
Packet-Level Telemetry in Large Datacenter Networks

Yibo Zhu1,2 Nanxi Kang1,3 Jiaxin Cao1 Albert Greenberg1 Guohan Lu1 Ratul Mahajan1

Dave Maltz1 Lihua Yuan1 Ming Zhang1 Ben Y. Zhao2 Haitao Zheng2

1Microsoft 2U. C. Santa Barbara 3Princeton University

ABSTRACT

Debugging faults in complex networks often requires cap-
turing and analyzing traffic at the packet level. In this task,
datacenter networks (DCNs) present unique challenges with
their scale, traffic volume, and diversity of faults. To trou-
bleshoot faults in a timely manner, DCN administrators must
a) identify affected packets inside large volume of traffic; b)
track them across multiple network components; c) analyze
traffic traces for fault patterns; and d) test or confirm poten-
tial causes. To our knowledge, no tool today can achieve
both the specificity and scale required for this task.
We present Everflow, a packet-level network telemetry

system for large DCNs. Everflow traces specific packets
by implementing a powerful packet filter on top of “match
and mirror” functionality of commodity switches. It shuffles
captured packets to multiple analysis servers using load bal-
ancers built on switch ASICs, and it sends “guided probes”
to test or confirm potential faults. We present experiments
that demonstrate Everflow’s scalability, and share experi-
ences of troubleshooting network faults gathered from run-
ning it for over 6 months in Microsoft’s DCNs.

CCS Concepts

•Networks→ Network management;

Keywords

Datacenter network; failure detection; probe

1. INTRODUCTION

From online commerce to smartphone apps, datacenter
networks (DCNs) are essential to large online services. DCNs
typically operate at high utilization levels, and even small
performance degradations or fault-induced downtime can lead
to millions of lost revenue. These high stakes argue for a

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17–21, 2015, London, United Kingdom

c© 2015 ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787483

proactive model of DCN management, where infrastructure
observes, analyzes, and corrects faults in near-real time.
Understanding and debugging faults in DCNs is challeng-

ing because faults come in all shapes and sizes. For example:

1. Some packets may experience abnormally high delay
between serversA andB, but it may not be clear which
of the many links is responsible.

2. Packets destined for a specific set of servers may be
dropped, even when the packet-drop counters at switches
exhibit no abnormality.

3. TCP connections to a VIP (Virtual IP) may encounter
intermittent timeouts, and traceroute probes to debug
the issue may be blocked by the load balancers.

4. Load may not be balanced among a group of ECMP
(Equal Cost Multi Path) links; the network administra-
tors do not know if this issue is due to flow size differ-
ences or a deeper problem (e.g., a poor hash function).

The diagnosis of such DCN faults requires examining net-
work behavior at the granularity of packets. Problems such
as faulty interfaces or switch software bugs can produce seem-
ingly random failures that impact specific groups of packets
based on any combination of characteristics, such as route
taken in the network, packet headers, or timing. As a result
of their subtle effects, these failures are often difficult to de-
bug through analyses that rely on flow-level information [7],
aggregate counters [5, 36], or sampled traffic [29]. We re-
fer to tracing, collection and analysis of packet-level traffic
behavior as packet-level network telemetry.
Building a responsive packet-level telemetry system for

large DCNs is challenging for at least three reasons. First,
today’s DCNs carry unprecedented levels of network traffic.
A large DCN usually has over 100,000 servers, each with a
10 to 40 Gbps network connection. At high utilization lev-
els, aggregate traffic can easily exceed 100 Tbps. Analyzing
even tiny subsets of this data is intractable for today’s com-
modity switches, and moving traces to commodity servers
for analysis would congest or even disrupt the network.
Second, DCN faults often occur over multiple hops or

switches, and effective diagnosis requires intelligently trac-
ing small subsets of packets over the network, as well as
the ability to search the packet traces based on sophisticated
query patterns, e.g., protocol headers, sources and destina-
tions, or even devices along the path. This task is not only
akin to searching in the proverbial haystack for needles, but
for specific needles of arbitrary size, shape and color. Ex-

479

http://dx.doi.org/10.1145/2785956.2787483

isting systems that rely on packet-level analysis [14, 31] in-
discriminately trace packets; they cannot scale to the size of
large DCNs or search for packets based on complex patterns.
Finally, passive tracing alone, which captures an instan-

taneous snapshot of the network, has limited effectiveness.
The traces observed in the snapshot may not be enough to
identify whether the problem is transient or persistent, and
they may not provide enough information to localize the
problem. For example, when we see a packet trace stops
before reaching its final destination, we may not be able to
tell if this is due to a random drop or a blackhole.
We present Everflow, a network telemetry system that pro-

vides scalable and flexible access to packet-level informa-
tion in large DCNs. To consistently trace individual packets
across the network, Everflow uses “match and mirror." Com-
modity switches can apply actions on packets that match on
flexible patterns over packet headers or payloads; we use this
functionality with mirroring packets to our analysis servers
as the action. By installing a small number of well-chosen
match-and-mirror rules means we can reap the benefits of
packet-level tracing while cutting down the overhead by sev-
eral orders of magnitude. To quickly search for patterns in
large volumes of packet traces, we build a scalable trace
collection and analytics pipeline. We leverage switch-based
load balancing [12] to distribute tracing and processing across
multiple servers while preserving flow-level locality for ef-
ficient analysis. Finally, Everflow supports guided probes—
packets that are specially crafted and injected into the net-
work to follow preset paths. Guided probes help validate the
performance and behavior of individual devices or links.
Everflow has been deployed since August 2014 in part

of Microsoft’s DCN infrastructure, including a cluster of 37
switches and a larger cluster of 440 switches. Both clusters
carry a wide range of application traffic. We have also de-
ployed Everflow selectively on-demand to other production
clusters to help debug tricky network faults. We capture our
deployment experiences by describing several representative
debugging cases in §7, including latency problems, packet
drops, routing loops, ECMP load imbalance, and protocol-
specific issues around RDMA (Remote Direct Memory Ac-
cess). In each case, we describe the observed symptoms,
steps taken, and how a solution was found using Everflow.
We also perform detailed microbenchmarks to quantify

the performance of Everflow along key aspects, including
packet analysis rate, bandwidth and storage overhead, and
overall system scalability. Our evaluations consistently show
that all components of Everflow impose low overheads, and
scale well to large DCNs with 100 Tbps of traffic.
In developing Everflow, we sought to address a real need

for scalable, packet-level telemetry which can debug faults
that are hard to tackle via conventional techniques. We prior-
itized usability and simplicity over functionality or features,
e.g., Everflow works on commodity switches and requires
no specialized hardware. Our experiences with Everflow
demonstrate that it scales well to large DCNs, and provides
significant benefits to network administrators.

