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ABSTRACT

Meraki is a cloud-based network management system which
provides centralized configuration, monitoring, and network
troubleshooting tools across hundreds of thousands of sites
worldwide. As part of its architecture, the Meraki system
has built a database of time-series measurements of wireless
link, client, and application behavior for monitoring and de-
bugging purposes. This paper studies an anonymized subset
of measurements, containing data from approximately ten
thousand radio access points, tens of thousands of links, and
5.6 million clients from one-week periods in January 2014
and January 2015 to provide a deeper understanding of real-
world network behavior.

This paper observes the following phenomena: wireless
network usage continues to grow quickly, driven most by
growth in the number of devices connecting to each network.
Intermediate link delivery rates are common indoors across
a wide range of deployment environments. Typical access
points share spectrum with dozens of nearby networks, but
the presence of a network on a channel does not predict
channel utilization. Most access points see 2.4 GHz chan-
nel utilization of 20% or more, with the top decile seeing
greater than 50%, and the majority of the channel use con-
tains decodable 802.11 headers.
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1. INTRODUCTION

Over the past 20 years, wireless LANs based on 802.11
have become common in office and campus environments.
Recent estimates suggest over 10 billion WiFi devices have
been sold in total and that over 4.5 billion of those devices
are in use today [3]]. These devices use the same underlying
standards and frequency bands defined in the mid-1990s, re-
sulting in an increasingly crowded wireless environment.

Several papers have studied wireless network behavior,
from indoor and outdoor links, to campus-scale user behav-
ior. These papers have helped improve our understanding
of how real-world networks behave, resulting in improve-
ments to simulators, debugging tools, and protocols. How-
ever, there are few studies that analyze a large cohort of wire-
less LAN networks or over a long period of time.

The Meraki system provides a unique perspective over a
wide range of networks due to its cloud-based management
architecture. Each Meraki access point is polled periodically
by the Meraki system for a number of statistics about the
state of the wireless channels, associated clients, and appli-
cation traffic statistics for each associated client. This infor-
mation is written to a database, aggregated, and presented to
network administrators through a central web service.

Since its inception in 2006, this database has grown to
contain information from millions of network devices, in-
cluding access points, switches, routers, and client devices
such as laptops and smartphones.

This paper contributes a detailed look at network behav-
ior, using an anonymized subset of the data contained in
the Meraki system. By filtering for devices based on their
type of hardware platform and choosing a large set of de-
vices, we are able to plot trends which are not influenced by
factors such as variations between chipsets, changes in cus-
tomer type, or network policy. Specifically, we look at the
the following four sets of data:


http://dx.doi.org/10.1145/2785956.2787489

chipset

Cisco Meraki MR16 Cisco Meraki MR18
CPU Qualcomm Atheros AR7161 680MHz Qualcomm Atheros QCA9557 SoC
Memory 64MB DDR 128MB DDR2
Radio Qualcomm Atheros AR9223 (2.4 GHz), | On-chip Qualcomm Atheros QCA9557

AR9220 (5 GHz) PCI 2x2 802.11n

radio (2.4 GHz) with external power am-
plifier, AR9592 5 GHz PCI 2x2, AR9592
1x1 PCI scanning radio

Transmit power

23 dBm (2.4 GHz), 24 dBm (5 GHz)

24 dBm (2.4 GHz), 24 dBm (5 GHz)

Antenna

Built-in 3dBi 2.4 GHz, 5dBi 5 GHz

Built-in 3dBi 2.4 GHz, 5dBi 5 GHz

Table 1: Hardware platforms used to measure link delivery and channel utilization in Sections 4 and 5

1. For a set of 20,667 networks which serve over five mil-
lion unique clients a week, we examine the wireless
capabilities of the clients as well as the OSes and appli-
cations the clients use. Our data also provides insight
into the traffic characteristics of various applications as
well as how clients have changed in the past year.

2. For a set of 10,000 Cisco Meraki MR16 802.11n access
points, we summarize the link delivery characteristics
of over 20,000 wireless link pairs measured by periodic
broadcasts sent by the access points.

3. Using the same set of access points, we examine the
average channel utilization of the 2.4 GHz and 5 GHz
bands over a period of six months.

