
Silo: Predictable Message Latency in the Cloud –
Public Review

Teemu Koponen
Styra, Inc.

koponen@styra.com

Application user experience benefits from predictable
infrastructure performance. Whether it is a com-
pute, storage, or network resource, any variance in
performance is eventually to be exposed to users,
unless applications are designed to tolerate the variance.
Applications hosted in private datacenters have this
design goal less frequently, however; in these envi-
ronments over-provisioning of the resources is still an
economical approach to guarantee the performance –
contrary to the cloud in which high resource utilization
is a paramount objective. As a result, predictable
infrastructure performance emerges as a key factor to
reduce the pressure to redesign applications for the
cloud.

In multi-tenant clouds networking guarantees have
proven particularly challenging. While the commu-
nity has produced several incrementally deployable
proposals to provide bandwidth guarantees in multi-
tenant datacenters, the story with managing queueing
delays is different: either the proposals lack in isolation
between tenants, they assume cooperation among ten-
ants (through use of a single transport protocol), or they
require new queueing disciplines at network switches
altogether.

In this paper, the authors tackle this problem and
describe a system called Silo that provides per ten-
ant network guarantees for bandwidth, delay, and
burst allowance, all implemented in software at virtual
switches, without assumptions about tenants or their
network stacks. Silo builds on careful placement of
VMs using a placement algorithm that maps tenants’
guarantees to physical network switch queue capacities
and delays. The algorithm admits VMs only if their
network guarantees can be met. It is two insights that
make Silo feasible. First, per network calculus, by
controlling packet sending rates (of each tenant at the
network edge), the algorithm can bound the datacenter
network switch queues. Second, establishing tight
queue bounds translates to a requirement of accurate
pacing of packets at line speed. To accomplish this,
Silo uses an elegant trick: virtual switches fill the
gaps between VM transmitted packets with invalid void

packets. The resulting line rate packet streams are sent
to first-hop switches which then drop the void packets
leaving the valid packets accurately paced.

The design of Silo has its limitations. In particular,
while carefully optimized, Silo packet pacer consumes
CPU resources which would be better used for tenant
workloads, and it also requires disabling NIC TSO
which further reduces CPU time available for the work-
loads. Hardware offloading of pacing to NICs seems still
more practical. In the end, these limitations do not
shadow the architectural takeaway of the paper: the
last words on the division of functional responsibilities
between datacenter network switches, NICs, and host
software are still to be written.