2. PACKET-LEVEL NETWORK TELEMETRY

Operational DCNs comprise a wide range of hardware
and software components, includingmultiple types of switches,
load balancers, and servers dedicated for processing and stor-
age. Faults can and do arise from any single or combination
of components, which makes debugging quite challenging
in practice. In this section, we describe a number of sam-
ple faults that commonly occur in large DCNs, to illustrate
why conventional tools are insufficient and why packet-level
network telemetry is useful.
Silent packet drops: drops not reported by the culprit
switch (e.g., discard counters are zero). This situation may
occur due to software bugs or faulty hardware on the switch.
Although such drops can be detected on end hosts (e.g., by
monitoring TCP retransmissions), it is quite tricky to local-
ize the culprit switch using conventional tools because of the
large number of switches in DCNs. With consistent tracing
of specific packets across switches, we can immediately lo-
cate the last hop switch where the victim packets appear as
well as their expected next hop switch(es). We then send
guided probes to each next hop switch to confirm the culprit.
Silent blackhole: the type of routing blackhole that does
not show up in forwarding tables. Therefore it cannot be
detected by tools that examine forwarding table entries [22,
23]. Silent blackhole can happen due to corrupted entries in
TCAM tables. Packet-level network tracing will allow us to
detect and localize a silent blackhole similar to how we deal
with silent packet drops.
Inflated end-to-end latency: high latency for a flow. It
is yet another problem that is easy to detect by end hosts,
but can be difficult to debug using conventional tools. With
packet-level network traces across switches, this problem
becomes trivial, since we can obtain hop-by-hop latencies
between the two end points.
Loops from buggy middlebox routing: routing problems
caused by middleboxes instead of switches (or routers). This
may happen when a middlebox incorrectly modifies a packet
and its forwarding behavior (see §7.3). Such a problem can-
not be found by examining the switch routing or forwarding
tables because the tables are all correct. Given the network
trace of a packet, we can easily identify such a problem as
the trace will violate basic invariants such as loop-freedom.
Load imbalance: the problem of (5-tuple) flows being
forwarded unevenly by a group of ECMP links. The naive
detection method of comparing load counters at ECMP links
can have false positives, since link load differences may ac-
tually be caused by differences in flow size (to be expected).
Even when load imbalance is confirmed, the counters are too
coarse-grained to answer key questions for debugging, such
as “is the imbalance caused by flows that match specific pat-
terns?” A packet-level network telemetry system allows us
to count the number of specific 5-tuple pattern flows mapped
to each link and thus offers a more reliable and direct method
of detection and debugging.
Protocol bugs: bugs in the implementation of network
protocols such as BGP, PFC (Priority-based Flow Control)

480

and RDMA (Remote Direct Memory Access). When a pro-
tocol misbehaves, performance and reliability of the network
suffers. Troubleshooting protocol bugs is tricky, because
many protocols are implemented by third-party (switch and
NIC) vendors and cannot be easily instrumented. Tracing
the packets of these protocols offers a reliable yet indepen-
dent way to identify protocol misbehaviors. Here network
telemetry is particularly suitable because host-based tracing
may be too expensive (e.g., for RDMA) or unavailable (e.g.,
for PFC and BGP).

3. OVERVIEW OF EVERFLOW

This section outlines the challenges in designing a scal-
able packet-level network telemetry system and introduces
the key ideas in Everflow to address these challenges.

3.1 Design challenges

Tracing and analysis scalability. The first challenge fac-
ing packet-level network telemetry for large DCNs is scal-
ability of trace collection. As mentioned earlier, the traf-
fic in a large DCN (with 100,000+ servers) can easily go
beyond 100 Tbps. Tracing packets at this scale will con-
sume a tremendous amount of network and server resources.
Consider a typical scenario where the average packet size is
1,000 bytes, each mirrored packet is truncated to 64 bytes
(the minimum Ethernet frame size), and the network diam-
eter is 5 hops (in a typical 3-tier Clos topology). If we sim-
ply trace every packet at every hop, as proposed in Packet
History [14], the tracing traffic will be 64B

1000B × 5(hops) ×

100(Tbps) = 32(Tbps).1 Such a high rate of tracing traf-
fic may cause congestion and packet drops, especially when
network utilization is already high.
A similar same scalability challenge applies to trace anal-

ysis. Because commodity switches have limited storage and
CPU power, traced packets must be sent to servers for analy-
sis. Even assuming a server can process tracing traffic at line
rate (10 Gbps), we will still need 32(Tbps)

10(Gbps) = 3, 200 servers
for analysis which is prohibitively expensive.
Done naively, the situation can be worse. For most types

of analysis (see §4.1 for details) require the per-hop trace of
the same packets to be sent to the same analysis server. This
stickiness can be achieved by having switches send traced
packets to a set of reshufflers which then reshuffle the pack-
ets according to the hash of the packet header. Adding these
reshuffling servers will double the total number of servers.
Limitations of passive tracing. In practice, passive trac-
ing alone may not provide enough information for network
troubleshooting. Fig 1(a) shows a scenario where a packet p
is last seen at switch S1 but not at the next hop switch S2.
Although this situation indicates that p is dropped at S2, one
cannot determine whether the problem is transient (which
could be ignored) or persistent (which requires attention).

1Packet History [14] proposed techniques to reduce the
bandwidth overhead. But these techniques require heavy
modifications to both switching ASIC and the host network-
ing stack and are thus hard to deploy in current networks.

One possible solution is to correlate multiple traces with
dropped packet at S2. However, there may not be enough
traces available for such correlation because: i) the victim
flows may have very few packets; ii) only a small fraction of
packets are traced due to sampling. Even if we could know it
is a persistent drop event, we will still have difficulty in fig-
uring out whether this is a random drop (e.g., due to a faulty
cable) or a blackhole that only drops the packets of certain
5-tuples.
Fig 2(a) shows another scenario where a packet p traverses

switches S1 and S2 and the two traced packets are sent to an
analyzer A. To avoid the clock synchronization problem on
S1 and S2, we try to calculate the latency of link (S1, S2)
using the timestamps of the two traced packets on A. How-
ever, this cannot be done because the path S1 → A can be
quite different from the path S2 → A.

3.2 Key ideas

Everflow addresses these challenges with four key ideas.
The first three tackle the scalability challenge while the last
one overcomes the limitations of passive tracing.
Match and mirror on switch. Commodity DCN switches
can match based on pre-defined rules and then execute cer-
tain actions (e.g.,mirror and encapsulate), which do not change
original packet forwarding behavior. Everflow leverages this
capability to reduce tracing overhead. Specifically, we de-
sign three types of matching rules to handle common DCN
faults (§2). This rule set is by no means exhaustive and can
be expanded to other types of faults.
First, we design matching rules to capture every flow in

DCNs. The most straightforward rule is to randomly trace

1 out of n packets,2 which is heavily biased towards large
flows. In a DCN where the flow size distribution is highly
skewed, this approach will miss many small flows. Yet these
small flows are often associated with customer-facing, in-
teractive services with strict performance requirements. To
cover small flows, we configure a new set of rules that match
based on the TCP SYN, FIN and RST fields in packets.
Since DCN traffic is typically dominated by TCP [21], these
rules allow us to trace every TCP flow in DCNs.
Second, we configure additional matching rules to enable

flexible tracing. Basic TCP matching may not catch every
type of fault, e.g., the packet drops in the middle of a TCP
flow. In fact, the exact set of traced packets that are needed
depends on the nature of the fault. For instance, we may
want to trace the packets of a particular application, with
a specific port number, or between certain pairs of servers.
To support such flexible tracing, we allow the packets to be
marked by a special “debug” bit in the header. The marking
criteria can be defined in any manner, as long as the total
tracing overhead stays below a threshold. In the switches,
we install a rule to trace any packet with the “debug” bit
2This differs from the random sampling in sFlow [29] –
Everflow ensures the same set of packets will be sam-
pled and traced across all switches while in sFlow different
switches may sample a different set of packets. That is one
of the reasons why we cannot use sFlow for tracing in our
system.

