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ABSTRACT

In-network caching significantly improves the efficiency of data

transmission in ICN by replicating requested data for future re-

access. In this work, we shift our focus on once-request data, which

cannot be re-used and would lead to under-utilization of in-network

caching. We present a name feature-based online learning approach

to recognizing and filtering once-request data whenmaking caching

decision. It can dynamically update its parameters through online

observation on previous recognition. Evaluation results show that

our learning approach can recognize once-request data with more

than 80% accuracy. By filtering those data, 76% cache replacement

operations are saved and cache hit ratio is increased by 151%.

CCS CONCEPTS

• Networks→ In-network processing; Storage area networks.

ACM Reference Format:

Yating Yang and Tian Song. 2019. Let Once-Request Data Go: An Online

Learning Approach for ICN Caching. In 6th ACM Conference on Information-

Centric Networking (ICN ’19), September 24–26, 2019, Macao, China. ACM,

New York, NY, USA, 2 pages. https://doi.org/10.1145/3357150.3357410

1 INTRODUCTION

As an inherent feature in ICN, in-network caching is of paramount

importance to reduce network traffic and improve the quality of ex-

perience of users by temporarily storing contents for future request

[2] [4]. To enhance the ability of caching, many research efforts

have been made to find the optimal cache content placement policy

with assuming that future content popularity is available [3]. Valu-

able studies have estimated popularity using sophisticated machine

learning approaches [1], but those popularity-learning techniques

would introduce extra complexity to in-network caching.

Instead of predicting accurate popularity distribution, in this

poster, we explore another special type of data that are seldom

discussed, i.e., once-request data. Once-request data are such data

that will be accessed only once within a short time. They have little

value of caching since it cannot be re-used, but could waste cache

space and cause frequent replacement operations.
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Figure 1: The ratio of once-request data
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Figure 2: Online learning-based caching architecture

The behavior of those once-request data was observed from real

trace with 1.06 million requests, which was collected from an egress

router of a campus network over one hour. Each request contains

a URL to indicate the requested data, and we transform each URL

into a hierarchical name in the form of NDN naming. Fig. 1 depicts

the average ratio of once-request names within a period from 1 min

to 60 mins. It reveals that more than 83% names are requested only

once. Those once-request data took up a large percentage of, more

than 56%, one-minute traffic (i.e., the total request number).

To avoid holding such caching-valueless data, an intuitivemethod

is to count accessing times of each content before caching them

down, and only to cache data that has come before or by certain

times. Particularly, Bloom Filter is employed in CDN system to fast

count and check the previous access. However, this count-based

caching approach makes caching decisions after counting previous

accessing behavior, and cannot make timely caching decisions.

Different from previous work, we propose a method to make

timely caching decisions without counting previous accessing times.

We propose an online learning approach to recognizing those once-

request data based on name features, and use a once-request-aware

caching policy to filter those data and boost caching performance.

2 DESIGN

2.1 Architecture Overview

The architecture of proposed online learning-based caching is

demonstrated in Fig. 2. Two modules are designed for online learn-

ing, Decision Model (DM) and Observation Module (OM).
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Figure 3: Online learning process

DM learns the name features of once-request data, and decides

whether to cache based on its learning parameters. It divides coming

data into two categories: multi-request data and once-request data.

The former will be cached, and latter will be recorded in Uncached

Data Table (UDT) without caching. The OM observes whether the

previous recognition is correct and is responsible for adjusting

learning parameters if recognition error occurs.

2.2 Feature Selection

For each incoming data, a feature vector Fwill be extracted based on

the content name and evaluated by DM to recognize once-request

data and decide whether to cache or not.

A typical once-request data is requestedwith a name like “xx/xxx/

xxx/201905/image/extensions/jpg/b75_5075186_64d75e_ef3b_0b8b

61d_1", which is a relatively long name and has a long last compo-

nent. In addition, some user-specific requests containing special

symbols and words are also likely to be requested only once. After

investigating names of once-request data, the following six features

stand out and are selected to constitute a feature vector F .

f1 Length of request name

f2 Number of request name components

f3 Length of the last name component

f4 Length of the next to last name component

f5 Number of special symbols(such as “@, ?, #, ., &, %”)

f6 Number of special words (such as “key, client_id”)

2.3 Online Learning Process

Our approach learns to recognize once-request data by adjusting

the weight vector W (see Fig. 3). DM decides whether to cache

according to the weighted score (Score ← F ·W). T is a threshold

value for recognition. If Score > T , it will recognize as once-request
data, and record it in UDT without caching. Otherwise, it would

cache as multi-request data.

The weight vectorW starts with 0 and is adjusted by OM, when

it observes recognition failure. If it occurs, a random feature value

frand will be selected to update with a step Δs . There are two cases
that OMwould adjust the weight vector: a) Once-request Recognition

Failure: If a once-request data record in UDT is hit again, a random

feature frand will be reduced by Δs . b) Multi-request Recognition

Failure: If a cache replacement operation is issued to replace never-

hit data, a random feature frand will be added with Δs .
UDT records previous uncached data within a period, which is a

Bloom Filter structure. Specifically, refresh operation is periodically

conducted to clear last-period locality.
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Figure 4: Evaluation on online learning-based caching

3 PERFORMANCE EVALUATION

We conduct simulation with one-minute trace. Cache is defaulted

with size = 3000. Learning-related parameters are set as Δs = 0.01

and T = 10. The trace contains 13191 requests in total and 7345 for

once-request data. Our learning approach encounters 1322 multi-

request recognition failures (false negatives) and 1268 once-request

recognition failures (false positives). Furthermore, the recogni-

tion performance of our approach is calculated as Accuracy =
T P+T N

T P+T N+F P+FN = 80.4%, Precision = 82.7% and Recall = 82.1%.

Then, the recognition performance during learning process is shown

in Fig. 4(a). At the beginning, our approach has a relatively high

ratio of multi-request recognition failure because it starts with

caching most of the coming data. But with more data coming and

being observed, it quickly learns an appropriateW.

Fig. 4(b) compares cache performance of our proposed caching

approach under different cache sizes. By filtering those recognized

once-request data, our approach can reduce 76.4% replacement

operations and improve 151% cache hit ratio in average, compared

to original NDN cache policy. In addition, count-based approach

(with BloomFilter) is compared, which gets less replacement times

since it never cache once-request data. But it has less cache hit

ratio than our approach when larger cache size is allowed. Because

count-based approach only cache data that arrive at their second

time, leaving some second-request data in the cache but those data

will not be accessed anymore.

4 FUTUREWORK

Our future work will explore and evaluate more features of once-

request names from different types of real traces, and further in-

vestigate the benefits of filtering N-request data with the online

learning-based caching approach.
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