4. With a set of 10,000 Cisco Meraki MR18 802.11n ac-
cess points, which contain a third radio capable of cap-
turing spectral data, we examine more detailed short-
term channel measurements.

The remainder of the paper is organized as follows: Sec-
tion 2 outlines the architecture of the Meraki system and de-
tails about the hardware platforms used in the study. Section
3 studies client and application usage and provides tables
demonstrating changes in usage over several years. Section
4 describes our method for measuring link-level statistics be-
tween access points and studies the distribution of link de-
livery rates. Section 5 looks specifically at wireless channel
utilization at a fine-grain level. Section 6 describes some
real-world challenges faced by the Meraki system. Finally,
Section 7 discusses related work, and Section 8 concludes.

2. SYSTEM ARCHITECTURE

The Meraki system consists of access points, switches,
and firewalls at customer sites, and a centrally hosted man-
agement system, known as the backend system.

Each network in the Meraki system can contain a com-
bination of these wireless and wired network devices that
all report data to the backend system in the same way. The
backend system itself is distributed across several data cen-
ters; for the purposes of this paper, we treat the backend sys-
tem as a single data store.

Each piece of Meraki networking equipment maintains
persistent encrypted tunnels to two different backend data
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centers. Using these connections, the backend periodically
harvests statistics from each network device using protocols,
built with Google Protocol Buffers [21] to minimize report-
ing overhead.

A typical access point averages around 1 kilobit per sec-
ond to report to the backend. These tunnels are used only for
statistics and configuration; client traffic is routed directly to
the local network or the Internet. In the event a device is un-
able to reach the Meraki backend, normal client routing and
accounting continues. The backend polls for queued infor-
mation when the connection is reestablished.

The Meraki backend system is designed to handle ma-
chine upgrades, schema changes and new software revisions
without affecting the measurement data. The system oper-
ates using a pull mechanism, which helps regulate the flow
of updates to the database during times of peak load.

2.1 Hardware platforms

The various Meraki hardware platforms contain a similar
system architecture and share a Linux codebase, but each
product family contains application-specific chipsets. They
consist of a general purpose CPU (single or multi-core) run-
ning Linux and the Click Modular Router [14]], coupled with
multiple 802.11 radios (for wireless access points), multi-
ple Gigabit Ethernet interfaces (for security appliances) or
a 24/48 port Gigabit or 10 Gigabit switch fabric (for edge
switches). This paper focuses only on data from wireless
access points.

Each the platform is designed to forward traffic at line-rate
while still being able to track client metadata and detailed
application usage statistics about individual TCP flows. The
fast data path is handled either in hardware (for switching
platforms) or in the device driver and in the Click modular
router (for security appliances and wireless access points).
Elements within the Click modular router on the fast path
handle policy routing decisions, client firewall rules, and
track application classification and usage for each MAC ad-
dress. Other specific types of traffic are processed along the
slow path, such as ARP, DHCP, DNS, multicast DNS, TCP
SYN/FIN, packets containing HTTP headers, and packets
containing SSL handshakes. Traffic along the slow path is
filtered in the driver or hardware and handled entirely by
the Click modular router to identify specific application traf-
fic. Click contains elements to extract additional in-memory



metadata information from these traffic flows, such as host-
names, operating system fingerprints, and application-level
usage data. This metadata is used to identify flows and up-
date application usage data counters, similar to [[17]. There
are about 200 application identification rules that use the
metadata to identify TCP flows and applications. The user
and application analysis was done on a worldwide set of
20,667 networks containing two Meraki access point mod-
els, which are further described in Section 3]

The wireless measurements in Section 4 were taken on
set of 10,000 identical Cisco Meraki MR16 access points
located in the US to simplify analysis. These access points
were deployed in between 2010 and 2014 were in continuous
operation measurement period from January 2014 through
January 2015. Similarly, in Section 5 we consider a set of
10,000 identical Cisco Meraki MR18 access points, equip-
ped with a dedicated scanning radio. All access points were
located in the United States and followed the FCC Part 15
regulatory limits. Table [I] describes the access point hard-
ware used to create the data set.

