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ABSTRACT

In-network caching significantly improves the efficiency of data
transmission in ICN by replicating requested data for future re-
access. In this work, we shift our focus on once-request data, which
cannot be re-used and would lead to under-utilization of in-network
caching. We present a name feature-based online learning approach
to recognizing and filtering once-request data when making caching
decision. It can dynamically update its parameters through online
observation on previous recognition. Evaluation results show that
our learning approach can recognize once-request data with more
than 80% accuracy. By filtering those data, 76% cache replacement
operations are saved and cache hit ratio is increased by 151%.

CCS CONCEPTS
« Networks — In-network processing; Storage area networks.
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1 INTRODUCTION

As an inherent feature in ICN, in-network caching is of paramount
importance to reduce network traffic and improve the quality of ex-
perience of users by temporarily storing contents for future request
[2] [4]. To enhance the ability of caching, many research efforts
have been made to find the optimal cache content placement policy
with assuming that future content popularity is available [3]. Valu-
able studies have estimated popularity using sophisticated machine
learning approaches [1], but those popularity-learning techniques
would introduce extra complexity to in-network caching.

Instead of predicting accurate popularity distribution, in this
poster, we explore another special type of data that are seldom
discussed, i.e., once-request data. Once—request data are such data
that will be accessed only once within a short time. They have little
value of caching since it cannot be re-used, but could waste cache
space and cause frequent replacement operations.
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Figure 1: The ratio of once-request data
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Figure 2: Online learning-based caching architecture

The behavior of those once-request data was observed from real
trace with 1.06 million requests, which was collected from an egress
router of a campus network over one hour. Each request contains
a URL to indicate the requested data, and we transform each URL
into a hierarchical name in the form of NDN naming. Fig. 1 depicts
the average ratio of once-request names within a period from 1 min
to 60 mins. It reveals that more than 83% names are requested only
once. Those once-request data took up a large percentage of, more
than 56%, one-minute traffic (i.e., the total request number).

To avoid holding such caching-valueless data, an intuitive method
is to count accessing times of each content before caching them
down, and only to cache data that has come before or by certain
times. Particularly, Bloom Filter is employed in CDN system to fast
count and check the previous access. However, this count-based
caching approach makes caching decisions after counting previous
accessing behavior, and cannot make timely caching decisions.

Different from previous work, we propose a method to make
timely caching decisions without counting previous accessing times.
We propose an online learning approach to recognizing those once-
request data based on name features, and use a once-request-aware
caching policy to filter those data and boost caching performance.

2 DESIGN

2.1 Architecture Overview

The architecture of proposed online learning-based caching is
demonstrated in Fig. 2. Two modules are designed for online learn-
ing, Decision Model (DM) and Observation Module (OM).
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Figure 3: Online learning process

DM learns the name features of once-request data, and decides
whether to cache based on its learning parameters. It divides coming
data into two categories: multi-request data and once-request data.
The former will be cached, and latter will be recorded in Uncached
Data Table (UDT) without caching. The OM observes whether the
previous recognition is correct and is responsible for adjusting
learning parameters if recognition error occurs.

2.2 Feature Selection

For each incoming data, a feature vector F will be extracted based on
the content name and evaluated by DM to recognize once-request
data and decide whether to cache or not.

A typical once-request data is requested with a name like “xx/xxx/
xxx/201905/image/extensions/jpg/b75_5075186_64d75e_ef3b_0b8b
61d_1", which is a relatively long name and has a long last compo-
nent. In addition, some user-specific requests containing special
symbols and words are also likely to be requested only once. After
investigating names of once-request data, the following six features
stand out and are selected to constitute a feature vector F .

fi
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fo
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Length of request name

Number of request name components

Length of the last name component

Length of the next to last name component

Number of special symbols(such as “@, ?, #, ., &, %”)
Number of special words (such as “key, client_id”)

2.3

Our approach learns to recognize once-request data by adjusting
the weight vector W (see Fig. 3). DM decides whether to cache
according to the weighted score (Score «— F - W). T is a threshold
value for recognition. If Score > T, it will recognize as once-request
data, and record it in UDT without caching. Otherwise, it would
cache as multi-request data.

The weight vector W starts with 0 and is adjusted by OM, when
it observes recognition failure. If it occurs, a random feature value
frana Will be selected to update with a step As. There are two cases
that OM would adjust the weight vector: a) Once-request Recognition
Failure: If a once-request data record in UDT is hit again, a random
feature f,;,4 will be reduced by As. b) Multi-request Recognition
Failure: If a cache replacement operation is issued to replace never-
hit data, a random feature f,,,4 will be added with As.

UDT records previous uncached data within a period, which is a
Bloom Filter structure. Specifically, refresh operation is periodically
conducted to clear last-period locality.

Online Learning Process
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Figure 4: Evaluation on online learning-based caching

3 PERFORMANCE EVALUATION

We conduct simulation with one-minute trace. Cache is defaulted
with size = 3000. Learning-related parameters are set as As = 0.01
and T = 10. The trace contains 13191 requests in total and 7345 for
once-request data. Our learning approach encounters 1322 multi-
request recognition failures (false negatives) and 1268 once-request
recognition failures (false positives). Furthermore, the recogni-
tion performance of our approach is calculated as Accuracy =
% = 80.4%, Precision = 82.7% and Recall = 82.1%.
Then, the recognition performance during learning process is shown
in Fig. 4(a). At the beginning, our approach has a relatively high
ratio of multi-request recognition failure because it starts with
caching most of the coming data. But with more data coming and
being observed, it quickly learns an appropriate W.

Fig. 4(b) compares cache performance of our proposed caching
approach under different cache sizes. By filtering those recognized
once-request data, our approach can reduce 76.4% replacement
operations and improve 151% cache hit ratio in average, compared
to original NDN cache policy. In addition, count-based approach
(with BloomFilter) is compared, which gets less replacement times
since it never cache once-request data. But it has less cache hit
ratio than our approach when larger cache size is allowed. Because
count-based approach only cache data that arrive at their second
time, leaving some second-request data in the cache but those data
will not be accessed anymore.

4 FUTURE WORK

Our future work will explore and evaluate more features of once-
request names from different types of real traces, and further in-
vestigate the benefits of filtering N-request data with the online
learning-based caching approach.
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