to only
unsatisfactory results, we explore the potential of bringing only a
subset of SSB’s functionality into NDN in this section. The focus is
on SSB’s append-only log which enables a “controlled push” service,
answering an often-heard request towards NDN from distributed
systems developers. Other elements of SSB like the symmetry be-
tween producers and consumers, or the use of the social graph to
inform the routing, are left out.

A core critique against network-level push is that a producer can
flood all of its consumers: letting consumers ask for one individual
data item with an interest packet effectively blocks any flooding
attack because the PIT state is consumed by the first data packet that
satisfies the request. We sketch - and suggest to explore - a system
where consumers subscribe to some data stream and keep a way
to apply backpressure. To this end, we map SSB’s log replication
semantics to an NDN-style, packet-level protocol design.

In this protocol design, data is organized in feeds (comparable
to SSB logs) that consist of individual data items (corresponding
to SSB messages) that can be requested individually via traditional
NDN-pull using the feed’s name plus the item’s sequence number.
In addition, there is a special long-lived interest (LLI) mechanism
that allows a consumer to subscribe to a feed for a limited number
of packets. An LLI is a tuple of a feed name, a sequence number, and
a send credit. The send credit tells the upstream node how many
items following the sequence number are needed to consume the
PIT entry, effectively defining a (finite) subrange of a feed.

As soon as new items are available at an upstream node, the data
is pushed towards all subscribing downstream nodes, up to their
expressed send credit. Forwarding nodes store (cache) the items of
a feed and check that new events correctly extend the local copy of
the feed.*

Lost packets are detected when a received sequence number does
not match the expected one. Different retransmission strategies
could be employed, for example selective retransmission via a clas-
sic NDN Interest, or go-back-N with an LLI packet for a range that
starts at the first missed packet. Compared to an emulated PUSH
by polling via multiple Interests in parallel, less PIT state is needed
for such a go-back-N strategy: the feed concept allows ranges to
compactly encode multiple names. This is an example of an opti-
mization that becomes possible because the network knows about
the structure of feeds. Investigating other efficient retransmission
mechanisms deserves further research.

We call this approach a controlled push for two reasons. First,
consumers guard against buffer overrun by expressing a send credit
(which forwarding nodes can aggregate and adjust according to the
available cache memory): in case of setting all send credit values
to one we get NDN’s classic pull. Second, the cryptographically
secured append-only logs impose a single feed source: the network
benefits from this information because only a limited number of
the most recent items need to be cached to serve most consumers.

4 Asserting feed integrity involves more than just checking an item’s signature: the
new item’s sequence number must be in order, the backlink must correctly reference
the previous item, and the feed should not be forked. A nontrivial problem is how
nodes should react to forked feeds: ideally, the information that a fork occurred should
be propagated. We leave this open for future work.

ICN ’19, September 24-26, 2019, Macao, China

The resulting “flow-controlled reliable stream” network-level
service is attractive for ICN application writers in several ways:
once requested, asynchronous data is pushed with zero delay, all
events are ordered and are checked for their integrity (single-source
feed), and consumers stay anonymous and don’t need their own
routable prefix. Additional benefits exist due to the network being
aware of the feed semantics, for example being able to request
in-network retransmission when observing missing feed entries,
instead of having to wait for the PIT entry to time-out.

While unfortunately some properties of SSB are left aside during
such an import of push semantics into NDN, we see interesting re-
search opportunities along the sketched path where a data-structure
aware network substrate can provide advanced and classically dan-
gerous services like push because of the data structure’s property.
To us, the price to pay in terms of PIT state seems minimal, and
justified for gaining native push semantics in NDN.

5 RELATED WORK

Some basic ideas behind SSB can be traced back to the nineties, like

for example secure logging [36] and secure relative time-stamping [17].