481

(a) Passive tracing is insufficient

(b) Guided probing confirms the
problem

Figure 1: Debugging packet

drops

(a) Extracting link latency from passive
tracing is hard

(b) Guided probing can accurately mea-
sure link latency

Figure 2: Measuring link latency

(a) Encapsulation breaks the packet trace

(b) Obtaining the complete packet trace by
matching on inner header

Figure 3: Handling packet encapsula-

tion

set, which is similar to how a software developer sets the
debug flag during compilation to enable fine-grained tracing
in their code. As a result, Everflow can efficiently trace any
subset of regular data packets.
Finally, our tracing coverage goes beyond data packets. A

DCN has a small amount of traffic associated with network
protocols such as BGP, PFC, and RDMA. We call it protocol
traffic to distinguish from regular data traffic. Although the
absolute volume of the protocol traffic is small, it is critical
for the overall DCN health and performance. Thus, Everflow
has rules to trace all the protocol traffic.
Scalable trace analyzers. Although matching rules limit
tracing overhead, the total amount of tracing traffic can still
be huge because of the sheer scale of the DCN. To reduce
analysis overhead, we observe that at any time only a tiny
fraction of the traced packets (<0.01%) will exhibit abnor-
mal behaviors (e.g., loops or drops). This observation mo-
tivates us to treat abnormal packet traces differently from
normal traces, e.g., keep detailed, per-hop state for the for-
mer and aggregate, per-device state for the latter. As we
explain in §4.1, this differential treatment helps reduce anal-
ysis overhead by three orders of magnitude. If needed, we
can selectively recover the lost information in the normal
traces via guided probes (described below).
Switch-based reshuffler. As mentioned in §3.1, we need
a low-cost way to reshuffle a large volume of tracing traf-
fic. We leverage work on turning a commodity switch into a
hardware Mux (HMux) for load balancing [12]. The idea is
to first define a VIP (virtual IP) on an HMux, which will map
to a set of DIPs (direct IPs) where each DIP corresponds to
an analysis server. We then configure all switches to send
traced packets to the VIP. When a traced packet p reaches
the HMux, the HMux redirects p to a DIP based on the hash

of p’s 5-tuple. This ensures that the traced packets of the
same 5-tuple will be redirected to the same DIP.
An HMux can reshuffle traffic using the full forwarding

capacity of a switch (typically > 1 Tbps). This is at least 100
times faster than a server with a 10 Gbps NIC, and dramat-
ically cuts down the cost of reshuffling. We can further in-
crease reshuffling capacity by configuring multiple HMuxes
with the same VIP [12].
We need to pay special attention to encapsulated packets.

(For now, let us ignore traced packets that are also encap-
sulated. We explain how to handle them in §6.1.) Packet
encapsulation is often used in DCNs for load balancing [28]
and network virtualization [24]. Fig 3(a) shows an example
of how a SLB (Software Load Balancer) Mux may break the
trace analysis. The original destination IP of a packet p is a
VIP (Virtual IP). A Mux will encapsulate p with a new DIP
(Direct IP) as the destination. Because of this, the traced
packets of the original p and the encapsulated p are sent to
two different analyzers, and are processed separately. To ad-
dress this problem, we install a rule that matches on the inner
header of an encapsulated packet, and configure HMuxes to
hash based on inner header fields. This allows us to trace p’s
complete path from source to DIP (see Fig 3(b)).
Guided Probing. As mentioned earlier, a packet drop
could happen due to multiple reasons. Sometimes, passive
tracing alone may be insufficient to disambiguate between
these possibilities. This ambiguity leads to the following
question: what if we could arbitrarily replay a packet trace?
More specifically, what if we could inject any desired packet
into any desired switch and trace the behavior of the injected
packet (by setting its debug bit)? We call this guided probing
and will describe it in more detail in §6.2.
One immediate use of guided probing is to recover the lost

482

tracing information due to trace sampling or aggregation. To
recover the trace of any packet p, we simply need to inject p
into the first hop switch (with its debug bit set).
Further, guided probing is useful in overcoming the lim-

itations of passive tracing. In the example of Fig 1(b), we
can inject multiple copies of p into switch S2 to see whether
p is dropped persistently or not. In addition, we can craft
probe packets with different patterns (e.g., 5-tuples) to see
if the drops are random or specific to certain 5-tuples. Such
probing cannot debug transient faults because they may dis-
appear before probing is initiated. We consider this limita-
tion acceptable because persistent faults usually have a more
severe impact than transient ones.
We extend guided probing such that it can not only inject

a packet into a desired switch but also cause a packet to tra-
verse a desired sequence of hops (similar to source routing).
This extension allows us to measure the roundtrip latency of
any link in the network, as illustrated in Fig 2(b). A probe
packet p is instructed to traverse S1 → S2 → S1. Because
p traverses S1 twice, S1 will generate two traced packets
of p at time t1 and t2 separately, and t2 − t1 equals to the
roundtrip latency of link (S1, S2).
Since many commodity switches today do not provide the

timestamping function, we cannot obtain t1 and t2 directly.
However, observer that the two traced packets of p are close
in time (e.g., within 1 ms) and take exactly the same path
from S1 to the analyzer. Thus we can use the difference in
their arrival time at the analyzer to approximate t2 − t1.

4. TRACE COLLECTION AND ANALYSIS

We now present the trace collection and analysis pipeline
of Everflow. As shown in Fig 4, it consists of four key
components: the controller, analyzer, storage and reshuf-

fler. On top of that, there are a variety of applications that
use the packet-level information provided by Everflow to
debug network faults. The controller coordinates the other
components and interacts with the applications. During ini-
tialization, it configures the rules on switches. Packets that
match these rules will be mirrored to the reshufflers and the
directed to the analyzers which output the analysis results
into storage. The controller also provides APIs which allow
Everflow applications to query analysis results, customize
counters on the analyzers, inject guided probes, and mark
the debug bit on hosts. We describe the analyzer and con-
troller in this section and the reshuffler and storage in §6.

4.1 Analyzers

The analyzers are distributed set of servers, each of which
processes a portion of tracing traffic. The reshufflers will
balance the loads among the analyzers and ensure that the
traced packets of the same 5-tuple are sent to the same ana-
lyzer (§3.2). Each analyzer keeps two type of states: packet
trace and counter.
Packet trace. The analyzer keeps a table of packet traces
where each trace is a chain of the mirrored instances of the
same original packet. A trace is uniquely identified by the
5-tuple and the IPID of the original packet. It has one copy

Figure 4: Everflow architecture

of the full packet content and a set of per-hop information,
including the IP address of the switch where the packet is
mirrored, timestamp, TTL, source MAC address (to identify
the previous hop), and DSCP/ECN. A trace is considered
complete when no new packet arrives for 1 second (which is
much smaller than the end-to-end latency inside a DCN).
For each complete packet trace, the analyzer checks for

two types of problems: loop and drop. A loop exhibits as
the same device appearing multiple times in the trace. A
drop is detected when the last hop of the trace is different
from the expected last hop(s) which can be computed using
the DCN topology and routing policy. For example, the ex-
pected last hop of a packet destined to an internal IP address
of the DCN is the ToR switch directly connected to the IP
address. The expected last hops of a packet destined to an
external IP address are the border switches of the DCN.
To correctly handle packet encapsulation due to SLB (see

Fig 3(a)), we merge the traces of an original packet po and an
encapsulated packet pe if the 5-tuple and IPID of pe’s inner
IP header match those of po’s IP header.
Despite of the use of match and mirror, the amount of

packet traces can still be huge. To further reduce the storage
overhead, each analyzer will only write to storage the traces
that exhibit abnormal behaviors (e.g., loop or drop), have the
debug bit set (e.g., guided probes), or correspond to the pro-
tocol traffic (e.g., PFC and BGP). For the other traces (which
represent a vast majority of all traces), each analyzer will ag-
gregate them into the types of counters listed below and then
periodically (e.g., once every 10 seconds) write these coun-
ters into the storage. In the end, the controller combines the
counters from individual analyzers into the final ones.
Link load counters. For each link, the analyzer will com-
pute the aggregate load (e.g., number of packets, bytes and
flows) from the packet traces. Besides that, it may also com-
pute more fine-grained load counters, e.g., the load gener-
ated by certain prefixes or by intra-DC traffic. These fine-
grained load counters can be dynamically added or removed
by Everflow applications via the controller.
Latency counters. The analyzer will compute the latency
of each link from the traces of guided probes (see §6.2).
For any packet trace that traverses a SLB Mux, it will also

