
Enabling End-host Network Functions

Hitesh Ballani, Paolo Costa, Christos Gkantsidis, Matthew P. Grosvenor,
∗

Thomas Karagiannis, Lazaros Koromilas,
†

and Greg O’Shea
Microsoft Research

Cambridge, UK

ABSTRACT
Many network functions executed in modern datacen-
ters, e.g., load balancing, application-level QoS, and
congestion control, exhibit three common properties at
the data plane: they need to access and modify state, to
perform computations, and to access application seman-
tics — this is critical since many network functions are
best expressed in terms of application-level messages.
In this paper, we argue that the end hosts are a natural
enforcement point for these functions and we present
Eden, an architecture for implementing network func-
tions at end hosts with minimal network support.

Eden comprises three components, a centralized con-
troller, an enclave at each end host, and Eden-compliant
applications called stages. To implement network func-
tions, the controller configures stages to classify their
data into messages and the enclaves to apply action
functions based on a packet’s class. Our Eden pro-
totype includes enclaves implemented both in the OS
kernel and on programmable NICs. Through case stud-
ies, we show how application-level classification and the
ability to run actual programs on the data-path allows
Eden to efficiently support a broad range of network
functions at the network’s edge.

CCS Concepts
•Networks→ Programmable networks; Network
management; Data center networks; Cloud comput-
ing;

∗Work performed while an intern with Microsoft Re-
search; currently at Cambridge University, UK
†Work performed while an intern with Microsoft Re-
search; currently at University of Crete, Greece

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787493

Keywords
Software Defined Networking; SDN; Network Manage-
ment; Data-plane programming; Network Functions

1 Introduction
Recent years have seen a lot of innovation in functional-
ity deployed across datacenter networks. Network func-
tions range from management tasks like load balanc-
ing [65, 4, 26, 1, 40] and Quality of Service (QoS) [9,
39, 10, 33, 52, 61, 6, 28] to data-plane tasks like (central-
ized) congestion control and network scheduling [48, 27,
64, 45, 30] to application-specific tasks like replica selec-
tion [17]. Today, such functions are implemented using
a mishmash of techniques and at a variety of places—at
network switches using SDN and OpenFlow, at physi-
cal or virtual middleboxes using NFV, and at end hosts
through Open vSwitch or custom implementations.

Despite their differences, three common requirements
characterize a large fraction of network functions: i)
they maintain state at the data plane, ii) they perform
computation at the data plane, and iii) they operate on
application semantics. The last feature is particularly
important since many network functions are best ex-
pressed in terms of application data units or“messages”.
For example, a load balancing function for memcached,
a popular key-value store, may put its messages into
two “classes” (GETs and PUTs) and treat them differ-
ently. It may even use message-specific details like the
key being accessed for load balancing [40].

Traditional network management approaches imple-
ment network functions completely decoupled from ap-
plications. They infer the application message a packet
belongs to using deep packet inspection or through other
heuristics. Instead, we propose messages and classes as
first-order abstractions at the network layer. A mes-
sage refers to an (arbitrary) application data unit while
a class is the set of messages (and consequent network
packets) to which the same network function should be
applied. Applications can provide the class and message
information for any traffic they generate.

In this paper, we present Eden, an architecture for
implementing network functions at end hosts. End hosts
are a natural enforcement point for such functions—

493

http://dx.doi.org/10.1145/2785956.2787493

they have plentiful resources that allow for complex
computation and large amounts of state to be main-
tained, and they are ideally placed for fine-grained vis-
ibility into application semantics. Finally, in single ad-
ministrator environments like enterprises and datacen-
ters, some part of end hosts can be trusted. We show
that a large number of diverse and interesting network
functions can be efficiently realized at the end hosts
with minimal support from the network.

Eden comprises three components: a logically cen-
tralized controller, stages, and end host enclaves. A
stage is any application or library that is Eden-compliant.
Stages bridge the gap between network functions ex-
pressed in terms of application-level messages and the
enclave operating on packets. To achieve this, stages
classify their network traffic, associating application mes-
sages with a class and a message identifier that is carried
with it down the host’s network stack. The enclave re-
sides along the end host network stack, either in the
OS or the NIC. It extends and replaces functionality
typically performed by the end host virtual switch. An
enclave has a set of match-action tables that, based on
a packet’s class, determine an action function to apply.
The action function can modify both the packet and
the enclave’s global state. Enclaves and stages each ex-
pose an API through which they can be programmed.
Enclaves and stages, taken together, enable application-
aware data plane programmability.

Given a network function, the controller can imple-
ment it by programming stages and enclaves across the
network. Hence, Eden achieves a careful division of
functionality; the controller provides global visibility,
stages provide application visibility while enclaves pro-
vide a pragmatic enforcement point at the data plane.

A key challenge posed by our design is efficient and
safe execution of action functions at enclaves while al-
lowing for the functions to be dynamically updated by
the controller without impacting data plane performance.
With Eden, action functions are written in a high-level
domain specific language using F# code quotations.
They are compiled to bytecode which is then interpreted
through a stack-based interpreter within the enclave.
This approach allows Eden to execute the same com-
putation across multiple platforms and avoids the com-
plexities of dynamically loading code in the OS or the
NIC. Indeed, our interpreter can execute the same ac-
tion function inside the OS or in a programmable NIC.

We have implemented the Eden enclave across two
platforms: Hyper-V and Netronome’s programmable
NICs [46]. We evaluate Eden through case studies across
these platforms. These studies highlight how the Eden
architecture can implement diverse functions spanning
application-aware load-balancing, quality of service and
weighted path selection. We show that Eden’s inter-
preter-based data plane computation incurs reasonable
overheads with negligible impact on application perfor-
mance metrics.

Overall, this paper makes the following contributions:

• We highlight that a large class of network functions
feature three key requirements: data-plane compu-
tation, data-plane state, and operate on application
semantics (§2).
• We design and implement Eden, an architecture that

enables end host network functions through data plane
programmability (§3).
• We present a flexible scheme for application-level clas-

sification of network traffic (§3.3).
• We present a language, compiler and runtime for ac-

tion functions. The compiler decouples state man-
agement from the function, thus providing a clean
programming abstraction to administrators (§3.4).

The idea of end hosts participating in the implemen-
tation of network functions is not new [49, 16, 21, 34,
59, 57]. These state of the art approaches, however,
still encourage a low-level, packet-based API for pro-
gramming the data plane, often a variant of OpenFlow.
This ignores end host capabilities and restricts the func-
tions that can be implemented. Instead, Eden adopts a
different philosophy by introducing a data plane inter-
face that is wide and rich enough to allow for general,
application-informed data-plane computation.

2 Network Functions
This paper is motivated by the observation that three
common data-plane requirements underlie many net-
work functions. First, they need to create, access and
modify state, in many cases on a per-packet basis. This
allows for “stateful network functions” where a packet
influences the processing of subsequent packets. Sec-
ond, they require computation on the data path.

Finally, they require visibility into application seman-
tics. This introduces a mismatch – data-plane elements
like the end host network stack and switches operate
at the granularity of packets. Instead, each application
has its own application data unit or “message”. For
example, for memcached, a popular key-value store, a
message is a GET or a PUT request or response. For
a HTTP library, a message is an HTTP request or re-
sponse. These messages are fragmented into packets
before being sent across the network. Many network
functions however are best expressed in terms of appli-
cation messages. Implementing such network functions
thus requires a mapping between messages and the con-
sequent network packets.

2.1 Examples
To make the discussion concrete, we now use a few net-
work functions proposed in recent literature as case-
studies to highlight the three requirements mentioned
above. For each example, we present a pseudo-code
sketch for the network function; in Section 5, we show
how the functions can be expressed in Eden’s language.

494

Figure 1: Example of an asymmetric topology.

2.1.1 Load balancing

Many recent proposals focus on load balancing of traffic
across network paths and across destinations in data-
centers. We begin with a simple path-level load balanc-
ing example.

Datacenters today use ECMP to load balance traf-
fic among multiple equal cost paths. However, ECMP
assumes that the underlying topology is balanced and
regular which is often not true in practice [65]. For ex-
ample, in Figure 1, ECMP would distribute the traffic
at switch A evenly across the two upstream links even
though subsequent links along the paths have very dif-
ferent capacities. This can result in unfairness and poor
tail performance. Motivated by this, Zhou et al. [65]
proposed WCMP, a weighted version of ECMP that
balances traffic across links in a weighted fashion. In
the example in Figure 1, WCMP can be used to bal-
ance traffic across the two upstream links of A in a 10:1
ratio. While the authors present a switch-based imple-
mentation of WCMP in [65], we focus on the higher-
order network function associated with WCMP and for
now, sidestep where this function is implemented.