The major innovation of SSB is to use these techniques for dissem-
inating data through a gossip protocol in a network of untrusted
peers, effectively implementing a push-based information-centric
network. SSB’s messages, named by (id : seqno), are a special case
of DONA’s naming schema [20], where sequence numbers can be
regarded as totally ordered labels.

SSB’s push-based content dissemination approach is also under-
lying middle-ware systems like Linda [15]. Linda offers a global
data pool abstraction where distributed processes can store and
consume objects without locality references: the effects of a wr ()
operation are propagated automatically such that processes being
blocked on a rd() could be resumed immediately.

In the area of delay-tolerant networking, systems like HAG-
GLE [37] and SCAMPI [34] also aim to leverage social dynamics
between users. These systems correlate social proximity with phys-
ical network connectivity to enhance performance and availability
of applications. SSB primarily uses social dynamics to determine
which data should flow to whom, not how it should flow to where. In
SSB, identities and their relations are first-class, whereas HAGGLE
and SCAMPI rely on inferring them by extensively monitoring user
activity.

The use of logs itself has a long tradition in distributed systems,
especially in operating systems (write-ahead logs in journaling file
systems) as well as distributed databases. More recently, in the cloud
context, resilient event ordering protocols like RAFT [33] have been
proposed that also rely on replicated logs. Although logs are used at
various places of distributed systems, this data structure is typically
not exposed to the communicating parties, while SSB exactly rests
on letting apps interact directly with the secured single-author logs.

Selective Hearing [26] uses a gossip protocol to disseminate
monotonically growing sets of updates to provide a runtime to
the Lasp [25] programming language. The general architecture is
similar to that of SSB, the most striking difference is that Lasp is by
design restricted to CRDTs. SSB can be considered more low-level,
developers are free to choose a strategy for dealing with concur-
rency and eventual consistency. Selective hearing was developed

Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Christian Tschudin

in a more traditional research approach, so it glosses over some
of the difficult problems encountered in the “real world” such as
user onboarding and byzantine peers. Their “practical large scale
evaluation” [27] consists of 1000 well-controlled nodes running a
toy application in the cloud, whereas SSB with its roughly 10000
users is more battle-proven.

6 FUTURE WORK

So far we have mostly restricted our presentation to those features
that are implemented today as part of SSB. In this section we will
describe further extensions, namely a potential revision of SSB’s
log format and the operational challenges for scaling SSB beyond
its current user base.

6.1 Partial Replication

By using a linked list of messages as the underlying datastructure
for a log, a message can only be verified to be a valid element of a
specific log in time linear to its sequence number. Since all previous
messages need to be available for verification, this also implies
linear storage overhead. More sophisticated datastructures could
reduce this to logarithmic overhead, both anti-monotone binary
graphs [9] and threaded authentication trees [10] would be suitable
and would only require a single additional hash per message.

An interesting problem in this context is how peers would indi-
cate the subsets of a log they want to receive. Specifying individual
sequence numbers works fine, but degrades to a pull-based system.
Instead semantic criteria are needed, for example subscribing to
only messages of certain types. Finding a general framework for
specifying partial subscriptions based on semantic frameworks is
an interesting task. Care must be taken that malicious peers cannot
silently suppress data that matches a partial subsciption, this could
be done by adding additional sequence numbers for each criterium.

6.2 Cryptographic Agility

SSB relies on multiple cryptographic primitives (signatures and
hashes for the log format, encryption for the replication protocol):
best practice mandates that cryptographic agility is supported [31].
All hashes and signatures in the logs include an indicator of the
cryptographic primitive that has been used. At least in theory this
means that the SSB protocol can introduce the use of new primitives
as old ones become broken.

In this context, an open problem is how old messages can be
“saved” once their signature data or hash references become inse-
cure. The naive approach of republishing old messages with a new
key changes the hashes of all those messages, thus breaking inter-
message references. A similar discussion (and proposed solution)
for NDN can be found in [43].