483

Figure 5: Detecting the drop of mirrored packets

compute the latency of the Mux. This process is shown in
Fig 3(b) where a Mux server is connected to a ToR switch
that mirrors both the original packet po and the encapsulated
packet pe. Because the mirrored instances of po and pe will
take the same path from the ToR switch to the same analyzer
(as explained in §3.2), we can estimate the Mux latency us-
ing the arrival time difference between them at the analyzer.
The estimatedMux latency includes the round trip latency of
the link between the ToR switch and the Mux, which is neg-
ligibly small compared to the Mux latency. To save space,
the analyzer will quantize individual latency samples into
predefined bins in a latency histogram.
Mirrored packet drop counters. A mirrored packet may
be dropped before reaching the analyzer. We can often in-
fer such a drop from the packet trace. Fig 5 shows that a
packet p traverses switches S1 and S2. However, p’s trace
contains only S2 but not S1, clearly indicating that p’s mir-
rored packet from S1 is dropped. In our current deployment,
we found the drop rate is low (around 0.001%).
Sometimes mirrored packets may be dropped due to con-

gestion near a particular reschuffler or analyzer. To further
increase the reliability of our trace collection pipeline, we
deploy multiple reshufflers and analyzers in different parts
of the DCN and shift mirrored traffic away from any con-
gested reshuffler and/or analyzer that exhibits a high mir-
rored packet drop rate.

4.2 Controller APIs

Everflow applications interact with the controller via sev-
eral APIs to debug various network faults. With these APIs,
the applications can query packet traces, install fine-grained
load counters, trigger guided probes, and selectively trace
traffic by marking the debug bit.
GetTrace(Filter, Condition, StartTime, EndTime) is used

to get the packet traces between StartT ime andEndT ime.
The Filter parameter specifies the types of traced packets to
be filtered and is similar to the widely-used display filter in
Wireshark. It allows filtering based on the Ethernet, IP, TCP,
or UDP headers of the original packets as well as the outer
IP header of the mirrored packets (which contains the IP ad-
dress of the switch that sends the mirrored packets as shown
in Fig 6). For example, the Filter “ip.proto == 6 && ip.dst
== 192.16.0.0/16&& switch == 10.10.0.10”matches all the
TCP packets going to 192.16.0.0/16 and mirrored by switch
10.10.0.10. The Condition parameter specifies the proper-
ties of the traces that cannot be extracted from the packet

headers. For example, it allows filtering based on whether
the traces contain a drop or a loop, or have a SLB Mux la-
tency larger than 1 ms (if the traces traverse a Mux).
GetCounter(Name, StartTime, EndTime) is used to re-

trieve the counter values betweenStartT ime andEndT ime.
Each counter is identified by a descriptive Name, such as
“SwitchX_PortY_TCP”.
AddCounter(Name, Filter) & RemoveCounter(Name) are

used to dynamically add or remove fine-grained load coun-
ters. The Filter parameter is the same as above.
Probe(Format, Interval, Count) is used to launch guided

probes. The probing results can later be retrieved viaGetT race()
and GetCounter(). The Interval and Count parameters
specify the frequency and total number of probes to send.
The Format parameter specifies the format of the probe
packets, including the L3 and L4 headers. It is similar to
the Filter parameter described above, with a minor change
to support packet encapsulation. For example, “ip.src ==
SIP1,SIP2 && ip.dst == DIP1,DIP2 && ip.proto == 6” de-
fines an IP-in-IP encapsulated TCP probe, whose outer source
IP is SIP1, outer destination IP is DIP1, inner source IP is
SIP2 and inner destination IP is DIP2.
EnableDbg(Servers, Filter) & DisableDbg(Servers, Fil-

ter) are used to mark or unmark packets with the debug bit on
certain servers. The Filter parameter is the same as above.
The controller accepts the EnableDbg() request if the total
amount of traced traffic does not exceed system capacity.

5. EVERFLOW APPLICATIONS

Writing applications using Everflow APIs is straightfor-
ward. We now present several example applications to debug
the network faults described in §2.
Latency profiler. Many DCN services, e.g., search and
distributed memory cache, require low latency. To find out
why the latency between any pair of servers is too high,
the latency profiler will first mark the debug bit of the TCP
SYN packets between the two servers. From the traces of
these packets, it knows the network devices on the path and
then launches guided probes to measure the per-hop latency.
Guided probing measures the roundtrip latency of each link
instead of the one-way latency. This degree of localization
suffices in practice. With this localization information, the
profiler can quickly identify the network devices that cause
the problem.
Packet drop debugger. Packet drops can severely degrade
application performance, causing low throughput, timeouts
or even unreachability. They are notoriously difficulty to
debug as they happen due to many different reasons such
as congestion, software bugs, or configuration errors. Our
packet drop debugger routinely examines the packet traces
that show packet drops. Given such a trace of a packet p,
the debugger will infer the next hop switch Sn based on the
last hop where p is captured. For example, Sn can be in-
ferred either from p’s output interface at the last hop switch
or from the DCN topology and routing. After that, it will in-
ject guided probes to Sn to determine whether the drops are

484

persistent and, if so, whether the drops are random or have
any patterns (e.g., specific 5-tuples).
Loop debugger. Loops are uncommon in DCNs. How-
ever, when they do appear, they can cause unnecessary waste
of resources or connectivity problems. Our loop debugger
watches for packet traces that contain a loop. When a loop
is detected, it first injects guided probes to see if the loop is
persistent. If so, it reports the list of devices in the loop to the
operators who can then break the loop by disabling one of
the device interfaces. During this process, the debugger can
continue to inject guided probes until the loop disappears.
ECMP profiler. In DCNs, switches often use ECMP to
split traffic to the next hops. The load split may be uneven
due to poor hash functions or routing problems, causing link
congestion. For each switch, our ECMP profiler will moni-
tor the aggregate load of all the links. When an uneven load
split is detected, it will drill down through more fine-grained
load counters to find out whether the uneven split impacts
all traffic or just a subset (e.g., the traffic from/to certain pre-
fixes). The profiling results help the operators quickly detect
and localize the problem.
RoCEv2-based RDMA debugger. RoCEv2-based [18]
RDMA (Remote DirectMemoryAccess) is an emerging pro-
tocol for achieving high throughput (40 Gbps) and ultra-low
latency (several microseconds) with low CPU overhead. By
leveraging PFC (Priority-based Flow Control) to enable a
drop-free Ethernet fabric, the RDMA protocol implementa-
tion can be simplified and offloaded to the NIC. However,
in our DCNs, we find that RDMA sometimes cannot attain
its ideal performance due to software bugs in the NIC. De-
bugging these problems is hard because the NICs are built by
third-party vendors and we have limited means to instrument
the RDMA code on the NICs.
We build a RDMA debugger in Everflow. It traces all the

control packets related to RDMA, such as PFC and NACK
(Negative Acknowledgement). The control packet traces of-
fer a reliable and yet independent way not only to observe
the actual behavior of RDMA flows but also to debug the
implementation issues inside the third-party vendor’s code.

6. IMPLEMENTATION

The entire Everflow system is implemented in roughly
10K lines of code in C++. The five Everflow applications are
written in roughly 700 lines of code in C# in total. Below,
we omit the details of the controller (whose implementation
is fairly straightforward) and the reshuffler (which is simi-
lar to the Mux described in Duet [12]); we focus on other
aspects instead.