WCMP requires two main pieces of functionality: (a)
for each source-destination pair, computation of paths
and weights, and (b) picking a path for packets. The
former requires information about the network topology
which, in turn, requires a coordination point with global
visibility. With SDN-based management approaches,
such functionality is typically implemented at a central-
ized controller, possibly using high-level programming
abstractions [25, 62, 24, 54]. Here, we focus on the lat-
ter operation that needs to operate at the data path.

The first snippet in Figure 2 implements the WCMP
data-plane function. It takes a packet as input and
chooses its network path based on the weights of the
links between the packet’s source and destination. These
weights are obtained periodically from the controller.
Next, we discuss the state maintained by this function
and the computation it performs.

State. The function accesses global state—it reads the
pathMatrix variable that, for each source and destina-
tion pair, contains the list of paths between them and
their weights. A path’s weight is the probability with
which it should be used and is a product of the normal-
ized weights of all links along the path.

Require: Global program state- pathMatrix, which
gives the list of paths and their weights for each
source destination pair.
pathMatrix:[src, dst] -> {[Path1, Weight1],
. . .}

1: fun WCMP (packet) {
2: Choose a path in a weighted random fashion from

pathMatrix[p.src, p.dst])

3: Send packet
4: }

Require: Each packet is tagged with its message iden-
tifier

1: fun messageWCMP (packet) {
2: msg = packet.message
3: if packet belongs to new message then
4: Choose a path in a weighted random fashion from

pathMatrix[p.src, p.dst]

5: cachedPaths[msg] = path

6: Use cachedPaths[msg] as this packet’s path
7: Send packet
8: }

Figure 2: Network functions implementing
weighted load balancing at packet- and message
granularity.

Computation. The function performs a simple com-
putation — it chooses the packet’s path from the set of
possible paths in a weighted random fashion.

Application semantics. The WCMP function chooses
paths on a packet-by-packet basis. However, as we show
in Section 5, this can lead to packet re-ordering across
the network which can adversely impact the perfor-
mance of connection oriented protocols like TCP. Flow-
level weighted load balancing [65] can address this prob-
lem, at the expense of some load imbalance.

More broadly, datacenter operators can balance the
trade-off between application performance and load across
network links through “message-level load balancing”
whereby all packets of the same application message are
sent along the same path. For example, for memcached
traffic, all packets corresponding to a GET or a PUT
operation are sent along the same path. This is imple-
mented by the messageWCMP function in Figure 2 which
needs to know the message a given packet belongs to.

The previous discussion also applies to other schemes
for load balancing in datacenters [4, 26, 1]. For ex-
ample, Ananta [4] load balances incoming connections
across a pool of application servers. This requires a
NAT-like functionality along the network path which,
in turn, requires both computation and state. Sev-
eral proposals explicitly use application semantics as

495

Require: Each packet is tagged with its message, size
and tenant information.
Global state: queueMap, a map that returns the rate
limited queue for each tenant

1: fun Pulsar (packet) {
2: msg = packet.message
3: if msg is a “READ” message then
4: Set size to msg.size //if read, policing is based

on operation size
5: else
6: Set size to packet.size //policing is based on the

packet size
7: Send packet to queue queueMap[packet.tenant] and

charge it size bytes
8: }

Figure 3: Pulsar’s rate control function

well. For example, Sinbad [17] maximizes performance
by choosing endpoints for write operations in HDFS,
and Facebook’s mcrouter [40] achieves low latency and
failover through a distributed middle layer that routes
memcached requests based on their key.

2.1.2 Datacenter QoS

Many recent proposals provide quality of service (QoS)
guarantees for traffic across the datacenter network. We
begin with a recent QoS solution.

Pulsar [6] gives tenant-level end-to-end bandwidth
guarantees across multiple resources, such as network
and storage. A tenant refers to a collection of virtual
machines (VMs) owned by the same user. Enforcing
such guarantees at the network layer poses two key
challenges. First, it requires determining the tenant a
given packet belongs to. Second, since the guarantee
spans non-network resources, it requires knowledge of
the operation being performed. For example, consider
a packet corresponding to a request to a storage server.
Network rate limiters pace packets based on their size.
However, depending on whether the packet corresponds
to a READ or a WRITE request to a storage server,
the packet size may not correctly represent its impact
on the storage server—read packets are small on the
forward path from the client generating the request to
the server, but their cost on the server and the reverse
network path can be high depending on the read size.
Today, information about the type of an operation and
its size is not available to network rate limiters at end
hosts and at switches.

Figure 3 shows a network function implementing Pul-
sar’s rate control. We describe the state it maintains,
the computation it performs and the application seman-
tics it requires.

State. The function accesses global state—it reads
from the queueMap to determine the rate limited queue
a packet should go to.

Require: Each packet is tagged with its message and
size information.
Global state: msgTable:[msg] -> bytesSent and
priorityThresholds

1: fun PIAS (packet) {
2: msg = packet.message
3: if packet belongs to a new message then
4: Initialize msgTable[msg] to packet.size
5: else
6: Increment msgTable[msg] by packet.size
7: Set packet priority according to priorityThresh-

olds
8: Send packet
9: }

Figure 4: Network function implementing a gen-
eralized version of PIAS’ dynamic priority logic.

Computation. The function ensures that the packet
is rate limited based on the type of message (i.e., IO
operation) that it belongs to. It also queues the packet
at the rate limiter corresponding to the tenant gener-
ating the packet. This ensures aggregate tenant-level
guarantees instead of per-VM guarantees.

Application semantics. For a packet, the function
needs to determine its message, the message size, and
the tenant it belongs to.

We note that the same features apply to other schemes
for datacenter QoS that offer performance guarantees
to tenants and applications [9, 39, 10, 33, 52, 61].

2.1.3 Datacenter flow scheduling
Many recent proposals aim to optimize application per-
formance in terms of reduced user-perceived latency by
carefully scheduling flows across the network. For ex-
ample, PIAS [8] minimizes flow completion time with-
out application support by mimicking the shortest flow
first scheduling strategy. With PIAS, flows start in the
highest priority but are demoted to lower priorities as
their size increases.

While PIAS [8] targets flow-level prioritization, the
concept can be generalized and applied at a message
level. A message could be a flow, a GET/PUT, etc. Fig-
ure 4 shows a network function implementing message-
level PIAS scheduling.

State. The function uses two pieces of global state.
First, priorityThresholds provide flow-size thresholds
that define the priority for a flow given its current size.
These thresholds need to be calculated periodically based
on the datacenter’s overall traffic load. Second, the
function maintains a msgTable to track the current size
of all active messages.

Computation. When a packet for a new message ar-
rives, the function initializes a messageTable entry for
it. When a packet for an existing message arrives, the

496

Function Example Data-plane Data-plane Application Network Eden
state computation semantics support (out of the box)

Load Balancing

WCMP [65] 3 3
7 3Message-based WCMP 3 3 3

Ananta [47] 3 3
Conga [1] 3 3 3∗

3 7
Duet [26] 3 3

Replica Selection
mcrouter [40] 3 3 3

7 3
SINBAD [17] 3 3 3

Datacenter QoS
Pulsar [6] 3 3 3

7 3Storage QoS [61, 58] 3 3 3
Network QoS [9, 51, 38, 33] 3 3 3

PIAS [8] 3 3
7 3Flow scheduling QJump [28] 3 3

and congestion control Centralized [48, 27] 3 3 3∗

congestion control
Explicit rate control 3 3 3

3 7
(D3 [64], PASE [45], PDQ [30])

Stateful firewall
IDS(e.g. [19]) 3 3 7 7

Port knocking [13] 3 3 7 3

Table 1: Example network functions, their data-plane requirements and whether they need network
support beyond commodity features like network priorities. Eden can support many of these functions
out of the box. (3∗ refers to functions that would benefit from application semantics. For example,
Conga uses flowlets that approximate application messages.)

message’s current size is updated. Finally, we use the
current message size to determine the packet’s priority.

Application semantics. PIAS achieves flow schedul-
ing without application support. However, in closed-
environments like datacenters, it is possible to modify
applications or the OS to directly provide information
about the size of a flow [64, 22, 30]. This would al-
low for shortest flow first scheduling. In Section 5, we
show that this approach, by using application informa-
tion, can provide increased accuracy compared to PIAS’
application-agnostic scheduling.

We note that the same features apply to other schemes
for optimizing application performance by reducing flow
completion times [30, 45], meeting flow deadlines [64] or
similar task-level metrics [18, 22].