6.3 Multi-Device Support

If two different devices used the same SSB identity to publish mes-
sages concurrently, this would result in two competing hash chains
with the consequence that peer relays would stop propagating at
least one, if not both log extensions. It is thus recommended to
create a distinct keypair per device. But this leads to bad user expe-
rience, such as having to follow or block identities on all device.

Secure Scuttlebutt: An Identity-Centric Protocol for Subjective and Decentralized Applications

This could be mitigated by developing schemes that allow shar-
ing the same private key across multiple devices to allow read-
access, while enforcing mutual exclusion on writes.

A different angle is to write applications in a way that anticipates
that there might be a one-to-many mapping from users to SSB
identities. Since the messages in a single log are totally ordered but
messages across multiple logs might only be partially ordered, it
is not sufficient to naively treat a set of logs as a compound log.
Instead, applications need to be designed from the ground up to
deal with partially ordered sets of messages.

6.4 Replication Improvements

The currently used gossip-based default replication protocol does
not protect against malicious intent such as for example eclipse at-
tacks [39]. But whereas it is difficult to defend against these attacks
in general, SSB can make use of data such as the friend graph to
protect against them. A follow message can be interpreted as an
expression of trust. Keeping a certain number of trusted peers in
the views of the peer sampling service could protect against eclipse
attacks.

Another area where the replication protocol could be improved
is by using private set intersection when determining the set of logs
that both parties are interested in. That way, untrusted peers would
not be able to learn about new ids purely from the replication layer.
Combined with an access control mechanism that only forwards
data to authorized identities, this would provide resilience against
bots “spidering” the network.

7 SSB CHALLENGES

In this section we critically review limitations and challenges faced
by identity-centric systems such as SSB. We omit those problems
that apply to SSB in its current state but that would be solved by
the extensions presented in the previous section.

7.1 Privacy

SSB is an inherently pseudonymous system: anonymity is funda-
mentally incompatible with identity-centric message propagation.
Furthermore, the architecture discourages ephemeral pseudonyms,
favoring the creation of a rather stable network of trust to guide
replication. Since all messages are signed, they are not refutable.
Finally, all messages are immutable.

The cocktail of pseudonymity, non-refutability and immutability
can be a serious risk to users. Personal details could fuel harassment,
political statements could justify persecution, all data could serve
as the basis of (future) discrimination. The risks can be reduced by
taking care that pseudonyms cannot be traced to physical identity,
compartmentalizing pseudonyms, using encryption, and only giv-
ing the messages to trusted parties. Still, participation currently
favors privileged users for whom privacy issues are not critical.
Consequently, applications must clearly inform users about the
peculiarities of the virtual space they participate in to ensure users
don’t share information that might be detrimental to them later.

7.2 Onboarding

Data can only be propagated to relays that specifically ask for
it. When a new identity joins the system, it can only participate

ICN ’19, September 24-26, 2019, Macao, China

effectively once someone subscribes to its log. The SSB commu-
nity approaches this “onboarding” with multiple techniques. Pubs,
acting as quasi-permanent SSB relays, can issue invite codes out-
of-band. When a new user sends such a code to the pub, together
with its self-generated public key, the pub automatically follows
the user, requesting their messages in the process. As an additional
onboarding mechanism, the reference relay implementation uses
LAN multicast to discover nearby peers. This allows local onboard-
ing where an established user can follow a new user in the same
LAN.

7.3 Coordination

The type field of SSB messages can be regarded as a global resource
without any central coordination regarding its usage. In the worst
case, this can lead to multiple applications using the same type but
in incompatible ways. Namespacing and random types reduce but
don’t eliminate this problem.

Non-interoperable types are a very tangible symptom of a broader
theme, the plurality of interpretations of message contents. Taken
to an extreme, “the” community of SSB users could splinter into
a multitude of mutually non-understanding fractions that use dif-
ferent kinds of messages or interpretations thereof. Supporting
divergence can also be considered a feature because it mirrors the
informal evolution of human languages over time, a property that is
often overlooked or actively shunned in more centralized designs.

