Efficient Coflow Scheduling Without Prior Knowledge —
Public Review

Hitesh Ballani
Microsoft Research
hitesh.ballani@microsoft.com

A lot of blood, sweat and tears have been shed in the quest
to improve network performance, mostly in terms of flow
completion times. But this race to the top has meant that we
have been guilty of forgetting what really matters — appli-
cation performance. Applications have different notions of
the utility they derive from flow completion, so determining
the right network metric to optimize is a tricky proposition.
In 2012, Chowdhury and Stoica proposed the Coflow ab-
straction to concisely capture application-level performance
semantics at the network layer. A “coflow” refers to a set of
flows with a collective goal. For example, the all-or-nothing
property of data-parallel jobs entails that coflow completion
is what a job really cares about, not when individual flows
within a coflow finish. This is a very neat observation!

The coflow abstraction leads to the coflow scheduling
problem, i.e., how should network traffic be scheduled to
minimize coflow completion times? This is an NP-hard
problem. Two solutions were proposed at Sigcomm 2014,
Varys and Baraat. Varys reduces coflow completion times
by scheduling them in order of their total size. This relies
on a tightly-coupled centralized design and assumes flow
sizes are known a priori. Instead, Baraat adopts a FIFO-
like scheduling policy that lends itself to decentralized im-
plementation but at the expense of performance.

This paper addresses the shortcomings of these past ef-
forts. It presents a non-clairvoyant coflow scheduling policy
which does not require knowledge of flow sizes, while not
giving up on any performance to avoid head-of-line block-
ing. The main idea is to approximate the least-attained ser-
vice (LAS) scheduling. Coflows start in the highest priority
queue but are gradually demoted to lower priority as they
send more bytes. Determining a coflow’s current size neces-
sitates a coordination point. However, the priority levels are
discrete which means the coordination can be done loosely.
The authors also describe Aalo, a system that implements
such coflow scheduling. The evaluation, performed with
EC2 experiments and simulations, shows that Aalo’s non-

clairvoyant scheduling performs close to schedulers with
complete information about coflows.

The reviewers agreed that Aalo represents the natural next
step in coflow scheduling. They appreciated that the design

is simple yet it accounts for several practical details, and it
is thoroughly evaluated. By not requiring any a priori infor-

mation about coflows, Aalo achieves efficient scheduling in
spite of operational dynamics due to multi-stage jobs, multi-
wave scheduling, failures and speculative execution. Figure
9 in the paper illustrates this very well — for multi-wave
scheduling, Aalo can even improve upon a clairvoyant ap-
proach like Varys. This may sound counter intuitive at first
but the paper explains why Aalo is better positioned to ac-
commodate any runtime dynamics.

Aalo’s impressive performance comes at a cost though. A
key concern is the need for (loose) coordination. Scaling to
large clusters will require a high coordination period. This
restricts the class of applications that Aalo can accommo-
date. For example, data center traffic resulting from online
search queries can be modeled as coflows but would be very
hard for Aalo to schedule.

On the analytical front, several questions remain. First,
least-attained service scheduling is known to be optimal
amongst non-clairvoyant flow scheduling policies for heavy
tailed distributions. Is this true across coflows too? Sec-
ond, while the PIAS work at NSDI 2015 showed how opti-
mal priority thresholds can be determined when scheduling
flows, doing the same for coflows is an open question. Fi-
nally, while the evaluation shows impressive results across a
blocking fabric, the analysis models the data center as one
non-blocking switch. Coflow scheduling in settings where
this assumption does not hold seems harder.

In summary, Aalo takes coflow scheduling a significant
step closer to reality by addressing serious concerns afflict-
ing existing solutions. The open questions raised by the pa-
per means this will be not be last word we hear on the topic,
so stay tuned.