2.2 End hosts: A natural enforcement point
Table 1 extends the previous discussion to other cate-
gories of common network functions like congestion con-
trol and stateful firewalling. The table is certainly not
exhaustive; instead, it illustrates how data-plane state,
computation and application semantics are common re-
quirements across a large selection of network functions.

Given these requirements, a natural question is where
should such functionality be implemented. Tradition-
ally, network functions have been implemented at switches
and middleboxes; this however reflects legacy originat-
ing from the Internet, where ISPs only control their
equipment and end hosts are not trusted. By contrast,
in closed settings owned and operated by a single en-
tity, like datacenters and enterprises, end hosts (or some
parts of the end hosts) are trusted. Thus, end hosts are
well-suited to implement network functions—they have
high computational capabilities, significant amounts of

memory, can provide fine-grained visibility into applica-
tion semantics, and by definition, are on the data path.

Placing network functionality at end hosts provides
also additional benefits. First, enforcing a function at
the source of traffic instead of distributed enforcement
along its path makes it easier to achieve consistent be-
havior even when the function is updated. On the con-
trary, achieving consistent updates in the network re-
quires complex mechanisms to ensure that all switches
along the path make consistent decisions [55]. Second,
implementing network functions at end hosts leads to a
natural partitioning of both the state and computation
overhead of enforcement because hosts are only respon-
sible for a subset of the traffic a switch would need to
process. Finally, certain network properties such as flow
RTT or loss and network events like flow termination
are readily available at the hosts; instead, such prop-
erties need to be inferred, typically through heuristics
inside the network.

Of course, implementing network functionality at end
hosts is not a panacea. As shown in Table 1, some func-
tions do require network support beyond what is offered
by commodity equipment. For example, deadline-based
congestion control protocols like D3 [64] and PDQ [30]
rely on explicit, fine-grained feedback from the network.
In general, network switches have better visibility of in-
stantaneous aggregate network behavior and are needed
to implement network functions that rely on such infor-
mation. Furthermore, despite the resources available at
end hosts, some network functions, such as compression
or encryption, may be too resource intensive for general
purpose processors and may require custom hardware.

In summary, a variety of network functions can indeed
be implemented with a modicum of computation and

497

state at the end host data plane. This paper proposes
an architecture to enable such functions.

3 Design
This section provides an overview of the Eden archi-
tecture. Eden targets environments in which end hosts
are owned by a single administrative domain and can
therefore be trusted. In this paper, we focus on data-
centers, although our approach can also be applied to
other scenarios such as enterprises [21, 34].

3.1 Design overview
Eden comprises three components (Figure 5):

1). Controller. It provides a logically centralized co-
ordination point where any part of the network function
logic requiring global visibility resides (§3.2).

2). Stage. Applications are a first-order citizen in
Eden. Any application, library or even kernel module
in the end-host stack that is Eden-compliant is called
a “stage” (§3.3). Stages can classify packets based on
stage-specific semantics, and this classification is carried
through the end host stack to the Eden enclave where it
is used to determine the enclave rule(s) to apply. Stages
are programmed using the classification API which al-
lows the controller to learn their classification abilities
and to configure them with classification rules.

3). Enclave. Eden provides a programmable data-
plane through an enclave at each end host (§3.4). The
enclave may be implemented at the software network
stack inside the OS or the hypervisor, or using pro-
grammable hardware like FPGAs and programmable
NICs. The enclave is programmed by the controller us-
ing the enclave API. An enclave program comprises a
set of “match-action” rules. However, instead of match-
ing on packet headers, packets are matched based on the
class associated with each packet. Finally, instead of a
pre-defined set of actions, the action part of the match-
action rule is an action function comprising logic that
can access and modify enclave and class state.

3.2 Eden controller
A network function is conceptually a combination of
a control-plane function residing at the controller and
a data-plane function. Given a network function, all
computation that either needs global network visibility
or needs to be invoked at coarse timescales can reside in
the control function. By contrast, any computation that
needs to be invoked on a per-packet basis or needs to
access rapidly changing state should be part of the data
function. For our WCMP example (§2.1.1), the control
plane function involves (periodically) determining the
weight associated with each network link based on the
current topology and traffic matrix. These weights are
used to compute the pathMatrix variable used in the
WCMP data plane function shown in Figure 2.

Recent work in the SDN literature mostly focuses on
controller-based algorithms [24] and languages for ex-
pressing control plane functions [25, 62]. Hence, in the

Priority
Queue

Shaping .

Packet Transmission

EnclaveMatch-Action Table Metadata info
Action

Functions

 Packetization (socket)

App Layer

Unmodified App Layer
...

PACKETS
+

METADATA

Classification

Classification

Message

Message

C
o

n
tro

ller

Figure 5: The Eden architecture.

rest of this paper, we focus on how data plane func-
tions can be implemented at stages and enclaves, and
the APIs that the Eden controller uses to program such
functionality.

3.3 Eden stages
As shown in Table 1, many network functions require
application semantics as they operate at the granularity
of application messages. By contrast, the Eden enclave
operates at the granularity of packets. Traditional ap-
proaches infer the application message a given packet
belongs to using deep packet inspection or through other
heuristics. Eden adopts a different tack by allowing ap-
plications to explicitly share this information.

Applications, libraries (e.g., an HTTP library) and
services (e.g., NFS or SMB service) that run either in
user space or at the OS can opt to classify network traf-
fic generated by them, i.e., identify messages and their
class(es). A message refers to an (arbitrary) applica-
tion data unit while a class refers to the set of pack-
ets to which the same action function should be applied.
For example, a memcached-specific load balancing func-
tion may pick the destination server based on whether
a packet corresponds to a GET or a PUT message. To
allow such functions to be implemented at the Eden
enclave, the memcached application needs to mark all
its traffic as belonging to one of two classes, GETs and
PUTs, and to identify each GET/PUT message sep-
arately. The class information is carried through the
end-host stack to the enclave and is used to determine
the action function to apply.

A stage specifies the application-specific fields that
can be used for classification, i.e., fields that can cate-
gorize messages into classes. It also specifies meta-data,
i.e., other application-specific data, it can generate. To
make the discussion concrete, Table 2 gives examples
of the classification and meta-data capabilities of three
stages. For instance, an Eden-compliant memcached

498

Stage Classifiers Meta-data

memcache <msg_type, key>
{msg id, msg type,

key, msg size}
HTTP <msg_type, url> {msg id, msg type,
library url, msg size}
Eden <src_ip,src_port, {msg id}

enclave dst_ip, dst_port,
proto >

Table 2: Classification capabilities of a few
stages.

r1 : <GET, - > → [GET, {msg_id, msg_size}]

r1 : <PUT, - > → [PUT, {msg_id, msg_size}]

r2 : <*, - > → [DEFAULT, {msg_id, msg_size}]

r3 : <GET, "a" > → [GETA, {msg_id, msg_size}]

r3 : <*, "a" > → [A, {msg_id, msg_size}]

r3 : <*, * > → [OTHER, {msg_id, msg_size}]

Figure 6: Examples of classification rules and
rule-sets

client can classify its messages based on whether it is a
GET or a PUT (msg_type) and the key being accessed
by the message. Furthermore, the stage can associate
the message with meta-data comprising a unique (mes-
sage) identifier, the message type, the key being ac-
cessed, and the message size.

Beyond applications, the Eden enclave itself can also
classify traffic. It operates at the granularity of packets,
and like Open vSwitch, it can classify packets based on
different network headers, including the IP five-tuple.
This is shown in the last line of Table 2. Thus, when
classification is done at the granularity of TCP flows,
each transport connection is a message.

Classification rules. A stage maintains classifica-
tion rules, written as <classifier> → [class_name,
{meta-data}]. The classifier is an expression that
defines the class, while the meta-data specifies informa-
tion, including a message identifier, that should be asso-
ciated with messages belonging to this class. The mes-
sage identifier allows the enclave to later recover packets
carrying data for the same message. Classification rules
are arranged into rule-sets such that a message matches
at most one rule in each rule-set. Rule-sets are needed
since different network functions may require stages to
classify their data differently. A given message can be
marked as belonging to many classes, one for each rule-
set.