6.1 Switch configurations

By default, we configure rules in the TCAM table to match
on TCP SYN/FIN/RST flags. We use a bit in the DSCP field
as the debug bit, and n bits in the IPID field to sample 1 out
of 2n packets. For example, by configuring a rule to match
on 10 bits in the IPID field, we will sample 1 out of 1,024
packets. Since every switch has the same rules, the set of
sampled packets will be consistent across all switches. For

Figure 6: Format of mirrored packet

any encapsulated packet, we configure rules to match on its
inner TCP/IP headers to ensure that it is sent to the same
analyzer as its original packet (§3.2). Finally we configure
rules to match on Ethernet type 0x8808 (L2 control packets
including PFC), TCP port 179 (BGP packets), and RDMA
NACK [17]. The total number of rules is around 20, which
consumes only a small fraction of the TCAM table.
When a packet matches any rule, the switch will mirror

it and encapsulate the mirrored packet using GRE (Generic
Routing Encapsulation). Fig. 6 shows the format of the GRE
packet, where the source IP is the switch loopback IP, the
destination IP is the VIP of the reshufflers, and the payload
is the original packet (starting from the L2 header). Inside
the GRE header, there is a protocol field which is used to
indicate that this is an Everflowmirrored packet. We config-
ure every switch with a blacklist rule to prevent mirroring a
mirrored packet.
“Match and mirror” is completely done in a switch’s data

plane. This implementation leverages the huge packet pro-
cessing capacity of switching ASIC and incurs zero over-
head on a switch’s CPU.

6.2 Guided prober

The key function of a prober is to inject any desired packet
into any target switch S. It uses the raw socket APIs to craft
arbitrary packet fields, e.g., the IP and L4 (TCP, UDP, ICMP,
etc.) headers. The crafted packet p has the debug bit set
to enable tracing and carries a signature in the payload so
that it can be easily identified by the Everflow analyzer. To
send p to S, we leverage the decapsulation capability that
is widely available on commodity switches. We first create
the probe packet p′ by encapsulating p with S’s loopback
IP as the destination, and send p′ out. We also configure a
rule on S to decapsulate any encapsulated packet destined
to S’s loopback IP address. Thus upon receiving p′, S will
decapsulate p′ into p and then process p according to the
normal forwarding logic.
In fact, we can extend the technique above to instruct p′ to

follow any desired route by encapsulating p multiple times.
This can be used to measure the latency of any link (S1, S2)
as shown in Fig 2(b). We simply need to craft p with S1 as
the destination, encapsulate it with S2 as the destination, and

485

encapsulate it again with S1 as the destination. The resulting
p′ will follow the route S1 → S2 → S1 as required in §3.2.
To prevent guided probe packets from interferingwith server

applications, we deliberately set their TCP or UDP check-
sum incorrectly so that they will be discarded by servers.

6.3 Analyzer

The analyzers use a custom packet capturing library to
capture mirrored packets. The library supports RSS (Re-
ceiver Size Scaling) [2] which allows an analyzer to receive
packets using multiple CPU cores. The library hashes pack-
ets to CPU cores based on source and destination IPs, using
inner source and destination IPs if packets are encapsulated.
We run multiple analysis threads to maximize throughput.

6.4 Storage

The Everflow storage is built on top of SCOPE [6]—a
scalable, distributed data processing system. In SCOPE,
data is modeled as tables composed of rows of typed columns.
These tables can be processed by SQL-like declarative scripts,
which support user-defined operators, such as extractors (pars-
ing and constructing rows from a file), processors (row-wise
processing), reducers (group-wise processing), and combin-
ers (combining rows from two inputs).
We store packet traces in a multi-column table, where

each row corresponds to a packet trace. The columns con-
tain three parts of information about the packet trace. The
first part is the full packet content. The packet header and
payload are stored in separate columns to simplify process-
ing. The second part is the per-hop information, e.g., times-
tamp, TTL, source MAC address and DSCP-ECN. Since the
number of hops is variable, we combine all the per-hop in-
formation into one column. The last part is the metadata of
the trace, including the trace length, whether it is a guided
probe, or whether it has a loop or a drop. The traces can be
retrieved by the controller based on the filter, condition,
and time range defined in §4.2.
We also store the counters from all the analyzers in a table.

Each row in the table represents one snapshot of a counter
from an analyzer. Besides the key and value of the counter, a
row also contains the analyzer’s ID and the timestamp when
the snapshot was taken. To respond to a counter query, the
controller will sum up the counter values of the rows that
match the given counter name and time range.

7. DEPLOYMENT AND EXPERIENCE

We deployed Everflow in two Microsoft DCN clusters
in August 2014. The first one is a full deployment in a
pre-production cluster (Cluster A) with 37 switches. The
second one is a pilot deployment to 440 out of more than
2,500 switches in a production cluster (Cluster B). Both clus-
ters carry traffic for many DC applications. In addition, we
also enabled Everflow on certain production switches on de-
mand to debug live incidents. Currently, we are extending
Everflow deployment to more switches and clusters. In the
following, we will share our experience in using Everflow to
debug a variety of common DCN faults (§2).

7.1 Latency problem

A multi-tier search application complained about large la-
tency jitters between a set of servers. The application allo-
cates a strict per-tier latency bound of 1 ms, which includes
server processing time. Due to the use of ECMP routing in
our DCN (Fig 7(a)), there are hundreds of links that could
cause this problem. It was extremely difficult for operators
to identify the culprit switch or link.
One possibility was to use traceroute to infer per-link la-

tency. However, traceroute measures the RTT between a
probing server and a switch, which is impacted by all the
links on the forward and reverse paths. Moreover, because
the traceroute probe is processed by the switch CPU, the
measured RTT will be inflated by the switch control plane
delay which may be highly variable. Thus, the RTT mea-
sured by traceroute will be very noisy and even unusable.
Our latency profiler was called for help. It marked the

debug bit for the application traffic sent or received on the
afflicted servers, and learned the links on the path. It sub-
sequently sent out guided probes to measure all the relevant
links in parallel. Fig 7(b) plots a portion of the latency time-
series on a subset of the links. Intermittently, Link A would
have a much larger latency variability than the other links,
sometimes even approaching 0.8 ms. This left little time for
servers to complete their computations. After further investi-
gation, the operators confirmed that this problem was caused
by a misconfigured ECN (Explicit Congestion Notification)
threshold that allowed excessive queue build up.
Summary. Unusually high latency is one of the most com-
mon problems in DCNs and is hard to debug using conven-
tional tools. The fine-grained latency measurements pro-
vided by Everflow help operators localize the problem in
minutes instead of hours.

7.2 Packet drops

7.2.1 Blackhole

Many clients of an internal web service reported that a
fraction of their connection establishment requests were en-
countering timeouts. However, a few retrials of the connec-
tion requests would eventually succeed. This led to the vi-
olation of the SLAs (Service Level Agreements) of the web
service and raised alerts to the network operator.
The operator suspected that this problemwas due to packet

drops. However, he had no clue where the drops happened
because the web service was behind a VIP (virtual IP) which
was hosted on multiple software Muxes. A client’s request
could be sent to any one of the Muxes and then redirected to
any one of the many DIPs (direct IPs). This means the drops
could happen anywhere between the clients and the Muxes,
on one of the Muxes, or between the Muxes and the DIPs.
He first checked the error counters on theMuxes but found

no problem. Then he checked the counters on a number of
switches, some of which showed minor drops. But none of
the switch counters was significant enough for him to reach
a reliable conclusion. At this point, he was stuck and had to
elevate the alert.