8 BENEFITS

Here we summarize some desirable properties of SSB. These go
beyond the obvious productivity gains for application developers
who don’t need to implement encryption, authentication and syn-
chronization, as well as the automatic replication of the content
through SSB’s push approach.

8.1 Resilience

The design of SSB intentionally avoids “global singletons”, or cen-
tralization aspects requiring consensus. SSB can therefore be char-
acterized as a “collection of decentralized systems” that overlap
to varying degrees. It is consequently highly resilient to failures,
whether due to attacks or errors in the code base or in operations.
Also, users do not need to depend on any single, privileged central
authority, including cloud-based service providers and instead par-
ticipate in deliberately isolated networks, for example limited to a
family, or a specific local area network.

Since SSB applications only interact with the local replicas of
logs, complete offline operation is automatically built in. Offline
operation is simply a special case of a (temporary) network partition.
Because this case occurs so often, the protocol is geared towards
handling network partitions gracefully, further contributing to the
resilience of SSB. In particular, all operations are delay tolerant.

8.2 Efficiency

Due to the “subjective reader” approach, all SSB relays and appli-
cation programs can operate concurrently. There is no need for
synchronization across relays, avoiding the overhead this might
incur, and applications can fully embrace the properties of the

ICN ’19, September 24-26, 2019, Macao, China

append-only logs: The monotonically growing logs are well-suited
for implementing CRDTs and similar techniques.

By leveraging existing trust behind social interactions, instead
of trying to eliminate it, as e.g. blockchain systems which estab-
lish consensus over trustless nodes do, proof-of-work and other
computationally-intensive techniques can be replaced by social
signals encoded as events in a log. The delay tolerance allows rout-
ing layers that can optimize for different tradeoffs, for example by
minimizing the bandwidth required to disseminate updates rather
than minimizing latency. Pushed further, the same approach could
lead to infrastructure that is quite efficient in its usage of memory,
bandwidth, and energy, making the overall required infrastructure
sustainable with less resources than other approaches requiring
always available, high-throughput, routing infrastructure. Leverag-
ing existing social trust between participants can therefore provide
clear technical benefits.

8.3 Plurality and Disintermediation

The freedom of applications to interpret data in whatever way they
see fit increases the agency of users and application writers, to
choose how to leverage the data they produce and for what pur-
poses. SSB supports plurality also as a deliberate strategy to drive
evolution. This also fosters the sharing of data between applications.
For example, the ‘about’ information (Section 3.1) can be reused
by all programs, freeing implementors from duplicating work and
creating a coherent user experience across apps.

As another consequence of the subjective interpretation of data,
there is no need for central coordination to introduce or evolve
features: new uses can evolve based on the immediate needs of
participants and then spread if the needs are more widely shared.
Applications can simply start producing new kinds of messages,
and interoperability works out with all users who share the same in-
terpretation of those messages. This results in an organic evolution
of features, without “the system” ever shutting down.

9 CONCLUSIONS

We presented Secure Scuttlebutt, a fully decentralized, peer-to-peer
event-sharing protocol. The core novelty is that data replication
occurs at the granularity of complete, self-certifying append-only
logs of messages by a particular author. This approach leads to a
simple, yet efficient information-centric service abstraction that
lends itself well to a large class of applications. By embracing push-
based eventual delivery and subjective interpretation of data, SSB
gets to sidestep common sources of complexity. A community of
multiple thousand users interacting through a variety of different
applications confirms the viability of the approach.

The comparison with NDN shows that SSB’s paradigm of push-
based, identity-centric data transfer comes with a different set of
tradeoffs than NDN’s choice of pull-based, name-centric data trans-
fer. Focussing on identities leads to challenges with respect to user
privacy, but it also enables elegant, decentralized solutions to com-
mon problems with information-centric systems. Whether in the
context of SSB or more generally, we believe that further study of
identity-centric systems will lead to valuable insights and designs.

