SIGCOMM Preview Session: Data Center Networking (DCN)

George Porter, UC San Diego 2015

These slides are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International license

"The cloud"

"The cloud"


```
+ amazon.com =
```

```
+ amazon.com° =
```

```
+ amazon.com° =
```



```
+ amazon.com° =
```


Computing and data has to live somewhere...

• 10s or 100s of thousands of servers

- 10s or 100s of thousands of servers
- Petabytes of data storage

- 10s or 100s of thousands of servers
- Petabytes of data storage
- Single "applications" spread across many thousands of servers (e.g., Amazon.com)
 - Application components such as caches, web servers, data bases, distributed file servers, ...
 - Each component is "scaled" to meet needs of millions of users

Why study DCNs?

Why study DCNs?

- Scale
 - Google: 0 to 1B users in ~15 years
 - Facebook: 0 to 1B users in ~10 years
 - Must operate at the scale of O(1M+) users

Why study DCNs?

Scale

- Google: 0 to 1B users in ~15 years
- Facebook: 0 to 1B users in ~10 years
- Must operate at the scale of O(1M+) users

• Cost:

- To build: Google (\$3B/year), MSFT (\$15B/total)
- To operate: 1-2% of global energy consumption*
- Must deliver apps using efficient HW/SW footprint

The Internet

Data Center Network (DCN)

The Internet	Data Center Network (DCN)
Many autonomous systems (ASes)	One administrative domain

The Internet	Data Center Network (DCN)
Many autonomous systems (ASes)	One administrative domain
Distributed control/routing	Centralized control and route selection

The Internet	Data Center Network (DCN)
Many autonomous systems (ASes)	One administrative domain
Distributed control/routing	Centralized control and route selection
Single shortest-path routing	Many paths from source to destination

The Internet	Data Center Network (DCN)
Many autonomous systems (ASes)	One administrative domain
Distributed control/routing	Centralized control and route selection
Single shortest-path routing	Many paths from source to destination
Hard to measure	Easy to measure, but lots of data

The Internet	Data Center Network (DCN)
Many autonomous systems (ASes)	One administrative domain
Distributed control/routing	Centralized control and route selection
Single shortest-path routing	Many paths from source to destination
Hard to measure	Easy to measure, but lots of data
Standardized transport (TCP and UDP)	Many transports (DCTCP, pFabric,)

The Internet	Data Center Network (DCN)
Many autonomous systems (ASes)	One administrative domain
Distributed control/routing	Centralized control and route selection
Single shortest-path routing	Many paths from source to destination
Hard to measure	Easy to measure, but lots of data
Standardized transport (TCP and UDP)	Many transports (DCTCP, pFabric,)
Innovation requires consensus (IETF)	Single company can innovate

The Internet	Data Center Network (DCN)
Many autonomous systems (ASes)	One administrative domain
Distributed control/routing	Centralized control and route selection
Single shortest-path routing	Many paths from source to destination
Hard to measure	Easy to measure, but lots of data
Standardized transport (TCP and UDP)	Many transports (DCTCP, pFabric,)
Innovation requires consensus (IETF)	Single company can innovate
"Network of networks"	"Backplane of giant supercomputer"

 How would you design a network to support 1M endpoints?

- How would you design a network to support 1M endpoints?
- If you could...
 - Control all the endpoints and the network?
 - Violate layering, end-to-end principle?
 - Build custom hardware?
 - Assume common OS, dataplane functions?

- How would you design a network to support 1M endpoints?
- If you could...
 - Control all the endpoints and the network?
 - Violate layering, end-to-end principle?
 - Build custom hardware?
 - Assume common OS, dataplane functions?

Top-to-bottom rethinking of the network

Paper previews: Topologies

Tree-based network topologies

Tree-based network topologies

Tree-based network topologies

Folded-Clos multi-rooted trees

1993 1997 2001 2005 2009 2013

Folded-Clos multi-rooted trees

Folded-Clos multi-rooted trees

Folded-Clos multi-rooted trees

Folded-Clos multi-rooted trees

Paper previews: Topologies

- Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google's Datacenter Network (Singh et al.)
 - Tu 5pm-6:15pm Session 3.2: Experience Track: 2
 - 10 year retrospective on Google's experiences building largescale networks
- Condor: Better Topologies through Declarative Design (Schlinker et al.)
 - Th 8:50am 10:30am Session 8: Data center networking
 - Describing and reasoning about the network structure

Paper previews: Measurement

Network measurement

Network measurement

- Measuring the Internet:
 - No central vantage point, only indirect access to certain portions, multiple ASes hiding information...

Network measurement

- Measuring the Internet:
 - No central vantage point, only indirect access to certain portions, multiple ASes hiding information...
- Measuring data centers:
 - Need low latency
 - Need fine-grained precision (milli- or microsecond)
 - An enormous amount of data to collect
 - Hard to publish findings (proprietary data sets)

Paper previews: Measurement (1/2)

- Inside the Social Network's (Datacenter) Network (Roy et al.)
 - Tu 4pm-4:50pm Session 3.1: Experience Track 1
 - Measurement study of Facebook's data center
- Pingmesh: A Large-Scale System for Data Center Network Latency Measurement and Analysis (Guo et al.)
 - Tu 4pm-4:50pm Session 3.1: Experience Track 1
 - Experience paper on Microsoft's system for collecting inter-server ping times at scale

Paper previews: Measurement (2/2)

- Packet-Level Telemetry in Large Datacenter
 Networks (Zhu et al.)
 - Th 8:50am 10:30am Session 8: Data center networking
 - Packet tracing system deployed at Microsoft designed for finding network faults

Paper previews: Packet/flow handling

Packet and flow handling

Packet and flow handling

- Internet service model:
 - Best-effort, "end-to-end principle", generally just one path to a destination

Packet and flow handling

- Internet service model:
 - Best-effort, "end-to-end principle", generally just one path to a destination
- Data center networks:
 - Load balancing: how to effectively use all the many paths to a given destination?
 - Better than best-effort: how to prioritize, rate-limit, adjust relative sending rates...

Paper previews: Packet/flow handling

- Presto: Edge-based Load Balancing for Fast Datacenter Networks (He et al.)
 - Th 8:50am 10:30am Session 8: Data center networking
 - Choosing paths for packets with help from endhosts

- Enabling End-Host Network Functions (Ballani et al.)
 - Th 8:50am 10:30am Session 8: Data center networking
 - Providing better than best-effort handling of packets with help from endhosts

In closing

- DCN is an exciting, fun research area
- While many papers are from Microsoft, Google, Facebook, ...
 - YOU have the ability to have enormous impact
 - Many projects are open-source
 - E.g., http://opencompute.org
- Rethink the entire network stack!
 - Hardware, software, protocols, OS, NIC, ...