Figure 6 lists a few example classification rules for the
memcached stage. Rule-set r1 comprises two rules, the
first one matches all GET messages while the second
matches PUT messages. The messages are marked as

S0 getStageInfo ()
returns the fields that the stage can use to classify data,
and the meta-data fields it can output

S1 createStageRule (Rule set s, Classifier c, Class id i,
Meta-data set m)

creates classification rule <c> → [i, {m}] in rule set s
returns a unique identifer for the rule

S2 removeStageRule (Rule set s, Rule id r)

Table 3: Stage API, used by the controller to
program data-plane stages.

belonging to classes named “GET” and “PUT”, and are
associated with meta-data including a unique message
identifier and the message size. Rule-set r2 simply puts
all messages into the “DEFAULT” class and associates
them with a message identifier. Finally, rule-set r3 clas-
sifies any GET requests for the key named “a” into the
“GETA”class, any other request for key“a” into the“A”
class, and all other requests to the “OTHER” class.

External to a stage, a class is referred to using its fully
qualified name: stage.rule-set.class_name. Thus,
the class named “GET” in rule-set r1 is referred to as
memcached.r1.GET. Given the rule-sets above, a PUT
request for key “a” would be classified as belonging to
three classes, memcached.r1.PUT, memcached.r2.DEFAULT,
and memcached.r3.A.

Stage-Controller interface. The controller can pro-
gram stages using the stage API shown in Table 3.
Through getStageInfo, the controller can discover a
stage’s classification abilities, what fields can be used as
classifiers and the meta-data it can generate. The con-
troller can also create and remove classification rules at
stages (S1,S2 calls in Table 3).

3.4 Eden enclave
The enclave resides along the end host network stack,
and operates on packets being sent and received. The
enclave comprises two components:

1). A set of tables with match-action rules that, de-
pending on a packet’s class, determine the action func-
tion to apply.

2). A runtime that can execute the action functions.

3.4.1 Match-action tables
In allowing data-plane programmability through enclaves,
we wanted to achieve flexibility without sacrificing for-
warding performance. We chose a match-action model
for the enclave for two reasons. First, it is possible
to efficiently implement lookup tables using TCAMs
when the enclave is implemented in hardware. Secondly,
thanks to the popularity of the OpenFlow community,
match-action programming is already a familiar model
for programmers to express network functions.

As shown in Table 4, each rule matches on class names
and produces an action function which is written in a
domain specific language. This is in contrast to the pre-
defined set of actions with today’s SDN design. Match-

499

Match —> Action

<match on class name> —> f (pkt, . . .)

Table 4: Match-action table in the enclave

ing on class names allows for two types of functions.
First, packet header based classification at the enclave
enables functions that simply need to operate at, say,
the granularity of a TCP flow. Second, classification by
stages means that the enclave can implement functions
that operate on a higher-level grouping of packets as
defined by applications. Next, we describe the action
function language and how enclaves execute the func-
tions.

3.4.2 Action functions
Action functions are written in a domain specific lan-
guage (DSL) built using F# code quotations.1 The use
of a DSL makes it easier to check safety properties of
the function. For example, action functions cannot per-
form pointer arithmetic and they need to rely on limited
stack and heap space. We discuss the choice of the spe-
cific language in Section 6. As summarized below, the
language provides features that allow expressing basic
computations including loops, and to manipulate both
packets and any state at the enclave.

The action function language is a subset of F#. This
subset does not include objects, exceptions, and float-
ing point operations. Such features benefit large code
bases; instead, we expect small functions running in
the enclave, and hence, the overhead of implementing
those features offers little value. Floating point oper-
ations are typically not supported in the kernel, and
they are also not supported by the programmable NICs
we experimented with. The subset of F# that we sup-
port includes basic arithmetic operations, assignments,
function definitions, and basic control operations.

Action Function example. We use an example to il-
lustrate Eden’s action functions. Figure 7 shows how
the PIAS function discussed in Section 2 (pseudo code
in Figure 4) is written in our action function language.
The function takes three parameters, packet, msg and
_global. packet refers to the actual packet.

It is important to understand message in the context
of the program. For an action function, a message refers
to packets that should be treated as a unit by it. A mes-
sage could be a TCP flow, a GET/PUT request, or a
HTTP page. As mentioned above, the enclave runtime
determines a packet’s message identifier. The msg pa-
rameter thus lets the function access state shared for
the processing of all packets of the same message (Sec-
tion 3.4.4 details how this state is maintained). Finally,
the _global parameter gives access to state shared by
all instances of the action function that may run in par-
allel.

1https://msdn.microsoft.com/en-us/library/dd233212.
aspx.

1 fun(packet : Packet, msg : Message, _global :
Global) ->
2 let msg_size = msg.Size + packet.Size
3 msg.Size <- msg_size
4
5 let priorities = _global.Priorities
6 let rec search index =
7 if index >= priorities.Length then 0
8 elif msg_size <=
9 priorities.[index].MessageSizeLimit

then
10 priorities.[index].Priority
11 else search (index + 1)
12
13 packet.Priority <-
14 let desired = msg.Priority
15 if desired < 1 then desired
16 else search 0

Figure 7: Program for priority selection

For each packet, the program updates the size of the
flow (lines 2–3) and then searches in the _global.Priorities
array to find the priority corresponding to the flow size
(using search, lines 6–11). Background flows can spec-
ify a low priority class (using flow.Priority), and the
program will respect that (lines 14–15).

An action function can have the following side-effects:
(i) It can modify the packet variable, thus allowing
the function to change header fields, (ii) It can modify
the msg variable, including the class name and meta-
data associated with the message. This can be used
to control routing decisions for the packet, including
dropping it, sending it to a specific queue associated
with rate limits, sending it to a specific match-action
table or forwarding it to the controller.

We note that while the programmer accesses packet
headers, as well as message and global state using the
packet, msg, and _global function arguments respec-
tively, this is just a convenient illusion for the program-
mer. It also helps during development and debugging.
As we describe later, Eden’s compiler rewrites the use
of these function arguments.

3.4.3 Interpreter-based execution
A key challenge posed by executing action functions on
the data plane is ensuring they can run across platforms
and they can be updated dynamically by the controller
without affecting forwarding performance. The latter
requirement is particularly problematic, especially for
today’s programmable NIC platforms that do not sup-
port dynamic injection of code. Eden sidesteps these
issues by using an interpreter to execute action func-
tions. The interpreter uses a stack and heap for keeping
action function state.

Additionally, the use of interpreted execution enables
monitoring the execution of the action function and
guaranteeing that it can read and modify only the state
related to that program; i.e., state not associated with

500

https://msdn.microsoft.com/en-us/library/dd233212.aspx
https://msdn.microsoft.com/en-us/library/dd233212.aspx

the action function is inaccessible to the program. In
particular, a faulty action function will result in termi-
nating the execution of that program, but will not affect
the rest of the system. Of course, we do rely on correct
execution of the interpreter, but we believe that it is
easier to guarantee the correct execution of the inter-
preter than to verify every possible action function.

The use of the interpreter, instead of compiling to na-
tive code, hurts performance when executing the action
functions. However, as we demonstrate in Section 5,
this is a small penalty for the convenience of injecting
code at runtime, and for the ability to use the same
bytecode across platforms.

3.4.4 Eden compiler
We compile action functions to bytecode which is then
interpreted inside the enclave. Given an action function,
the most challenging aspect of the compilation process
is determining its input dependencies and reflecting any
changes made by the function to packet fields and the
state maintained by the runtime. For instance, for the
PIAS action function in Figure 7, the compiler needs
to recover the function’s input parameters. This in-
cludes packet information like its size, message-specific
state (msg parameter which is used to determine mes-
sage size) and global state (_global parameter used to
determine the priority thresholds). For the output, it
needs to determine how to update the packet headers
(e.g., 802.1q priority field in the header) or other state
(e.g., message size).

This is done using three kinds of type annotations
for state variables; we expect the programmer to spec-
ify these. First, the lifetime of each state variable, i.e.,
whether it exists for the duration of the message or till
the function is being used in the enclave. Figure 8 high-
lights an example of the lifetime annotations (we omit
the rest of the annotations due to space constraints).
This lifetime information allows us to decide where to
store the state requested. For convenience of state man-
agement, the enclave runtime provides the ability to
store message-specific state, and makes it available upon
function invocation.

Second, the access permissions of a state variable, i.e.,
whether the function can update its value or whether it
is read-only. The access permissions allows us to deter-
mine the concurrency level for the function; in Figure 7
the function can update the message size and, hence,
we will process at most one packet per message con-
currently. This restriction does not apply to the global
state which is read-only for the function.

Finally, the mapping to packet header values; for ex-
ample, the mapping of the packet size field in IPv4
headers to the “size” variable inside the function in Fig-
ure 7. Currently, we provide a fixed header parsing
scheme, and are investigating more extensible parsing
approaches using ideas from P4 [14].