486

(a) Many links may be responsi-
ble for the latency problem

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600

L
in

k
 L

a
te

n
c
y
 (

m
s
)

Time (second)

Link A
Link B
Link C

(b) Latency profiling results

Figure 7: Profiling link latency Figure 8: A switch blackholes packets

to a DIP behind a SLB Mux

We ran the packet drop debugger to investigate this issue.
From the drop debugger, we observed that many SYN packet
traces that did not reach the DIPs after traversing the Muxes
and that all these abnormal traces stalled one hop before the
same switch S. The drop debugger subsequently launched
guided probes, with the same 5-tuples as the dropped SYN
packets, to S to validate the drops. The results showed that
all the SYN packets destined to a specific DIP were dropped
by S, suggesting that S was blackholing the packets to the
DIP (Fig 8).
Informed by our analysis, the operator analyzed the sus-

pect switch thoroughly and found that one of the forwarding
entries in the TCAM table was corrupted. Any packet that
hit the corrupted entry would be dropped. Even worse, the
switch did not report such drops in any counter. After a re-
boot, the switch started behaving normally and the timeout
problem went away as well.

7.2.2 Silent packet drop

Many DC applications in Cluster B detected abnormally
high levels of TCP retransmissions. At the same time, the
network-wide end-to-endmonitoring system also showed that
the ping probes between certain server pairs were experienc-
ing around 2% loss rate. This caused severe performance
degradation to the applications running in the network.
As was usual, the operator started with the switch counters

but did not see anything particularly wrong. Given that the
end-to-end probes did show drops, he suspected that this was
caused by one switch silently dropping packets. The conven-
tional approach to debug such a problem is to use tomogra-
phy, e.g., inferring the rough location of the culprit switch
by sending many pings and traceroutes to exhaustively ex-
plore the paths and links in the network. After narrowing
down to a few suspects, the operator would try to pinpoint
the culprit by disabling and enabling the suspects one by
one. However, since the DCN has nearly 25,000 links, such
a brute-force approach will impose significant overhead and
can easily take several hours.
Our packet drop debugger simplified the debugging pro-

cess. From all the packet traces in the storage, it first ex-
tracted the ones that encountered drops during the same time

period. Based on where the problematic traces stopped, the
debugger quickly identified one suspect switch which ap-
peared to be the next hop of most of the problematic traces.
It then sent 1,000 guided probes to test each interface on
the switch. In the end, the root cause was found to be one
faulty interface on the switch that silently dropped a fraction
of packets at random. All the application alerts stopped after
the faulty interface was disabled.

7.2.3 Packet drops on servers

In this incident, one internal application alerted that the
throughput between its senders and receivers was 15% lower
than normal. The application used UDP as the transport pro-
tocol and had many senders and receivers. All the receivers
reported roughly equal amount of throughput loss. To isolate
the UDP packet drops, the sender’s team, receiver’s team and
network team were involved.
Due to the large number of senders, the sender’s team

could only sample a few senders and capture packets on
those senders. From the captured traces, they confirmed that
the packets were indeed sent. The receiver’s team did the
same thing on several receivers and found that packets were
partially received. However, because the loads on the re-
ceivers were pretty high, they could not determine whether
the missing packets were dropped by the network or by the
receivers’ NIC. At this stage, neither the network nor the re-
ceiver’s teams could be released from debugging.
To find out where the packets were dropped, the network

team used the Everflow drop debugger to mark the debug bit
on a subset of the senders’ traffic. From the resulting packet
traces, the debugger showed that all the marked UDP pack-
ets successfully traversed the network and reached the last
hop ToR (Top-of-Rack) switches to which the receivers were
connected. Thus, the packet drops were happening at the re-
ceivers. After more investigation, the problem was found
to be a recent update on the senders that caused some mes-
sages to use a new format which were not recognized by the
receivers. Without Everflow, the network team would have
a hard time proving that the drops were not in the network.
Summary. Packet drop is a common source of perfor-
mance faults in DCNs. Localizing drops is extremely chal-

487

lenging given the large number of devices involved (servers,
switches, Muxes, etc.). Everflow offers an efficient and re-
liable way to track packets throughout the network and dra-
matically simplifies the drop debugging process.

7.3 Loop

Under normal circumstances, we do not expect to see any
loops in a DCN. Surprisingly, the Everflow loop debugger
did catch quite a few loop incidents in Cluster B. All the loop
traces showed the same pattern— they involved a packet that
kept bouncing back and forth between a SLBMux and a DIP
until its TTL became 0.
Figure 9 shows how a loop forms. Initially a request packet

to V IP0 is sent to a SLB Mux, which then encapsulates and
sends the packet to a DIP. When the DIP server receives and
decapsulates the packet, it finds that the inner header desti-
nation IP (V IP0) does not match its designated VIP. Instead
of discarding the packet, the DIP server throws the packet
back to the network. As a result, this packet is sent back to
the Mux again, forming a persistent loop.
We call it an overlay loop since it results from inconsis-

tent views between two servers (Mux and DIP). Unlike a
network-level loop, an overlay loop cannot be detected by
examining the forwarding table on switches. In fact, the for-
warding tables are all correct. At the same time, an overlay
loop can result in unnecessary waste of network and server
resources or even unavailability. In these incidents, the loops
caused 30x amplification of the affected traffic. The traffic
trapped in the loops accounted for roughly 17% of the total
traffic received by the problematic DIPs.
Summary. Contrary to conventional wisdom, loops can
form in a DCN due to the wide use of server overlays that
participate in packet forwarding. Everflow provides an ef-
fective way to detect and debug such loops, which allows
the loops to be fixed before they trigger severe failures.

7.4 Load imbalance

The SNMP link monitor reported imbalanced loads on the
links from four leaf switches to a ToR switch in Cluster A.
Fig 10(b) shows the part of the topology that is related to
this incident. Because the loads on these links were affected
by all the upstream switches of the ToR, the operator had no
clue about why this imbalance happened.
The Everflow ECMP profiler was used to debug this prob-

lem. It started by requesting fine-grained load counters from
the Everflow analyzers and breaking down the load by traffic
towards physical server IP prefixes vs. traffic towards SLB
VIP prefixes. It found that the traffic to physical servers was
indeed balanced, but the VIP traffic was doing just the op-
posite. To understand this phenomenon, the profiler further
broke down the traffic by individual VIP prefixes under the
ToR. It turned out that only the traffic destined to three VIP
prefixes was imbalanced. As shown in Fig 10(a), the load of
the three VIP prefixes on link Leaf4 → ToR is 2.6 times
that on link Leaf3 → ToR.
A follow-up investigation showed that this incident was

due to a failure in BGP route advertisement. Specifically, the
first three leaf switches failed to advertise the routes for these

three VIP prefixes to some of its upstream spine switches
(Fig 10(b)). This led to the uneven split of the traffic going
to the three VIP prefixes, starting from the spine switches
down to the leaf switches.
Summary. Load imbalance can arise due to a variety of
reasons. The Everflow ECMP profiler supports flexibly clas-
sifying the traffic and providing detailed load information
per traffic class. Therefore, it can not only detect load imbal-
ance incidents but also help identify their causes. The latter
cannot be easily done based on the aggregate load counters.

