Poptrie: A Compressed Trie with Population Count for Fast
and Scalable Software IP Routing Table Lookup — Public
Review

Luigi Rizzo
Universita di Pisa
Pisa, Italy
rizzo@iet.unipi.it

IP address lookup and longest prefix match are well
studied problems for which many solutions have been
proposed over the years, targeting both hardware and
software implementations.

The most performant schemes for software IP lookup
rely on a (logical) trie data structure, preprocessed in
various ways to reduce its depth — hence, reducing the
processing complexity at run time, and at the same time
avoid a space explosion. The latter is essential to make
the data structures fit in the cache of the processor in
spite of increasingly large sets of prefixes.

The software lookup schemes presented in the recent
literature exceed 100 Million lookups per second (Mpls)
per core, and scale almost linearly at least on system
with 4-8 cores. Poptrie is a new proposal in this area,
which addresses time and space savings with a com-
bination of ideas, some well known, some less so. In
particular, the name comes from the use of a "popula-
tion count” CPU instruction, which here is ingeniously
used to compress nodes in a 64-ary trie. Together with
another well known technique, controlled prefix expan-
sion, poptrie manages to complete a 32-bit lookup in
3-4 steps. Thanks to the small memory footprint, in
the benchmarks this yields a a lookup rate up to 20-
30% faster than competing solutions.

Benchmarks of course do not tell the full story. At
these speeds, and for this type of problem, performance

is affected dramatically by memory performance and
data dependencies. When the working set of the pro-
gram grows, requiring accesses to higher level caches
or even DRAM, it is common to see large performance
drops. Also, it is possible to see speed inversions be-
tween different schemes as the problem size changes.

Hence, more than absolute or relative speed, it is im-
portant to understand how each algorithm is affected
by the problem’s size and request patterns; how indi-
vidual components of an algorithm influence the overall
performance; and how performance may change with
longer addresses — think for example to the application
to IPv6 or other namespaces.

The authors do a great job in analysing these issues
in detail for Poptrie and a number of competing algo-
rithms, looking not only at the aggregate performance
of the algorithms but trying to identify the behaviour of
each of their components, even at the cycle count level.

The takeout from this paper is twofold. On the one
hand, one learns another solution for fast IP lookup,
and possibly another trick to use for compressed, ran-
dom access arrays. But even more important is the com-
parative performance analysis in Section 4, which gives
great insight on the behaviour of the different schemes
considered, and may provide useful suggestions to de-
sign high speed data structures.