2.2 Firmware revisions

During the measurement period, there were a total of 2
major firmware revisions applied to the access points. The
rough dates of these upgrades are January and December
2014. The lower layers of the driver and HAL were not
changed, as the updates included routine package security
updates and added higher level features related to manage-
ment and access control features.

2.3 Data collection

In addition to per-client and flow traffic statistics, each ac-
cess point measures and records wireless channel statistics.
The traffic statistics and additional measurements are peri-
odically polled by the Meraki backend system and recorded
in long term storage. For usage statistics such as byte coun-
ters and application usage, local statistics are aggregated by
MAC address in the backend (to account for roaming).

3. NETWORK USAGE

In this section, we take a look at the clients that connect
to our access points. In particular, we examine client radio
capabilities, the OSes and applications that are most com-
monly used by clients, and how usage patterns have changed
over the past year.

The data presented here were collected from 20,667 wire-
less networks operated by 11,788 different administrative or-
ganizations. All of these networks have at least two wireless
access points and have application traffic profiling enabled.
All usage data was collected over the one-week period of
January 15-22 in 2014 and 2015. We show the numbers for
2015 and provide the percent increase (“% increase”) com-
pared to 2014.

The sampled networks include both urban and rural de-
ployments throughout the world. Table [2] describes the mix
of networks in the data set organized by industry type.

To preserve anonymity, all of our data are presented only
as an aggregate over all of these networks.
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Industry # networks
Architecture/Engineering 127
Construction 333
Consulting 365
Education 4,075
Finance/Insurance 737
Government/Public Sector 1,112
Healthcare 1,382
Hospitality 493
Industrial/Manufacturing 1,220
Legal 264
Media/Advertising 427
Non-Profit 640
Real Estate 386
Restaurants 296
Retail 2,355
Tech 983
Telecom 442
VAR/System Integrator 2,876
Other 2,154
| Total | 20,667 |

Table 2: Network deployment types for the application
usage data set. There are a wide range of industrial ver-
ticals and the networks are not dominated by one partic-
ular industry.

3.1 Client devices and signal strength

Our access points collect information about the 802.11
capabilities advertised by every client that connects to the
network. Table [] summarizes how these capabilities have
changed over one year.

In summary, we found that:

e 802.11ac clients became much more common over the
year: at the end of the sampling period 18% of clients
were 11ac-capable.

e A majority of clients now have 5 GHz capability, but
nearly 40% of all clients remain 2.4 GHz only.

e Multi-stream clients, became more common, and now
about 25% of clients support multiple spatial streams.

Another item of interest is the strength of clients’ connec-
tions to the network. Our system does not keep a histori-
cal record of client signal strength, but, through our central-
ized infrastructure, we are able to collect a snapshot of RSSI
across all connected clients in real time. Figure [1|shows the
distribution of client signal strength among about 309,000
clients that were connected one evening in January 2015.

At the time of the snapshot, about 249,000 (80%) of these
clients were connected on the 2.4 GHz band, and 60,000
were connected at 5 GHz. This is interesting given the above
data which show that about 65% of clients are 5 GHz capa-
ble. The difference is presumably due to greater attenuation
at 5 GHz, which makes it harder for clients to associate on
the higher band.



OS TB (% total/% download) | % increase | # clients | % increase | MB /client | % increase
Windows 589 (30%/83%) 43% 822,761 28% 751 12%
Apple i0S 545 (28%/88%) 92% 2,550,379 34% 224 44%
Mac OS X 445 (23%/75%) 449% 313,976 24% 1,487 17%
Android 177 (9.1%/89%) 172% 1,535,859 61% 121 69%
Unknown 78 (4.0%/45%) -9.2% 228,182 -8.9% 357 -0.36%
Chrome OS 62 (3.2%/91%) 275% 178,095 222% 366 16%
Other 26 (1.3%/78%) 80% 13,969 -33% 1,951 168%
Sony Playstation OS 22 (1.1%/96%) 53% 4,267 -13% 5,319 77%
Linux 5.8 (0.30%/68%) 611% 4,402 165% 1,393 169%
RIM BlackBerry 0.14 (0.0074%/94%) -62% 13,681 -53% 11 -19%
Mobile Windows OSes 0.12 (0.0064%/91%) -35% 4,943 -42% 26 13%
All 1,950 (100%/82%) 62% 5,578,126 37% 367 18%

Table 3: Usage by operating system during January 15-22, 2015. “% download” is the percentage of download (vs.
total) traffic for a particular OS. “% increase” reflects the year-over-year increase from January 15-22, 2014.