Apart from resolving input and output dependencies,
the rest of the compilation process, mainly the trans-

[<State(lifetime = Granularity.Packet)>]
type Packet () =

class
[<AccessControl(Entity.PacketProcessor,

AccessLevel.ReadOnly)>]
[<HeaderMap("IPv4", "TotalLength")>]
[<HeaderMap("IPv6", "PayloadLength")>]
member val Size = 0L with get, set

[<AccessControl(Entity.PacketProcessor,
AccessLevel.ReadWrite)>]

[<HeaderMap("802.1q", "PriorityCodePoint")>]
member val Priority = 0 with get, set

end

Figure 8: Example of annotations used by the
priority selection policy. The HeaderMap anno-
tations specify the field in the header that corre-
sponds to the property. While the Packet type
appears to be a generic class, we expect them to
just contain properties of basic types with asso-
ciated attributes. We also expect the properties
to provide default initializers.

lation of the abstract syntax tree to bytecode, is more
straightforward. Value types are preferentially placed
in the stack and otherwise in the local variables and
the heap. More complicated types, such as arrays, are
placed in the program heap (when necessary by copying
the values from the flow or function state). The layout
is then used to generate the bytecode of the program. In
the current version, we perform a number of optimiza-
tions such as recognizing tail recursion and compiling it
as a loop.

Concurrency model. As discussed, the programmer
specifies the lifetime and access model of the state used
by the action function with type annotations (Figure 8).
The authoritative state is maintained in the enclave,
and the annotations determine the concurrency model
for the action functions. The enclave creates a consis-
tent copy of the state needed by the program in the heap
and stack. If the action function requires read-only ac-
cess to message and global state, the enclave is allowed
to schedule multiple invocations of that program in par-
allel (i.e., the program is allowed to write only to packet
state). The state stored by the enclave may change dur-
ing program execution; however, the program will not
see the change.

If the action function requires write-access to the state
maintained at the message level, then only one packet
from that message can be processed in parallel. Further,
if the action function requires write-access to global
state, then only one parallel invocation of the action
function is allowed. These restrictions are necessary be-
cause, after program termination, the enclave must up-
date the authoritative state with the changes, and pass
updated values to the next invocation of the same action
function. An alternative approach that we have not ex-

501

plored would be to introduce synchronization primitives
in the language. This however might lead to a perfor-
mance penalty while accessing shared state. Overall,
the programs should restrict writable state to the finest
granularity possible.

3.4.5 Enclave-Controller interface
The controller can program enclaves through the en-
clave API. This allows the controller to create, delete
and query both tables and individual match-action rules
in an enclave. We omit the API details for brevity.

3.5 Network support
Eden’s end-host based approach to network functions
requires two features from the network: the ability to
specify a packet’s priority and its route. For the for-
mer, we use 802.1q tags. For the latter, recent pro-
posals have shown how existing technologies like MPLS
and VLANs can be used to achieve source routing in
datacenters [44, 16]. Here, end hosts specify the path
of a network packet as a label in the packet header, e.g.,
through an MPLS label or VLAN tag, and switches per-
form label-based forwarding. In our experiments, we
use VLAN tagging for route control.

Such source routing requires the controller to config-
ure the label forwarding tables at switches. For MPLS,
this can be achieved through a distributed control pro-
tocol like LDP [5] while for VLANs, Spain [44] describes
a solution involving multiple spanning trees. Hence,
label-based forwarding and the corresponding control
protocol is the primary functionality Eden requires of
the underlying network. Additionally, most existing
switches already support statistics gathering capabili-
ties (e.g SNMP) and priority-based queuing.

4 Implementation
We now provide more information about the implemen-
tation of the enclave and stages including current limi-
tations. We also describe our evaluation testbed.

4.1 Interpreter and enclave
The Eden interpreter supports relatively small programs
that use limited (operand) stack and heap space. The
execution is stack based, similar in spirit to the Java
Virtual Machine (JVM); we support many of the stan-
dard JVM op-codes. Apart from op-codes that specify
basic load and store, arithmetic, branches, and condi-
tionals, we have also implemented as op-codes a limited
set of basic functions, such as picking random num-
bers and accessing a high-frequency clock in the sys-
tem. Unlike general VMs, we do not support many
features such as exceptions, objects, and just-in-time
compilation. An alternative design would be to base
the interpreter on a register machine (as in [41]).

Section 3.4.4 mentioned a number of facilities ex-
pected by the enclave that we have implemented: (a)
managing flow and function specific state, (b) preparing
program inputs and consuming program outputs, and

(c) overseeing program invocation. Overall, the enclave,
including the interpreter, is about 16K lines of C code.

4.2 Stages
Stages associate class and metadata information with
(application) messages; packets generated as a result
of those messages will be carrying the extra informa-
tion and processed by the interpreter accordingly. The
implementation of that mechanism in its pure form re-
quires a large number of changes in the current network
stack, and application and library code. As a proof of
concept, we have extended the socket interface to imple-
ment an additional send primitive that accepts class and
metadata information (our extension works for sockets
using TCP). At the kernel, we record the sequence num-
ber of the sender along with the extra information.

At the bottom of the network stack, we intercept
packets before they get transmitted. When we detect
that they contain data with the appropriate sequence
numbers, we update the relevant message state, and
schedule the packet for processing inside the enclave.

The mechanism above allows us to associate class and
metadata information at a per-packet granularity. We
believe that a generic mechanism for associating meta-
data with events that traverse application and kernel
network stacks could be of general use (see also [11]).

4.3 Testbed
Our Eden implementation targets traditional OS net-
work stacks and programmable NICs, and we thus de-
ploy two separate testbeds.

Our software testbed comprises five machines, four
Intel XEON W3530 (2.8GHz/12GB RAM), and one
Intel XEON E7450 (2.4GHz/32GB). All machines use
10GbE Mellanox network cards, and are connected through
an Arista 7050QX-32S-R switch. The enclave runs in-
side a Windows network filter driver. We added a new
ioctl that allows the application to communicate meta-
data to the driver, and used that to implement the
(socket-like) message send call.

Our programmable NIC testbed consists of four In-
tel Xeon E5-1620 (3.70GHz/16GB). Each machine is
equipped with a dual-port 10GbE Netronome NFE-3240
programmable NIC [46]. These NICs descend from In-
tel’s IXP network processors [31]. The NICs include a
40 core, 8 way multi-threaded CPU (320 threads), and
4GB of memory. We perform CAM operations on main
memory (other models of the processor can offload them
to a large TCAM). The network switch is a 40x10Gbps
Blade RackSwitch.

We have extended the NIC firmware to be able to run
the Eden interpreter. Beyond that, we can also execute
control programs and keep state in the NIC. Currently,
we have limited support for stages in our programmable
NIC testbed.

502

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

baseline PIAS SFF

FC
T

(u
se

c)

native
EDEN

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

baseline PIAS SFF

FC
T

(u
se

c)

native
EDEN

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

baseline PIAS SFF

FC
T

(u
se

c)

native
EDEN

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

baseline PIAS SFF

FC
T

(u
se

c)

native
EDEN

Figure 9: Average flow completion times (FCT) for small (left) and intermediate (right) flows with
95% confidence intervals. The top bars show the average while the bottom the 95th percentile.

5 Evaluation
Our evaluation of Eden spans three axes: i) It high-
lights Eden’s performance while implementing diverse
network functions, ii) it covers functions implemented
in an OS network stack and in programmable NICs,
and iii) it provides micro-benchmarks evaluating Eden’s
data-plane overheads. We consider the three case stud-
ies from Section 2.

5.1 Case Study 1: Flow Scheduling
Our first case study describes how Eden implements
network functions that schedule flows so as to reduce
flow completion times. We examine two such func-
tions: PIAS, whose logic was discussed in Figure 4 and
shortest flow first scheduling (SFF). PIAS requires data-
plane computation and state to enable tracking flow
sizes and tagging packets with priorities depending on
thresholds based on the distribution of flow sizes. SFF,
instead, does not track traffic flow sizes but it requires
applications to provide the flow size to the Eden enclave,
so that the correct priority is enforced.

To assess the impact of Eden on the performance of
these functions, we compare Eden with a“native”imple-
mentation. The latter implements a hard-coded func-
tion within the Eden enclave instead of using the in-
terpreter, similar to a typical implementation through
a customised layer in the OS [8]. Figure 7 shows the
PIAS action function in our language.

The workload driving the experiments is based on a
realistic request-response workload, with responses re-
flecting the flow size distribution found in search appli-
cations [2, 8]. Such applications generate traffic mostly
comprising small flows of a few packets with high rate
of flows starting and terminating. In our set-up, one
worker responds to requests generating load at roughly
70%, while other sources generate background traffic at
the same time. Priority thresholds were set up for three
classes of flows: small (<10KB), intermediate (10KB-

1MB) and background. Small flows have the highest
priority, followed by the intermediate ones.