7.5 Low RDMA throughput

Our DCN is deploying RoCEv2-based RDMA. However,
the RDMA engineering team found that RDMA performed
poorly when there were a small amount of packet losses
(e.g., due to a switch interface bug or packet corruption).
For example, even with 0.01% loss rate, the throughput of a
RDMA flow would drop below 10 Gbps (i.e., less than 25%
of the optimal throughput of 40 Gbps). Such degradation
was far worse than expected.
Initially, the engineers attempted to debug this problem by

capturing the RDMA packets on both ends of the servers us-
ing a customized tool provided by the RDMA NIC vendor.
However, due to the high data rate, the tool would impose
significant capturing overhead on the NIC and also miss a
fraction of the packets. As a result, when the engineers ex-
amined the packet dumps and saw no bad symptom, they
could not tell whether this was because the flow behavior
had changed (due to the extra capturing overhead) or be-
cause there was not enough diagnostic information. More-
over, the tool can capture only L3 packets but not L2 packets
like PFC.
We used our RDMA debugger to investigate this prob-

lem. The throughput of an RDMA flow is affected by three
types of control packets: PFC (Priority-based Flow Control),
NACK (Negative Acknowledgment) and CNP (Congestion
Notification Packet), all of which are captured by Everflow.
From the control packet traces, we saw an unexpected corre-
lation between the PFC and NACK packets. When a receiver
generated a NACK in response to a packet loss, it almost al-
ways generated another PFC packet with a long PAUSE pe-
riod. The effect of the PAUSE was propagated hop-by-hop
back to the sender,3 and ultimately slowed the sender.
We reported this problem to the NIC vendor who later

found a bug in their NIC driver. This bug caused the NIC to
halt the buffer, and subsequently triggered a PFC with a long
PAUSE period during the NACK generation.
Summary. Everflow provides a reliable and yet indepen-
dent way to observe and debug network protocol misbehav-
iors. This is particularly useful when host-based capturing
of protocol packets is too expensive (e.g., for RDMA) or un-
available (e.g., for PFC).

8. SYSTEM EVALUATION

3To avoid buffer overflow, a switch uses PFC to force its up-
stream neighbor (another switch or a server NIC) to PAUSE
data transmission.

488

Figure 9: An overlay loop formed be-

tween a SLB Mux and a DIP

 0

 0.5

 1

 1.5

 2

 2.5

 3

3 VIP Prefixes Others

N
o

rm
a

liz
e

d
 L

o
a

d

(a) Traffic to 3 VIP prefixes is imbalanced (b) Imbalance due to prefix an-
nouncement failure from leaf
switches to spine switches

Figure 10: Load imbalance incident

We evaluate Everflow’s capacity, overhead and deploy-
ment cost and show that it can easily scale to a large DCN
with 10K switches, 250K links and 100 Tbps traffic. In
the analysis below, we ignore the switch overhead because
match-and-mirror is done completely at the switch’s data
plane and incurs zero overhead on the switch’s CPU (§6.1).

8.1 Capacity

Analyzer. We use servers with Xeon 16-core, 2.1 GHz
CPU, 128 GB memory and 10 Gbps Ethernet NIC. Depend-
ing on the packet size, the bottleneckmay be the CPU (capped
by number of packets per second, or pps) or Ethernet NIC.
For small packets, our packet capturing library achieves

around 600K pps per thread. With RSS support, which scales
capturing throughput linearly with the number of CPU cores,
our library is capable of capturing 4.8M pps using 8 CPU
cores.4 Because our analysis task is light weight, one CPU
core can easily analyze more than 600K pps. Thus we run
8 capturing threads and 8 analysis threads, with one thread
per core. In total, each server can process 4.8M pps with 16
cores.
For large packets, the NIC becomes the bottleneck. If all

packets are 1,500 bytes (standard MTU in DCNs), a server
with a 10 Gbps NIC will handle only 10Gbps/8/1500 =
0.83Mpps. Meanwhile, memory is never a bottleneck. Since
the analyzer only buffers packets that arrive in the last sec-
ond (§4), maximummemory usage is 10Gbps×1s = 1.25GB.
Reshuffler. The reshuffler processes packets at a switch’s
line rate. Using a switch with 128× 10Gbps ports, a reshuf-
fler can support 1.28 Tbps or 10 billion pps.

8.2 Overhead

Bandwidth. From our current deployment, the mirrored
traffic volume is only 0.38% of the DCN traffic and the aver-
age mirrored packet size is 156.4 bytes. Currently we do
not truncate packets due to the limitations of commodity
switches used in our DCN. Given 100 Tbps of DCN traffic,

4Advanced packet capturing libraries like DPDK [1]
NetMap [32] and WireCap [34] can support more than
20Mpps using 8 cores.

the mirrored traffic requires 380 Gbps network bandwidth
and 300M pps CPU processing power.
Storage. We breakdown the storage overheads into coun-
ters and traces. Because the number of links is much larger
than the number of switches or Muxes, the link counters
dominate all the other counters. For each link, we have 6
load counters (3 in each direction) and 4 latency counters
(for latency histogram). Given 250K links, the total num-
ber of counters is 2.5M. Since each counter takes 20 bytes
and the update interval is 10 seconds, each analyzer con-
sumes only 2.5M × 20B/10s = 5MB/s for uploading all
the counters into storage.
In our deployment, analyzers record less than 0.01% of all

traces, since most normal traces are aggregated into counters
(§4.1). Thus uploading packet traces requires only 380Gbps×
0.01%/8 = 4.75MB/s in total. Such a data rate can be eas-
ily handled by the distributed storage service.
Query delay. The response time of answering a query by
an Everflow application mainly depends on the data volume
being queried. We benchmark the GetTrace() query on 10
GB traces (roughly equal to the amount of traces generated
in 30 minutes), and the SCOPE job finishes in one minute.
We observe similar query delay forGetCounter(). For all the
incidents presented in §7, we never need to query more than
10 GB of data.

8.3 Deployment cost

Since most mirrored packets are small, the analyzers are
bottlenecked by the CPU. Given a total of 300M pps (or 380
Gbps) mirrored traffic, we need 300Mpps/4.8Mpps = 63
analyzers. Furthermore, a single switch-based reshuffler is
sufficient to handle all the mirrored traffic. We currently use
two reshufflers for failure resilience.

9. RELATED WORK

Our work builds on several themes of related work.
Mirroring. Like Everflow, Planck [31] and PacketHis-
tory [14] monitor network through switch mirroring. In Planck,
switches mirror traffic at over-subscribed ports to a directly
attached server. It focuses on packets at a single device in-
stead of network-wide packet traces. PacketHistory mirrors
all packets at switches to remote servers. For large scale

489

DCNs, its approach incurs significant overhead to transmit
and process all traffic. It may also cause congestion and hurt
ongoing applications. In comparison, to lower overhead,
Everflow uses “match” to select the right traffic to mirror.
Sampling. Many recent works [7, 8, 29, 33, 36] focus on
sampling network traffic. NetFlow [7] and OpenSketch [36]
aggregate information (e.g., number of bytes) at flow level
and do not provide fine-grained, packet-level information.
sFlow [29] randomly samples packets at switches. It only
provides per-device information and cannot track packet paths
across multiple devices. Another work [8] proposes sam-
pling packets with a consistent hash function. It does not
cover what packets to sample or how to analyze sampled
packets. In contrast, Everflow presents a flexible and rule-
based end-to-end solution that traces packets of interest across
the network and analyzes the traces in real time.
Probing. Per-packet tracing tools such as traceroute, ICMP,
and Tulip [25] can track a packet’s path in the network. A
recent work [27] proposes using IP pre-specific timestamp
option to dissect RTT, but is limited to specific portions of
the path in the Internet. These works can be classified as
out-of-band diagnosis because they use packets that are dif-
ferent from the actual application. In comparison, Everflow
focuses on in-band tracing.
OFRewind [35] proposes “record and replay”, which is

another way of probing. Everflow has a similar capabil-
ity, but it is more flexible than merely replaying past traf-
fic. For example, Everflow can instrument a probe to bounce
between switches for measuring latency.
Further, existing tools cannot trace beyond middleboxes

(e.g., load balancers and VNet gateways), which can encap-
sulate or modify packets. Everflow correlates packets enter-
ing and leaving middleboxes to construct full packet traces.
Fault detection. Several works [9, 10, 22, 23] detect net-
work faults by checking routing configuration and policy.
They analyze routing rules and validate compliancewith net-
work policy (e.g., no forwarding loops). They rely on con-
trol plane information and focus on verifying the forwarding
tables. As a result, they cannot diagnose packet level prob-
lems. Other works monitor virtual switches [26] or use oper-
ational data, such as router syslog [3, 11, 15, 30] or AS route
dissemination [13], for fault detection. They are comple-
mentary to Everflow because they focus on different aspects
than Everflow, which targets fine-grained packet-level faults
based on data plane tracing.