Jan. 2014 | Jan. 2015
802.11¢g 99.9% 99.9%
802.11n 95.7% 97.7%
5 GHz 48.9% 64.9%
40 MHz channels 23.4% 63.8%
802.11ac 2.5% 18.0%
Two streams 7.7% 19.3%
Three streams 2.4% 3.8%
Four streams 0.7% 1.8%

Table 4: Client capabilities advertised by all clients that
connected during the same week in January for two con-
secutive years.

This last point was corroborated by the signal strengths
we observed. Median signal strength among all clients was
about 28 dB above the noise floor on both bands but was
typically lower on 5 GHz connections, again presumably be-
cause of attenuation.

3.2 Usage by operating system

Meraki uses a combination of MAC address prefix, DHCP
fingerprints, and HTTP User-Agent inspection to determine
device types, similar to methods described in [3]. Table [3]
summarizes the breakdown of clients by operating system
with their total bandwidth usage during a one-week period
between January 15 and 22 in both 2014 and 2015. The un-
known OS row represents clients where our heuristics could
not classify the device, such as with devices running vir-
tual machines or dual-boot operating systems (which would
present multiple DHCP fingerprints from a single MAC ad-
dress) or with embedded devices running Linux. More com-
mon is multiple device types presented by the user agent
string, sent by browsers such as Chrome or smartphone ap-
plications. The reduction in unknown devices between Jan-
uary 2014 and 2015 is due to improvements in our heuristics.

Overall, we observed the total population of clients grow
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Cumulative fraction of clients

RSSI

Figure 1: Distributions of received signal strength (RSSI)
as measured at the access points, for approximately
309,000 associated clients.

by approximately 37% from 4.07 million to 5.58 million de-
vices year-over-year. Total usage grew by roughly 62%, an
increase of 18% per client on average.

Because many OSes are specific to particular devices, Ta-
ble[3|provides insight into usage by both OS and device type.
As mentioned earlier, the classification of device types im-
proved between the two measurement periods, which makes
it difficult to compare device type growth in absolute terms.
We can, however, compare average usage per client, which
shows an steep increase of approximately 69% and 44% for
Android and Apple iOS devices, versus a more moderate in-
crease of 12% and 17% for Windows and Mac OS X de-
vices. Even with these increases, mobile devices generally
consume at most a few hundred MB of data on average in a
week, whereas laptops and desktops running Windows and
Mac OS X consume several times more (in particular, Mac
OS X devices consumed roughly twice the bandwidth that
their Windows counterparts did).

Our data also shows that clients using mobile devices tend
to use a larger fraction of their bandwidth consuming con-



tent as compared to traditional desktops and laptops. Mobile
devices download roughly 9 times more than they upload
(in contrast, Mac OS X devices download closer to 3 times
more). While mobile platforms have lower average usage,
the number of mobile devices greatly outnumber laptops and
desktops: we saw three times more Apple iOS devices than
Windows devices, making the total usage of Apple i0OS com-
parable to Windows, the most popular OS by usage.

Linux also registered extraordinary growth on our net-
works, which we attribute to the small number of clients in
2014, improved OS identification heuristics, and the increas-
ing proliferation of Linux-based embedded devices. Finally,
we observed significant per-client usage for Sony Playstation
and Microsoft Xbox (not shown), most of which is down-
stream. This usage is not surprising given that game con-
soles are often used to stream media and play games that use
network connectivity for content or functionality.

3.3 Application usage

As described in Section[2.3] Meraki uses several sources
of information—including initial DNS lookup, HTTP header
inspection, SSL handshake inspection, and port numbers—
to determine the application underlying each new network
flow. These periodically-updated fingerprints are applied as
rule sets within the Click router running on each access point
to simplify statistics collection.