Figure 9 shows the average and the 95th-percentile
of the flow completion times for small and intermedi-
ate flows when executing the two functions. The fig-
ure shows results when running natively in the OS and
through the Eden interpreter across ten runs of the ex-
periments. Baseline highlights flow completion times
without any prioritization. We report two Baseline fig-
ures, native and Eden. The latter shows the overhead
of running the classification and data-plane functions,
but ignoring the interpreter output before packets are
transmitted (i.e., the priority marks are not inserted in
the packet header). Essentially, the overhead reflects
running the Eden enclave over vanilla TCP.

As expected, enabling prioritization significantly re-
duces the flow completion times; for small flows, flow
completion times reduce from 363µs to 274µs on the av-
erage, and from 1.6ms to 1ms at the 95th percentile, an
overall a reduction of 25%-40%. Similar trends are ob-
served for intermediate flows as well. At the same time,
background traffic manages to saturate the rest of the
link capacity. SFF, by utilizing application knowledge,
typically provides slightly better performance with less
variability. In SFF, the mapping of flows to classes oc-
curs when the flow starts, and flows do not change pri-
orities over time.

While similar observations have been reported in pre-
vious work, what is important in our context is that the
performance of the native implementation of the policy
and the interpreted one are similar. In all cases the
differences are not statistically significant.

5.2 Case Study 2: Load-balancing
The second case study examines how Eden enables per-
packet WCMP on top of our programmable NIC testbed.
The WCMP function has been discussed in Section 2
(Figure 2). We arranged the topology of our testbed to
emulate the topology of Figure 1, with two hosts con-
nected through two paths, one 10Gbps and one 1Gbps.

503

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

ECMP WCMP

Th
ro

ug
hp

ut
 (

M
b/

se
c)

native
EDEN

Figure 10: Aggregate throughput for ECMP and
WCMP. Confidence intervals are within 2% of
the values shown.

The programmable NICs run our custom firmware
that implements the enclave and the Eden interpreter.
The interpreted program controls how packets are source-
routed through the two paths. We use per-packet bal-
ancing, instead of per-flow balancing to highlight Eden’s
ability to apply per-packet functions at high rate. In the
default case, paths are selected for long-running TCP
flows with equal weights, thus implementing ECMP. For
WCMP, we enforce a ratio 10:1.

Figure 10 shows the average throughput achieved for
the two functions with a native program implemented
directly on the programmable NICs and with Eden. For
both ECMP and WCMP, Eden’s overheads are negligi-
ble with the difference between Eden and native not
being statistically significant. In ECMP, TCP through-
put is dominated by the capacity of the slowest path,
and throughput peaks at just over 2Gbps as expected.
Instead, with per-packet WCMP, TCP throughput is
around 7.8Gbps, 3x better than ECMP. The through-
put is lower than the full 11Gbps which is our topology’s
min cut due to in-network reordering of packets [29].
Modifying TCP’s congestion control algorithm can al-
leviate such issues [53]; however, the goal of this case-
study is to highlight how Eden can easily implement
network functions such as weighted selection of paths
without any impact on performance–in this case with
unmodified applications and while running vanilla TCP.

5.3 Case Study 3: Datacenter QoS
We now examine Pulsar’s rate control as described in
Figure 3. The experiment involves two tenants running
our custom application that generates 64K IOs. One of
the tenants generates READ requests while the other
one WRITEs to a storage server backed by a RAM disk
drive. The storage server is connected to our testbed
through a 1Gbps link.

The results in Figure 11 show that when WRITE re-
quests compete with READs, their throughput drops by
72%. As previously discussed, this reflects the asymme-
try of IO operations; READs are small on the forward
path and manage to fill the queues in shared resources.
Instead, we account for this mismatch through Pulsar’s
rate control, by charging READ requests based on the
request size and WRITEs on the packet size. This en-
sures equal throughput between the two operations.

 20

 40

 60

 80

 100

 120

 140

Isolated Simultaneous Rate-controlled

Th
ro

ug
hp

ut
 (

M
B/

se
c)

Reads
Writes

Figure 11: Average READ vs. WRITE through-
put when requests run in isolation, simulta-
neously, and when READ requests are rate-
controlled based on the request size. 95% confi-
dence intervals are <0.2% of the mean values.

 0
 2
 4
 6
 8

 10

average 95th-perc.

ov
er

he
ad

 (
%

) API
enclave

interpreter

Figure 12: CPU overheads incurred by Eden
components compared to running the vanilla
TCP stack. API refers to passing metadata in-
formation to the enclave.

5.4 Overheads
The previous case studies have focused on the overheads
incurred by Eden with respect to application metrics.
Here, we quantify Eden’s CPU overheads and memory
footprint of the enclave.

Figure 12 quantifies Eden overheads while running
the SFF policy (case study 1). The workload comprises
12 long-running TCP flows in one of our testbed nodes,
and Eden can saturate the 10Gbps capacity of its link.
The figure shows how the different components of Eden
contribute to the CPU load. We consider these over-
heads reasonable. Note however, that saturating the
link capacity assumes that the cycle budget of the in-
terpreted program allows for such speeds. As we discuss
in the following section, Eden intentionally avoids pos-
ing any restrictions in the cycle budget of data-plane
functions.

In the examples discussed in the paper, the (operand)
stack and heap space of the interpreter are in the order
of 64 and 256 bytes respectively.

6 Discussion
The previous sections discussed Eden’s design and demon-
strated its expressiveness through case studies. Here, we
briefly complement the discussion of our design choices
and highlight interesting issues for future research.

Choice of language and environment. Beyond the
benefits discussed in Section 3.4 (i.e., expressiveness,
portability, safety, dynamically-injected programs), the
choice of the DSL and the interpreted environment were

504

further motivated by fast prototyping. In particular,
the use of F# code quotations is convenient because
it facilitates retrieval of the abstract syntax tree of the
program, which is the input to our compiler. Addition-
ally, F# allowed us to experiment with various ways of
expressing the action functions, and to run and debug
the programs locally (that can even take place with the
F# interpreter without invoking the compiler and the
enclave interpreter).

Action function composition. In this paper, we as-
sumed a fixed order of network function execution. This
is effective when the functions run in isolation, or when
their composition can be determined trivially. Net-
work functions, however, can interact in arbitrary ways,
hence, it is an open question to define the semantics of
function composition. One option is to impose a hier-
archy. This can be achieved, for example, by imposing
that application specific functions precede flow specific
ones or vice versa, or apply priorities to functions which
define the execution order.

OS vs NIC program execution. Eden’s interpreter
can run both in the kernel and in a programmable NIC.
When both are available, deciding where functions run
is an open question. While it may seem that process-
ing should always be offloaded, the cost of offloading
may be prohibitive in some cases. For example, when
the associated metadata is large, or when the interac-
tion with the local controller is frequent. Automatically
partitioning of a high-level policy across different exe-
cution points would thus be very useful.

Cycle budget and memory requirements. Achieving
line rates of 10Gbps+ in modern datacenter networks
results in a tight cycle budget for data plane compu-
tations. Techniques like IO batching and offloading
are often employed to reduce the processing overhead.
While Eden’s action functions express per-packet com-
putation, they can be extended to allow for computation
over a batch of packets. If the batch contains packets
from multiple messages, the enclave will have to pre-
process it and split it into messages.

While the enclave can, in principle, limit the amount
or resources (memory and computational cycles) used
by an action function, we chose not to restrict the com-
plexity of the computation or the amount of state main-
tained by them. Instead, we believe that the system ad-
ministrator should decide whether to run a function or
not, irrespective of its overheads. Indeed, deeming such
overheads acceptable may depend on exogenous factors
such as the expected load in the system.

7 Related work
The idea of a programmable data plane dates back to
active networking. Active networks exposed an API
that allows control over router and switch resources,
enabling processing, storage and packet queue manage-
ment [60, 56, 63, 12, 3]. However, it has proven difficult
to realize a generic programming model implemented

by networking devices. Eden avoids this issue by focus-
ing on data plane functions executed by end hosts only.
Recently, Jeyakumar et al. proposed the use of tiny pro-
grams that can be carried in packets and executed by
routers [32]. This provides a flexible mechanism to ex-
change state information between the network and the
end hosts. Eden can benefit from such information, but
is agnostic to how it is obtained.