10

Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Christian Tschudin

REFERENCES

[1
[2
[3
[4

2002 - 2019. meetup.com. https://www.meetup.com/

2008 - 2019. Github. https://github.com

2014. DAT Project. https://datproject.org/

2015. Designing a Secret Handshake: Key Exchange as a Capability System. http:

//dominictarr.github.io/secret-handshake-paper/shs.pdf

[5] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and Borje
Ohlman. 2012. A Survey of Information-Centric Networking. IEEE Communica-
tions Magazine 50, 7 (2012), 26-36.

[6] Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561 (2014).

[7] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
2012. High-speed high-security signatures. Journal of Cryptographic Engineering
2, 2 (2012), 77-89.

[8] Neil Briscoe. 2000. Understanding the OSI 7-layer model. PC Network Advisor
120, 2 (2000).

[9] Ahto Buldas and Peeter Laud. 1998. New linking schemes for digital time-

stamping.. In ICISC, Vol. 98. 3-14.

Ahto Buldas, Helger Lipmaa, and Berry Schoenmakers. 2000. Optimally efficient

accountable time-stamping. In International Workshop on Public Key Cryptography.

Springer, 293-305.

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. 2011. Introduction to

reliable and secure distributed programming. Springer Science & Business Media.

Antonio Carzaniga, Michele Papalini, and Alexander L. Wolf. 2011. Content-

based Publish/Subscribe Networking and Information-centric Networking. In

Proceedings of the ACM SIGCOMM Workshop on Information-centric Networking

(ICN ’11). ACM, New York, NY, USA, 56-61. https://doi.org/10.1145/2018584.

2018599

Vinton Cerf and Robert Kahn. 1974. A Protocol for Packet Network Intercommu-

nication. IEEE Transactions on communications 22, 5 (1974), 637-648.

Scott Chacon and Ben Straub. 2014. Pro git (2nd Edition). Apress. https://git-

scm.com/book/en/v2

David Gelernter. 1985. Generative Communication in Linda. ACM Trans. Program.

Lang. Syst. 7,1 (Jan. 1985), 80-112. http://doi.acm.org/10.1145/2363.2433

Piet Geursen. 2017. patch-gatherings. https://github.com/pietgeursen/patch-

gatherings

Stuart Haber and W Scott Stornetta. 1990. How to time-stamp a digital document.

In Conference on the Theory and Application of Cryptography. Springer, 437-455.

Internet Archive. 2018. Decentralized Web Summit 2018, Jul 31 — Aug 2, San

Francisco. https://decentralizedweb.net/

Van Jacobson. 2006. A New Way to look at Networking. https://www.youtube.

com/watch?v=0CZMoY3q2uM

Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,

Kye Hyun Kim, Scott Shenker, and Ion Stoica. 2007. A Data-oriented (and Beyond)

Network Architecture. In Proceedings of the 2007 Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communications (SIGCOMM

’07). 181-192. https://doi.org/10.1145/1282380.1282402

Charles Lehner. 2018. Git-SSB: Social Coding on Secure-

Scuttlebutt. https://git.scuttlebot.io/%25n92DiQh7ietE%2BR%2BX%

2F1403LQoyf2DtR3WQFCkDKIheQU%3D.sha256

Joao Leitao, Jose Pereira, and Luis Rodrigues. 2007. Epidemic broadcast trees. In

2007 26th IEEE International Symposium on Reliable Distributed Systems (SRDS

2007). IEEE, 301-310.

Gordon Martin. 2017. ssb-chess. https://github.com/Happy0/ssb-chess

David Mazieres and M. Frans Kaashoek. 1998. Escaping the Evils of Centralized

Control with Self-certifying Pathnames. In Proceedings of the 8th ACM SIGOPS

European Workshop on Support for Composing Distributed Applications (EW 8).