Table[5]shows the top 40 applications by bytes transferred
(both upstream and downstream) across the same 5.58 mil-
lion clients as in Section The number of clients is dis-
played along with the usage for a given application. Sev-
eral of the categories—including miscellaneous web, mis-
cellaneous secure web, miscellaneous video, miscellaneous
audio, non-web TCP, and UDP—capture flows from appli-
cations not described in the rule set. We also classify each
application into a category and show the total usage of var-
ious application categories in Table [§] While intuitive, our
client usage data enables us to quantify how much traffic var-
ious applications and application categories consume in our
networks, which applications have grown in the past year,
and how individual clients participate in these services. The
overhead of data collection was less than 1 kbit/second per
access point on average and does not result in enough usage
to register in the top 40 applications table.

Video and music applications such as YouTube, Netflix,
iTunes, Spotify, and Hulu make up the largest fraction of
usage at 34%, with 97% of their usage being download traf-
fic. Looking specifically at Netflix, we found that each client
consumed nearly 1.2 GB in a week. These services also
recorded significant increases in both the total usage and
number of clients that used these services.

File sharing—within a LAN (e.g., Windows file-sharing)
and through cloud-based services (e.g., Dropbox)—was the
second largest category at 8.4% of total usage with over-
all growth of approximately 28% year-over-year. Interest-
ingly, we found that content uploaded using file-sharing ser-
vices is not shared widely on average, as file-sharing ser-
vices have a very balanced download/upload profile over-
all. The popularity of file sharing and its balanced down-
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stream/upstream characteristics stand in contrast with web
file sharing (services that distribute files via web links, e.g.,
mediafire.com and hotfile.com). While superficially similar,
web file-sharing clients use nearly 45.4 more downstream
bandwidth than upstream, implying that content is often up-
loaded once but downloaded multiple times. Online backup,
another similar type of application, is on the other extreme:
clients upload 22.8 times more data than they download, as
restoring from backup is a relatively rare operation. Over-
all, our networks generally experience about 4.6 times more
downstream traffic than upstream, with VoIP and video con-
ferencing as well as online backup being the rare exceptions
of application categories that use more upstream bandwidth
than downstream.

One notable data point among the top 40 is Dropcam, a
WiFi video-streaming camera and associated cloud backend
service for storing and watching the resulting video. Drop-
cam has the fewest clients (2,940) among the top 40, less
than a quarter of the number of clients that the next small-
est application has. Yet, each client uses roughly 2.8 GB
a week and uploads nearly 19 times more than they down-
load, implying that Dropcam users do not often watch what
they record. The extraordinary amount of usage puts Drop-
cam among the top 30 applications that we observed, above
many applications that have far more clients and above sev-
eral video, P2P, and file-sharing applications, categories that
are traditionally heavy hitters.

4. INTERFERENCE LEVELS

As WiFi, Bluetooth, and other unlicensed spectrum de-
vices have gained in popularity, there has been increased in-
terference from nearby devices. In this section, we measure
both the number of nearby WiFi access points as well as the
amount of time the energy detect mechanism is triggered (a
measure of channel utilization), in an effort to understand
how busy unlicensed spectrum is in practice.

4.1 Nearby networks

Each Meraki access point is equipped with multiple ra-
dios: one dedicated to the 2.4 GHz ban and one dedicated
to 5 GHz band (channels selectable based on regulatory re-
gion). The newer Meraki MR18 platform also has a third
radio that scans both bands simultaneously. The radios are
capable of decoding 802.11 a/b/g/n signals in both 20 MHz
and 40 MHz formats, making it possible to decode frames
from several generations of nearby access points. The ra-
dios are not capable of decoding other types of beacons from
Bluetooth, Zigbee, or other standards; these beaconds are
detected as noise during spectrum analysis.

