Canary: a Scalable Content Integrity Verifying Protocol for ICN

Yong Yoon Shin, Sae Hyong Park, Quang Tung Thai, and Sung Hyuk Byun

ETRI

Daejeon, Korea
{uni2u,labry,tqtung,shbyun}@etri.re.kr

ABSTRACT

The per-packet signature mechanism in NDN is a basic mechanism
to provide in-network security. Consumers can validate provenance
and integrity with the public key-based signature attached with
each Data packet. However, the creation and validation processes
of signature cause significant performance bottlenecks in both of
consumers and producers. The embedded manifest mechanism was
proposed to ease the signing overhead for streaming data producers;
a signed manifest packet being composed of digests of subsequent
Data packets is inserted per bundle of Data packet while each
Data packet has only its digest as Signaturelnfo. For a large file,
the embedded manifest mechanism still needs producers to sign
multiple manifest packets. The basic idea of proposed mechanism,
Canary, is to enable per-segment provenance and data integrity
validation with only one signing operation of producers even for a
large file by exploiting the properties of Merkle tree.

CCS CONCEPTS

« Networks — Network design principles; Network protocol design.

KEYWORDS

NDN, integrity, provenance, validation

ACM Reference Format:

Yong Yoon Shin, Sae Hyong Park, Quang Tung Thai, and Sung Hyuk Byun.
2019. Canary: a Scalable Content Integrity Verifying Protocol for ICN. In
6th ACM Conference on Information-Centric Networking (ICN °19), September
24-26, 2019, Macao, China. ACM, New York, NY, USA, 2 pages. https://doi.
org/10.1145/3357150.3357418

1 INTRODUCTION

In the current NDN protocol [1], it adopts a per-packet signature
scheme to validate Data packet by default. However, signing and

validation of each packet with a signature has performance issues.

Even the state-of-the-art servers equipped with two Intel 8-core
Xeon processors can generate up to about 6,000 RSA signatures per
second [2]. To ease the signing overhead, the embedded manifest
approach [3] has been proposed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICN ’19, September 24-26, 2019, Macao, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6970-1/19/09...$15.00
https://doi.org/10.1145/3357150.3357418

167

The approach is based on embedded manifests which have di-
gests of subsequent Data packets. According to [3], only the mani-
fest packet itself is signed by producers and other Data packets have
only digests of themselves. An example of content segmentation
with embedded manifest:

/a/b/0 - manifest segment containing /a/b/1, /a/b/2, a/b/3 names with digests
/a/b/1 - data segment
/a/b/2 - data segment
/a/b/3 - data segment
/a/b/4 - manifest segment containing /a/b/5, /a/b/6, a/b/7 names with digests
/a/b/5 - data segment

This approach has an advantage that provenance and integrity
of each data segment can be verified with only its digest and signed
manifest containing the digest. When using a segment size of 1,500B
and the file is a video of 1.5GB, then it requires 50,000 signing op-
erations when assuming 20 message digests in a manifest packet.
This is a significant improvement over the original NDN approach
which requires 1M per-packet signing operations. This approach
cuts down the overhead of signing operation by 1/k when there
are k digests in a manifest. It has achieved notable performance
enhancements in general. However, it still needs n/k signing oper-
ations when there are n segments in a data file.

This paper proposes a novel per-segment provenance and in-
tegrity verification mechanism, Canary, with only a single signing
operation independently of data file size. Canary provides prove-
nance and integrity validation with a single signature regardless
of the number of chunks in a file, which utilizes Merkle tree [5].
Canary reduces greatly the number of signing operations of pro-
ducers to only one, which is a significant improvement compared
to n signing operations of original NDN per-segment signing and
n/k signing operations in embedded manifest mechanism.

2 CANARY DESIGN

In Canary, a Merkle tree is generated using the whole sequence
of Data segments of a data file. A producer only signs the root
hash of the Merkle tree and sends it as the first Data packet. Each
Data segment has a list of hash nodes of Merkle tree which are
required to verify itself with the signed root hash. A new type of
Signaturelnfo is defined for the list of hash nodes.

As in Figure 1, when a consumer requests a data file, a producer
responds with a Canary manifest packet containing signed root
hash which will be used to validate subsequent Data packets in
addition to a list of data segments. The number of required signing
operations of producers is only one regardless of the number of
segments.