Today, programmable networks are implemented us-
ing Software-Defined Networking (SDN) [23, 37]. SDN
decouples the control plane from the data plane and
requires a way for the control plane to communicate
with the data plane programmatically. The most promi-
nent API for such control- and data-plane interaction
is OpenFlow [42]. Eden focuses on implementing func-
tionality at the ends with a wider and richer data-plane
interface, and goes one step further to take advantage
of application knowledge.

P4 [14] proposes a language for programming packet
processors, hence, generalizing OpenFlow [42]. P4 tar-
gets modern switching chips, e.g., [15], and is tailored to
a specific abstract forwarding model comprising parse,
match and action. This results in a restricted program-
ming model that limits its expressivity; for example,
to policies that can be encoded through exact matches.
Using P4 to encode a policy involving comparison oper-
ations, like the flow scheduling example used through-
out this paper, would be challenging.

The idea of end hosts participating in network func-
tionality has been explored in enterprise and data cen-
ter networks [49, 16, 21, 34, 59, 57]. For example, Open
vSwitch [50] extends the OpenFlow [42] programming
model to end hosts. However, even in these propos-
als, the data-plane interface is narrow—it can be pro-
grammed to match (mostly) on packet headers and ap-
ply a fixed set of actions. They can thus implement
application-agnostic network functions that operate at
coarse time-scales. Instead, Eden can accommodate
network functions that are dynamic, require application
semantics, and operate even at per-packet time-scales.

Network exception handlers [34] was one of the first
proposals to incorporate application semantics into man-
agement policies. Akin to program exception handlers,
end hosts register exception conditions with network
controllers, which in turn inform end hosts when excep-
tions trigger. Corresponding actions at end hosts would
then be parameterized with application context. Appli-
cations are a first-order citizen in Eden as well; however,
Eden goes beyond static actions such as rate limiting,
by allowing for functions to be evaluated at end hosts
with minimal controller involvement.

Network function virtualization (NFV) targets vir-
tualizing arbitrary network functions, traditionally im-
plemented at specialized physical devices. Eden can be
seen as an end host pragmatic and reasoned point in
the NFV space.

The Click software router [36] allows the construction
of modular data-plane processing pipelines. It empha-

505

sizes the flexible chaining of building blocks called ele-
ments. Eden also operates in the data-plane, but lever-
ages application information to enables application-level
message-oriented policies. The enclaves share similar-
ities with Click’s elements. Eden’s enclave offers the
convenience of a higher-level environment to network
policy developers. The elements, however, are more ap-
propriate for performance critical tasks (e.g., rate lim-
iting functionality).

Eden enables rapid prototyping of network functions
in the data plane. Other efforts to enable innovation in
the data plane include PLUG [20] and SwitchBlade [7].
These efforts focus on implementing full protocols like
IPv6 on programmable hardware like FPGAs.

Similarly to packet filters [43, 41], the Eden inter-
preter processes packets in a constrained execution envi-
ronment inside the kernel according to user-defined pro-
grams. However, the Eden interpreter supports richer
packet processing to accommodate more expressive ac-
tion functions.

The idea of associating metadata with network traf-
fic as it gets processed in the network stack is simi-
lar to Mbuf tags [35]. This work also proposes a user-
level mechanism to attach metadata to packets. Eden
aims to start the discussion of extending the interface
to higher level libraries and applications.

8 Concluding remarks
This paper proposes Eden, an architecture for imple-
menting network functions at end hosts. This involves
applications (stages) classifying application data into
messages and annotating the messages with meta-data.
Enclaves use the message and meta-data information to
apply generic stateful actions on network packets.

Network operators express desired actions in a high-
level language based on F# code quotations; their pro-
grams are compiled to bytecode suitable for execution
by an interpreter that operates in the enclave. The en-
clave compiler and runtime takes care of managing any
state in the enclave, freeing the network programmer
to focus on the functionality to be achieved. The com-
bination of stages, enclave and the interpreted action
language allows expressing a variety of functions in a
natural way and with a small performance penalty.

Acknowledgments
We are indebted to our colleague Andy Slowey for pro-
viding technical support with our experimental setup.
We are also grateful to Rolf Neugebauer, Stuart Wray,
and their colleagues at Netronome for their help with
the NFP3240 NICs. Finally, we thank Dimitrios Vytin-
iotis, Z. Morley Mao and the anonymous SIGCOMM
reviewers for their feedback.

References
[1] M. Alizadeh, T. Edsall, S. Dharmapurikar,

R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam,
F. Matus, R. Pan, N. Yadav, and G. Varghese

CONGA: Distributed Congestion-aware Load Balancing
for Datacenters. In: SIGCOMM. ACM, 2014.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan Data Center TCP (DCTCP). In:
SIGCOMM. ACM, 2010.

[3] K. G. Anagnostakis, M. W. Hicks, S. Ioannidis,
A. D. Keromytis, and J. M. Smith Scalable Resource
Control in Active Networks. In: IWAN. Springer-Verlag,
2000.

[4] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris Reining in
the Outliers in Map-reduce Clusters Using Mantri. In:
OSDI. USENIX, 2010.

[5] L. Andersson, P. Doolan, N. Feldman, A. Fredette,
and B. Thomas LDP Specification. RFC 3036. 2001.

[6] S. Angel, H. Ballani, T. Karagiannis, G. O′Shea, and
E. Thereska End-to-end Performance Isolation Through
Virtual Datacenters. In: OSDI. USENIX, 2014.

[7] M. B. Anwer, M. Motiwala, M. b. Tariq, and
N. Feamster SwitchBlade: A Platform for Rapid
Deployment of Network Protocols on Programmable
Hardware. In: SIGCOMM. ACM, 2010.

[8] W. Bai, K. Chen, H. Wang, L. Chen, D. Han, and
C. Tian Information-Agnostic Flow Scheduling for
Commodity Data Centers. In: NSDI. USENIX, 2015.

[9] H. Ballani, P. Costa, T. Karagiannis, and
A. Rowstron Towards Predictable Datacenter
Networks. In: SIGCOMM. ACM, 2011.

[10] H. Ballani, K. Jang, T. Karagiannis, C. Kim,
D. Gunawardena, and G. O′Shea Chatty Tenants and
the Cloud Network Sharing Problem. In: NSDI. USENIX,
2013.

[11] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier
Using Magpie for Request Extraction and Workload
Modelling. In: OSDI. USENIX, 2004.

[12] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura
An Architecture for Active Networking. In: HPN.
Chapman & Hall, Ltd., 1997.

[13] G. Bianchi, M. Bonola, A. Capone, and C. Cascone
OpenState: Programming Platform-independent Stateful
Openflow Applications Inside the Switch. SIGCOMM
Comput. Commun. Rev. 44, 2 (2014).

[14] P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker
P4: Programming Protocol-independent Packet
Processors. SIGCOMM Comput. Commun. Rev. 44, 3
(2014).

[15] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz
Forwarding Metamorphosis: Fast Programmable
Match-action Processing in Hardware for SDN. In:
SIGCOMM. ACM, 2013.

[16] M. Casado, T. Koponen, S. Shenker, and
A. Tootoonchian Fabric: A Retrospective on Evolving
SDN. In: HotSDN. ACM, 2012.

[17] M. Chowdhury, S. Kandula, and I. Stoica Leveraging
Endpoint Flexibility in Data-intensive Clusters. In:
SIGCOMM. ACM, 2013.

[18] M. Chowdhury, Y. Zhong, and I. Stoica Efficient
Coflow Scheduling with Varys. In: SIGCOMM. ACM,
2014.

[19] Cisco Snort. 2015. url: https://www.snort.org/ (visited
on 06/03/2015).

[20] L. De Carli, Y. Pan, A. Kumar, C. Estan, and
K. Sankaralingam PLUG: Flexible Lookup Modules for
Rapid Deployment of New Protocols in High-speed
Routers. In: SIGCOMM. ACM, 2009.

[21] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon,
T. Anderson, and A. Krishnamurthy ETTM: A
Scalable Fault Tolerant Network Manager. In: NSDI.
USENIX, 2011.

[22] F. R. Dogar, T. Karagiannis, H. Ballani, and
A. Rowstron Decentralized Task-aware Scheduling for
Data Center Networks. In: SIGCOMM. 2014.

506

https://www.snort.org/

[23] N. Feamster, J. Rexford, and E. Zegura The Road to
SDN: An Intellectual History of Programmable Networks.
SIGCOMM Comput. Commun. Rev. 44, 2 (2014).

[24] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and
S. Krishnamurthi Participatory Networking: An API
for Application Control of SDNs. In: SIGCOMM. ACM,
2013.