As with the Meraki radios, many new access points are ca-
pable of simultaneous operation in the 2.4 GHz and 5 GHz
bands. In most cases, access points send out a Broadcast
SSID (BSSID) beacon frame every 102.4 ms (the default
BSSID beacon interval) for 0.42 ms in the case of 802.11
a/g/n beacons and 2.592 ms for 802.11b beacons. As the
number of nearby SSID broadcasts increase, the beacons
and associated data frames may trigger the local AP’s car-



Application Category TB (% total / % # clients % MB / %
9% download) increase increase | client | increase
Miscellaneous web Other 239 (13%/87%) 67% 4,623,630 36% 54 23%
YouTube Video & music 202 (11%/97%) 93% 1,934,371 53% 110 26%
Netflix Video & music 188 (9.8%/98%) 76% 161,014 19% 1,224 48%
Non-web TCP Other 156 (8.2%/64%) 51% 3,656,494 40% 45 8.3%
Miscellaneous Other 147 (7.7%/70%) 94% 5,115,023 40% 30 38%
secure web
iTunes Video & music 102 (5.4%/98%) 66% 2,230,787 38% 48 20%
Miscellaneous video | Video & music 98 (5.1%/91%) 61% 1,383,386 T76% 74 -8.6%
Windows file File sharing 87 (4.5%/66%) 48% 740,591 31% 123 13%
sharing
CDNs Other 75 (3.9%/72%) 81% 3,157,028 46% 25 24%
UDP Other 61 (3.2%/61%) 60% 3,705,171 69% 17 -5.6%
Facebook Social web & 53 (2.8%/92%) 127% 3,579,926 35% 16 68%
photo sharing
Google HTTPS Other 49 (2.6%/85%) 67% 3,953,002 44% 13 16%
Apple file sharing File sharing 42 (2.2%/44%) 18% 21,951 -1.7% | 2,005 21%
apple.com Other 37 (1.9%/94%) 79% 2,763,663 32% 14 36%
Google Other 34 (1.8%/85%) 19% 3,804,317 39% 9.5 -14%
Google Drive Other 24 (1.2%/79%) 374% 1,325,938 138% 19 99%
Dropbox File sharing 23 (1.2%/60%) -1.5% 369,068 29% 65 -24%
Software updates Software & anti- | 18 (0.94%/98%) 36% 689,677 16% 27 18%
virus updates
Instagram Social web & 17 (0.91%/96%) 45% 831,935 50% 22 -3.3%
photo sharing
BitTorrent P2P 13 (0.69%/58%) -8.5% 38,294 15% 360 -21%
Skype VoIP & video 13 (0.69%/49%) 48% 392,878 27% 35 16%
conferencing
Miscellaneous audio | Video & music 13 (0.66%/97%) 54% 460,262 60% 29 -3.7%
Pandora Video & music 12 (0.64%/97%) 25% 182,753 34% 70 -6.8%
RTMP (Adobe Other 12 (0.62%/96%) 10% 141,403 6.2% 88 3.8%
Flash)
Gmail Email 12 (0.62%/74%) 26% 1,337,755 42% 9.2 -11%
microsoft.com Other 11 (0.59%/94%) 15% 861,136 34% 14 -15%
Tumblr Other 11 (0.57%/97%) 31% 270,482 21% 42 7.9%
Spotify Video & music 11 (0.56%/98%) 142% 209,219 115% 54 13%
Windows Live Hot- | Email 9.0 (0.47%/64%) 216% 366,272 108% 26 52%
mail and Outlook
Dropcam VoIP & video 8.0 (0.42%/5.0%) 72% 2,940 155% | 2,836 -32%
conferencing
Hulu Video & music 6.9 (0.36%/98%) 102% 51,667 100% 140 0.90%
Steam Gaming 6.6 (0.35%/98%) 47% 21,011 45% 332 1.4%
Twitter Social web & 6.4 (0.33%/91%) 67% 1,925,505 34% 35 25%
photo sharing
Encrypted P2P P2P 6.3 (0.33%/97%) 17% 81,673 23% 81 -4.5%
Encrypted TCP Other 6.0 (0.31%/65%) 50% 1,441,775 49% 4.3 0.81%
(SSL)
Remote desktop Other 5.5 (0.29%/88%) 66% 93,876 13% 61 46%
ESPN Sports 5.1 (0.27%/98%) 122% 202,971 41% 27 58%
Xfinity TV Video & music 4.9 (0.26%/98%) 87% 12,802 27% 400 47%
Other web-based Email 4.7 (0.25%/49%) -6.4% 277,919 23% 18 -24%
email
Microsoft Skydrive | File sharing 4.4 (0.23%/25%) -10% 269,437 12% 17 -20%

Table 5: Top 40 applications by usage during January 15-22, 2015. See Table 3|for explanations on columns.