ACM, New York, NY, USA, 118-125. https://doi.org/10.1145/319195.319213

Christopher Meiklejohn and Peter Van Roy. 2015. Lasp: A language for dis-

tributed, coordination-free programming. In Proceedings of the 17th International

Symposium on Principles and Practice of Declarative Programming. ACM, 184-195.

Christopher Meiklejohn and Peter Van Roy. 2015. Selective hearing: An ap-

proach to distributed, eventually consistent edge computation. In 2015 IEEE 34th

Symposium on Reliable Distributed Systems Workshop (SRDSW). IEEE, 62-67.

Christopher S. Meiklejohn, Vitor Enes, Junghun Yoo, Carlos Baquero, Peter

Van Roy, and Annette Bieniusa. 2017. Practical Evaluation of the Lasp Program-

ming Model at Large Scale: An Experience Report. In Proceedings of the 19th Inter-

national Symposium on Principles and Practice of Declarative Programming (PPDP

’17). ACM, New York, NY, USA, 109-114. https://doi.org/10.1145/3131851.3131862

Aljoscha Meyer. 2018. SSB Specification. https://spec.scuttlebutt.nz/feed/

messages.html

Ilya Moiseenko and Lixia Zhang. 2014. Consumer-producer API for Named

Data Networking. In Proceedings of the 1st ACM Conference on Information-

Centric Networking (ACM-ICN ’14). ACM, New York, NY, USA, 177-178. https:

//doi.org/10.1145/2660129.2660158

Philipp Moll, Sebastian Theuermann, and Hermann Hellwagner. 2018. Persistent

Interests in Named Data Networking. In 2018 IEEE 87th Vehicular Technology

=
S

—_
_

=
&

(14

(15

[16

(17

[18

(19]

[20

[21

[22

[23
[24]

~
2

[26

[27]

[28

[30

https://www.meetup.com/
https://github.com
https://datproject.org/
http://dominictarr.github.io/secret-handshake-paper/shs.pdf
http://dominictarr.github.io/secret-handshake-paper/shs.pdf
https://doi.org/10.1145/2018584.2018599
https://doi.org/10.1145/2018584.2018599
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
http://doi.acm.org/10.1145/2363.2433
https://github.com/pietgeursen/patch-gatherings
https://github.com/pietgeursen/patch-gatherings
https://decentralizedweb.net/
https://www.youtube.com/watch?v=oCZMoY3q2uM
https://www.youtube.com/watch?v=oCZMoY3q2uM
https://doi.org/10.1145/1282380.1282402
https://git.scuttlebot.io/%25n92DiQh7ietE%2BR%2BX%2FI403LQoyf2DtR3WQfCkDKlheQU%3D.sha256
https://git.scuttlebot.io/%25n92DiQh7ietE%2BR%2BX%2FI403LQoyf2DtR3WQfCkDKlheQU%3D.sha256
https://github.com/Happy0/ssb-chess
https://doi.org/10.1145/319195.319213
https://doi.org/10.1145/3131851.3131862
https://spec.scuttlebutt.nz/feed/messages.html
https://spec.scuttlebutt.nz/feed/messages.html
https://doi.org/10.1145/2660129.2660158
https://doi.org/10.1145/2660129.2660158

Secure Scuttlebutt: An Identity-Centric Protocol for Subjective and Decentralized Applications ICN *19, September 24-26, 2019, Macao, China

Conference (VTC Spring). IEEE, 1-5. [38] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011.
[31] David Nelson. 2011. Crypto-Agility Requirements for Remote Authentication Dial- Conflict-free replicated data types. In Symposium on Self-Stabilizing Systems.
In User Service (RADIUS). Technical Report. Springer, 386-400.
[32] Noffle. 2016. git-ssb-intro. https://github.com/noffle/git-ssb-intro#push-conflicts [39] Atul Singh et al. 2006. Eclipse attacks on overlay networks: Threats and defenses.
[33] Diego Ongaro and John K. Ousterhout. 2014. In Search of an Understandable In In IEEE INFOCOM. Citeseer.