[25] N. Foster, R. Harrison, M. J. Freedman,
C. Monsanto, J. Rexford, A. Story, and D. Walker
Frenetic: A Network Programming Language. In: ICFP.
ACM, 2011.

[26] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,
L. Yuan, and M. Zhang Duet: Cloud Scale Load
Balancing with Hardware and Software. In: SIGCOMM.
ACM, 2014.

[27] C. Gkantsidis, T. Karagiannis, P. Key, B. Radunovic,
E. Raftopoulos, and D. Manjunath Traffic
Management and Resource Allocation in Small
Wired/Wireless Networks. In: CoNEXT. ACM, 2009.

[28] M. P. Grosvenor, M. Schwarzkopf, I. Gog,
R. N. M. Watson, A. W. Moore, S. Hand, and
J. Crowcroft Queues Don′t Matter When You Can
JUMP Them! In: NSDI. USENIX Association, 2015.

[29] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and
D. Towsley Multi-path TCP: A Joint Congestion
Control and Routing Scheme to Exploit Path Diversity in
the Internet. IEEE/ACM Trans. Netw. 14, 6 (2006).

[30] C.-Y. Hong, M. Caesar, and P. B. Godfrey Finishing
Flows Quickly with Preemptive Scheduling. In:
SIGCOMM. ACM, 2012.

[31] D. F. Hooper Using IXP2400/2800 Development Tools.
A Hands-on Approach to Network Processor Software
Design. 1st ed. Intel Press, 2005.

[32] V. Jeyakumar, M. Alizadeh, C. Kim, and D. Mazières
Tiny Packet Programs for Low-latency Network Control
and Monitoring. In: HotNets-XII. ACM, 2013.

[33] V. Jeyakumar, M. Alizadeh, D. Mazières,
B. Prabhakar, C. Kim, and A. Greenberg EyeQ:
Practical Network Performance Isolation at the Edge. In:
NSDI. USENIX, 2013.

[34] T. Karagiannis, R. Mortier, and A. Rowstron
Network Exception Handlers: Host-network Control in
Enterprise Networks. In: SIGCOMM. ACM, 2008.

[35] A. D. Keromytis Tagging Data in the Network Stack:
Mbuf Tags. In: BSDC’03. USENIX Association, 2003.

[36] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. F. Kaashoek The Click Modular Router. ACM
Trans. Comput. Syst. 18, 3 (2000).

[37] D. Kreutz, F. Ramos, P. Esteves Verissimo,
C. Esteve Rothenberg, S. Azodolmolky, and S. Uhlig
Software-Defined Networking: A Comprehensive Survey.
Proceedings of the IEEE 103, 1 (2015).

[38] V. T. Lam, S. Radhakrishnan, R. Pan, A. Vahdat, and
G. Varghese Netshare and Stochastic Netshare:
Predictable Bandwidth Allocation for Data Centers.
SIGCOMM Comput. Commun. Rev. 42, 3 (2012).

[39] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee,
J.-M. Kang, and P. Sharma Application-driven
Bandwidth Guarantees in Datacenters. In: SIGCOMM.
2014.

[40] A. Likhtarov, R. Nishtala, R. McElroy, H. Fugal,
A. Grynenko, and V. Venkataramani Introducing
mcrouter: A memcached protocol router for scaling
memcached deployments. Facebook. 2014. url:
http://bit.ly/1TpNKo0 (visited on 06/16/2015).

[41] S. McCanne, and V. Jacobson The BSD Packet Filter:
A New Architecture for User-level Packet Capture. In:
USENIX Winter Conf. USENIX, 1993.

[42] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner OpenFlow: Enabling Innovation in
Campus Networks. SIGCOMM Comput. Commun. Rev.
38, 2 (2008).

[43] J. Mogul, R. Rashid, and M. Accetta The Packer
Filter: An Efficient Mechanism for User-level Network
Code. In: SOSP ’87. ACM, 1987.

[44] J. Mudigonda, P. Yalagandula, M. Al-Fares, and
J. C. Mogul SPAIN: COTS Data-center Ethernet for
Multipathing over Arbitrary Topologies. In: NSDI.
USENIX, 2010.

[45] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu,
and F. R. Dogar Friends, Not Foes: Synthesizing
Existing Transport Strategies for Data Center Networks.
In: SIGCOMM. ACM, 2014.

[46] Netronome Netronome FlowNICs. 2015. url:
http://netronome.com/product/flownics/ (visited on
06/03/2015).

[47] P. Patel, D. Bansal, L. Yuan, A. Murthy,
A. Greenberg, D. A. Maltz, R. Kern, H. Kumar,
M. Zikos, H. Wu, C. Kim, and N. Karri Ananta: Cloud
Scale Load Balancing. In: SIGCOMM. ACM, 2013.

[48] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,
and H. Fugal Fastpass: A Centralized ”Zero-queue”
Datacenter Network. In: SIGCOMM. ACM, 2014.

[49] B. Pfaff, J. Pettit, T. Koponen, K. Amidon,
M. Casado, and S. Shenker Extending Networking into
the Virtualization Layer. In: HotNets-VIII. ACM, 2009.

[50] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer,
P. Shelar, K. Amidon, and M. Casado The Design and
Implementation of Open vSwitch. In: NSDI. USENIX,
2015.

[51] L. Popa, A. Krishnamurthy, S. Ratnasamy, and
I. Stoica FairCloud: Sharing the Network in Cloud
Computing. In: HotNets-X. ACM, 2011.

[52] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul,
Y. Turner, and J. R. Santos ElasticSwitch: Practical
Work-conserving Bandwidth Guarantees for Cloud
Computing. In: SIGCOMM. ACM, 2013.

[53] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley How
Hard Can It Be? Designing and Implementing a
Deployable Multipath TCP. In: NSDI. USENIX, 2012.

[54] M. Reitblatt, M. Canini, A. Guha, and N. Foster
FatTire: Declarative Fault Tolerance for Software-Defined
Networks. In: HotSDN. ACM, 2013.

[55] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker Abstractions for Network Update. In:
SIGCOMM. ACM, 2012.

[56] B. Schwartz, A. W. Jackson, W. T. Strayer,
W. Zhou, R. D. Rockwell, and C. Partridge Smart
Packets: Applying Active Networks to Network
Management. ACM Trans. Comput. Syst. 18, 1 (2000).

[57] A. Shieh, S. Kandula, and E. G. Sirer SideCar:
Building Programmable Datacenter Networks Without
Programmable Switches. In: Hotnets-IX. ACM, 2010.

[58] D. Shue, M. J. Freedman, and A. Shaikh Performance
Isolation and Fairness for Multi-tenant Cloud Storage. In:
OSDI. USENIX, 2012.

[59] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and
N. Foster Managing the Network with Merlin. In:
HotNets-XII. ACM, 2013.

[60] D. L. Tennenhouse, and D. J. Wetherall Towards an
Active Network Architecture. SIGCOMM Comput.
Commun. Rev. 26, 2 (1996).

[61] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis,
A. Rowstron, T. Talpey, R. Black, and T. Zhu
IOFlow: A Software-defined Storage Architecture. In:
SOSP. ACM, 2013.

[62] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and
P. Hudak Maple: Simplifying SDN Programming Using
Algorithmic Policies. SIGCOMM Comput. Commun.
Rev. 43, 4 (2013).

[63] D. Wetherall, J. V. Guttag, and D. Tennenhouse
ANTS: a toolkit for building and dynamically deploying
network protocols. In: OPENARCH. IEEE, 1998.

[64] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowtron Better Never Than Late: Meeting Deadlines
in Datacenter Networks. In: SIGCOMM. ACM, 2011.

[65] J. Zhou, M. Tewari, M. Zhu, A. Kabbani,
L. Poutievski, A. Singh, and A. Vahdat WCMP:
Weighted Cost Multipathing for Improved Fairness in
Data Centers. In: EuroSys. ACM, 2014.

507

http://bit.ly/1TpNKo0
http://netronome.com/product/flownics/

	Introduction
	Network Functions
	Examples
	Load balancing
	Datacenter QoS
	Datacenter flow scheduling

	End hosts: A natural enforcement point

	Design
	Design overview
	Eden controller
	Eden stages
	Eden enclave
	Match-action tables
	Action functions
	Interpreter-based execution
	Eden compiler
	Enclave-Controller interface

	Network support

	Implementation
	Interpreter and enclave
	Stages
	Testbed

	Evaluation
	Case Study 1: Flow Scheduling
	Case Study 2: Load-balancing
	Case Study 3: Datacenter QoS
	Overheads

	Discussion
	Related work
	Concluding remarks