Figure 2 explains per-segment provenance and integrity verifica-
tion procedure for a 16-segment data file in Canary. Dy, is the kth
Data segment, Hy. is the hash of Dy, and H;—; is the hash of Data

https://doi.org/10.1145/3357150.3357418
https://doi.org/10.1145/3357150.3357418
https://doi.org/10.1145/3357150.3357418

ICN ’19, September 24-26, 2019, Macao, China

Consumer Producer

/icn/videos
Interest Packet

/icn/videos
Data Packet
(Canary Manifest)

+ ficnfvideos/#1 - data segment
+ ..
+ ficn/videos/#n — data segment

+ 0X0ab4 - Root-hash

Figure 1: The overall structure of Canary

segments from D; to Dj. A consumer receives the Canary manifest
at first. Then it knows the root hash of Merkle tree and a list of of
all data segments of a data file. From the list, the consumer request
the first Data segment, D1, which has Merkle tree node values, Hy,
Hs_4, H5_g, and Ho_16. After receiving the first segment, through
calculation of Hy, Hi—2, Hi—4, Hi—g, and Hyi_1¢ which is the root
hash, the consumer can verify the provenance and integrity of D;.
The second Data segment Dy needs no Merkle tree node values
because of required node values for D, are already calculated or
received in D verification stage. D3 should be sent with Hy. The
remaining Data segments can be verified with the same procedure.

Canary can be applied without any modification for dynamic
contents such as live streaming video due to the buffering charac-
teristics of real-time streaming services. The real-time streaming
services such as YouTube and Netflix do buffering of its contents in
the unit of about 2 to 10 second chunk before transmission to adapt
to network speed variation [4]. A thousands of Data segments will
be buffered and Canary can reduce the producing overhead sig-
nificantly by running the same mechanism to each buffered video

chunk.

/:\ /
L

|S M |5 H16
@EEEEEE

Figure 2: Analytical comparison of number of signing oper-
ations

Figure 3 shows the comparison of required signing operations
of Canary compared with existing mechanism, for static data file
producing and live video streaming. The data file is assumed as
1.5GB and buffered video chunk size as 3MB, and data segment size
is 1,500B and each embedded manifest contains 20 digests. For a

168

Yong Yoon Shin and Sae Hyong Park, et al.

data file of n segments, native NDN producer should performs n
signing operations, and embedded manifest mechanism reduces it
to n/k operations, and proposed Canary reduces greatly the number
of signing operations of producers to only one.

The number of signing operations in original NDN increases
linearly with the increase of data file size. The embedded manifest
reduced it significantly compared with the original mechanism. The
proposed Canary maintains the number as one regardless of data
file size. Canary reduces greatly the number of signing operations
of producers to only one, which is a significant improvement com-
pared to n signing operations of original NDN per-segment signing
and n/k signing operations in embedded manifest mechanism.

1000000

™

10° 3

W 1.5GB Static Data File
s 3MB Live Video Chunk

10° 3

10% 3

10° §

102 3

The number of Signed Operations

NDN Native Embedded Manifest Canary

Figure 3: The Comparison of The Number of Signing Opera-
tions for a Static File and Live Video Producing

3 FUTURE WORK

The architectural benefits of Canary are promising. The key idea of
Canary is to exploit the concept of Merkle tree validation into the
NDN chunk validation process. As the next step, we are planning to
implement Canary mechanism for consumers and producers, and
perform benchmark test of end-to-end file producing and retrieval
performances.

ACKNOWLEDGMENTS

This work was supported by the ICT R&D program of MSICT/IITP.
[2017-0-00045, Hyper-connected Intelligent Infrastructure Technol-
ogy Development]

REFERENCES

[1] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H
Briggs, and Rebecca L Braynard. 2009. Networking named content. In Proceed-
ings of the 5th international conference on Emerging networking experiments and
technologies. ACM, 1-12.

Xavier Marchal, Thibault Cholez, and Olivier Festor. 2016. Server-side performance
evaluation of NDN. In Proceedings of the 3rd ACM Conference on Information-Centric
Networking. ACM, 148-153.

Ilya Moiseenko. 2014. Fetching content in Named Data Networking with embedded
manifests. NDN, Tech. Rep. NDN-0025 (2014).

Stefa Lederer. 2015. Optimal Adaptive Streaming Formats MPEG-DASH HLS
Segment Length. https://bitmovin.com/mpeg-dash-hls-segment-length [Online;
accessed 22-August-2019].

Wikipedia contributors. 2019. Merkle tree — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Merkle_tree&oldid=911089346
[Online; accessed 22-August-2019].

https://bitmovin.com/mpeg-dash-hls-segment-length
https://en.wikipedia.org/w/index.php?title=Merkle_tree&oldid=911089346

	Abstract
	1 Introduction
	2 Canary Design
	3 Future Work
	Acknowledgments
	References