10. CONCLUSION AND FUTURE WORK

We present Everflow, a scalable packet-level telemetry
system for large DCNs. Everflow leverages switch’s “match
and mirror” capability to capture consistent traces of pack-
ets across DCN components and injects guided probes to
actively replay packet traces. For fault debugging applica-
tions, Everflow provides flexible query interfaces and con-
figurable APIs on top of an efficient and light weight ana-
lytics pipeline. Through deployment in Microsoft’s DCNs,
Everflow demonstrated its utility as an indispensable tool for
troubleshooting DCN faults.

In the future, we plan to extend Everflow to make use of
the features offered by new programmable switching ASIC [4,
20], including hardware timestamping and packet metadata
matching. Switch timestamping will dramatically simplify
the measurement of link roundtrip latency, and packet meta-
data matching (e.g., based on checksum error or parity error)
will provide insight into the reason of packet drops. We also
plan to extend Everflow to the cloud provider’s wide area
network [16, 19], where, similar to DCNs, servers and net-
work traffic are under its control.

Acknowledgements

We thank our Microsoft colleagues, especially Paul Wang,
Yongqiang Xiong, George Chen, Kamil Cudnik and Ahsan
Arefin, for their help in building and deploying Everflow.
We also thank the reviewers and our shepherd Geoff Voelker
for their constructive feedback. Y. Zhu, H. Zheng and B.
Y. Zhao are supported in part by NSF grants IIS-1321083,
CNS-1224100, and CNS-1317153.

11. REFERENCES

[1] Data plane development kit. http://www.dpdk.org/.
[2] Receive side scaling. https://msdn.microsoft.com/en-

us/library/windows/hardware/ff567236(v=vs.85).aspx.
[3] A. Arefin, A. Khurshid, M. Caesar, and K. Nahrstedt.

Scaling data-plane logging in large scale networks. In
MILCOM, 2011.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN. In
SIGCOMM, 2013.

[5] J. Case, M. Fedor, M. Schoffstall, and J. Davin. RFC
1157: Simple network management protocol.

[6] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets.
VLDB, 2008.

[7] B. Claise. RFC 3954: Cisco systems netflow services
export version 9 (2004).

[8] N. G. Duffield and M. Grossglauser. Trajectory
sampling for direct traffic observation. IEEE/ACM
Trans. Netw., June 2001.

[9] S. K. Fayaz and V. Sekar. Testing stateful and dynamic
data planes with flowtest. In HotSDN, 2014.

[10] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan,
R. Govindan, R. Mahajan, and T. Millstein. A general
approach to network configuration analysis. In NSDI,
2015.

[11] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and
I. Stoica. X-trace: A pervasive network tracing
framework. In NSDI, 2007.

[12] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,
L. Yuan, and M. Zhang. Duet: Cloud scale load
balancing with hardware and software. In SIGCOMM,
2014.

490

http://www.dpdk.org/
https://msdn.microsoft.com/en-us/library/windows/hardware/ff567236(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff567236(v=vs.85).aspx

[13] N. Gvozdiev, B. Karp, and M. Handley. Loup: who’s
afraid of the big bad loop? In HotNets, 2012.

[14] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,
and N. McKeown. I know what your packet did last
hop: Using packet histories to troubleshoot networks.
In NSDI, 2014.

[15] C.-Y. Hong, M. Caesar, N. Duffield, and J. Wang.
Tiresias: Online anomaly detection for hierarchical
operational network data. In ICDCS, 2012.

[16] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
high utilization with software-drivenWAN. In
SIGCOMM, 2013.

[17] Infiniband Trade Association. InfiniBand Architecture
Volume 1, General Specifications, Release 1.2.1, 2008.

[18] Infiniband Trade Association. Supplement to
infiniband architecture specification volume 1 release
1.2.2 annex A17: RoCEv2 (ip routable ROCE), 2014.

[19] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4:
Experience with a globally-deployed software defined
WAN. In SIGCOMM, 2013.

[20] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and
D. Mazières. Millions of little minions: Using packets
for low latency network programming and visibility.
In SIGCOMM, 2014.

[21] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken. The nature of datacenter traffic:
measurements & analysis. In IMC, 2009.

[22] P. Kazemian, M. Chan, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network policy
checking using header space analysis. In NSDI, 2013.

[23] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. Veriflow: Verifying network-wide invariants
in real time. In NSDI, 2013.

[24] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross, N. Gude,
P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-H.

Li, A. Padmanabhan, J. Pettit, B. Pfaff,
R. Ramanathan, S. Shenker, A. Shieh, J. Stribling,
P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang.
Network virtualization in multi-tenant datacenters. In
NSDI, 2014.

[25] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson.
User-level Internet path diagnosis. In SOSP, 2003.

[26] V. Mann, A. Vishnoi, and S. Bidkar. Living on the
edge: Monitoring network flows at the edge in cloud
data centers. In COMSNETS, 2013.

[27] P. Marchetta, A. Botta, E. Katz-Bassett, and
A. Pescapé. Dissecting round trip time on the slow
path with a single packet. In PAM, 2014.

[28] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg,
D. A. Maltz, and R. Kern. Ananta: cloud scale load
balancing. In SIGCOMM, 2013.

[29] P. Phaal, S. Panchen, and N. McKee. RFC 3176:
Inmon corporation’s sflow: A method for monitoring
traffic in switched and routed networks, 2001.

[30] T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu. What
happened in my network: mining network events from
router syslogs. In IMC, 2010.

[31] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter,
K. Agarwal, J. Carter, and R. Fonseca. Planck:
Millisecond-scale monitoring and control for
commodity networks. In SIGCOMM, 2014.

[32] L. Rizzo. netmap: A novel framework for fast packet
I/O. In USENIX ATC, 2012.

[33] J. Suh, T. Kwon, C. Dixon, W. Felter, and J. Carter.
Opensample: A low-latency, sampling-based
measurement platform for SDN. In ICDCS, 2014.

[34] W. Wu and P. Demar. Wirecap: a novel packet capture
engine for commodity NICs in high-speed networks.
In IMC, 2014.

[35] A. Wundsam, D. Levin, S. Seetharaman, and
A. Feldmann. OFRewind: Enabling record and replay
troubleshooting for networks. In ATC, 2011.

[36] M. Yu, L. Jose, and R. Miao. Software defined traffic
measurement with opensketch. In NSDI, 2013.

491

	Introduction
	Packet-level Network Telemetry
	Overview of Everflow
	Design challenges
	Key ideas

	Trace Collection and Analysis
	Analyzers
	Controller APIs

	Everflow Applications
	Implementation
	Switch configurations
	Guided prober
	Analyzer
	Storage

	Deployment and Experience
	Latency problem
	Packet drops
	Blackhole
	Silent packet drop
	Packet drops on servers

	Loop
	Load imbalance
	Low RDMA throughput

	System Evaluation
	Capacity
	Overhead
	Deployment cost

	Related Work
	Conclusion and Future Work
	References