Consensus Algorithm. In Proc USENIX Annual Technical Conference. 305-319. [40] Dominic Tarr, Paul Frazee, Christian Bundy, Matt McKegg, Anders Rune Jensen,
https://www.usenix.org/system/files/conference/atc14/atc14- paper-ongaro.pdf Mix Irving, et al. 2014. SSB Server. https://github.com/ssbc/ssb-server
[34] Mikko Pitkdnen, Teemu Karkkainen, Jorg Ott, Marco Conti, Andrea Passarella, [41] Dominic Tarr, Mix Irving, Christian Bundy, Michael Williams, Anders

Silvia Giordano, Daniele Puccinelli, Franck Legendre, Sacha Trifunovic, Karin
Hummel, et al. 2012. SCAMPI: Service platform for social aware mobile and
pervasive computing. In Proceedings of the first edition of the MCC workshop on
Mobile cloud computing. ACM, 7-12.

Mauro Sardara, Luca Muscariello, and Alberto Compagno. 2018. A Trans-
port Layer and Socket API for (H)ICN: Design, Implementation and Perfor-
mance Analysis. In Proceedings of the 5th ACM Conference on Information-
Centric Networking (ICN ’18). ACM, New York, NY, USA, 137-147. https:
//doi.org/10.1145/3267955.3267972

Bruce Schneier and John Kelsey. 1998. Cryptographic support for secure logs on
untrusted machines.. In USENIX Security Symposium, Vol. 98. 53-62.

Rune Jensen, Andre Staltz, and Matt McKegg. 2014. SSB Server. https:
//github.com/ssbc/ssb-friends

Christian Tschudin. 2019. A Broadcast-Only Communication Model Based on
Replicated Append-Only Logs. SIGCOMM Comput. Commun. Rev. 49, 2 (May
2019), 37-43. https://doi.org/10.1145/3336937.3336943

Yingdi Yu, Alexander Afanasyev, Jan Seedorf, Zhiyi Zhang, and Lixia Zhang.
2017. NDN DeLorean: An authentication system for data archives in named data
networking. In Proceedings of the 4th ACM Conference on Information-Centric
Networking. ACM, 11-21.

Zhenkai Zhu, Chaoyi Bian, Alexander Afanasyev, Van Jacobson, and Lixia Zhang.
2012. Chronos: Serverless multi-user chat over NDN. Technical Report NDN-0008

[37] James Scott, Jon Crowcroft, Pan Hui, and Christophe Diot. 2006. Haggle: A (2012).
networking architecture designed around mobile users.

11

https://github.com/noffle/git-ssb-intro#push-conflicts
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://doi.org/10.1145/3267955.3267972
https://doi.org/10.1145/3267955.3267972
https://github.com/ssbc/ssb-server
https://github.com/ssbc/ssb-friends
https://github.com/ssbc/ssb-friends
https://doi.org/10.1145/3336937.3336943

	Abstract
	1 Introduction
	2 SSB Architecture and Protocol
	3 Distributed Apps and Data Structures over SSB
	3.1 Example: SSB's user directory
	3.2 Profiles of other selected SSB apps
	3.3 Running Distributed Applications over Replicated Logs
	3.4 Synchronization and Eventual Consistency

	4 Comparing SSB with Named Data Networking (NDN)
	4.1 Named Data Networking
	4.2 Comparison with SSB
	4.3 SSB over NDN
	4.4 NDN over SSB
	4.5 Combining NDN and SSB

	5 Related Work
	6 Future Work
	6.1 Partial Replication
	6.2 Cryptographic Agility
	6.3 Multi-Device Support
	6.4 Replication Improvements

	7 SSB Challenges
	7.1 Privacy
	7.2 Onboarding
	7.3 Coordination

	8 Benefits
	8.1 Resilience
	8.2 Efficiency
	8.3 Plurality and Disintermediation

	9 Conclusions
	References