158




Category TB (% total/% download) | % increase | # clients | % increase | MB /client | % increase
Other 901 (47%/77%) 65% 5,617,395 39% 168 19%
Video & music 648 (34%/97%) 75% 5,047,976 49% 135 17%
File sharing 160 (8.4%/58%) 28% 1,209,821 28% 138 0.12%
Social web & photo 81 (4.2%/93%) 92% 4,691,155 39% 18 38%
sharing

Email 32 (1.7%167 %) 41% 2,632,542 38% 13 2.5%
VoIP & video 24 (1.3%/35%) 55% 483,222 22% 52 27%
conferencing

Peer-to-peer (P2P) 20 (1.0%/70%) -1.3% 113,720 22% 184 -19%
Software & 20 (1.0%/98%) 28% 699,776 15% 29 11%
anti-virus updates

Gaming 11 (0.57%/96%) 49% 199,804 45% 57 2.8%
Sports 5.3 (0.28%/98%) 117% 225,875 35% 24 60%
News 4.2 (0.22%/95%) 76% 856,913 12% 52 57%
Online backup 2.9 (0.15%/4.2%) 10% 7,576 26% 401 -13%
Blogging 0.74 (0.039%/97%) -34% 487,085 -2.1% 1.6 -32%
Web file sharing 0.32 (0.017%/98%) -27% 10,822 -22% 31 -6.6%

Table 6:

Usage by application categories during January 15-22, 2015. See Table 3/ for explanations on columns.
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Figure 2: Nearby networks by channel number.

rier sense energy detection, making it more difficult to re-
ceive and send packets. Furthermore, some access points
are capable of operating as virtual access points, broadcast-
ing multiple SSIDs, which increases channel usage.

Meraki MR 16 access points scan for nearby access points
whenever clients are not connected and actively transferring
data. Figure 2] shows the distribution of detected networks
by channel number, demonstrating which channels are most
heavily used. This analysis does not include data from any
Meraki MR18 access points since they were relatively new
during the measurement period and there was not sufficient
historical data.

Channels 1-11 reflect the 2.4 GHz spectrum where there
are three non-overlapping 20 MHz channels located at chan-
nels 1, 6 and 11. Nearby access points are distributed across
the non-overlapping channels with channel 1 having around
37% more access points than channels 6 or 11.
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In the 5 GHz spectrum, Channels 36 through 48 represent
the 5 GHz UNII-1 lower band, channels 52-64 are the UNII-
2 middle band, channels 100-140 are the more recently allo-
cated UNII-2 extended band, and channels 149-165 are the
UNII-3 upper band. The UNII-2 and UNII-3 bands require
the use of a Dynamic Frequency Selection (DFS) protocol
where access points first check for the presence of a radar
signal and change channels automatically if one exists or is
detected during operation. Without DFS bands, there are
four non-overlapping 40 MHz channels for 802.11n opera-
tion, and with DFS there are ten.

Table[7]compares the average number of nearby networks
seen in July 2014 versus January 2015, over the course of a
week. In the 2.4 GHz band, the average number of interfer-
ing APs (excluding other Meraki devices) is 55, which has
grown from 28 six months ago. Given there are only three
non-overlapping 2.4 GHz channels, it is likely most Meraki



Networks | Networks
per AP
2.4 GHz (now) 527,087 55.47
2.4 GHz (six months ago) | 230,628 28.60
5 GHz (now) 35,010 3.68
5 GHz (six months ago) 19,921 2.47

Table 7: Increase in the number of nearby networks over
six months. 9,502 Meraki access points are reporting in
January 2015, versus 8,062 access points six months ago.
This excludes the SSIDs of nearby Meraki access points.

access point will experience some amount of interference
from nearby APs. In the 5 GHz band the average number of
non-Meraki access points is 3.68, up from 2.47 six months
ago, which suggests it is possible to find a non-overlapping
channel, even with 40 MHz channels. We identified that ap-
proximately 20% (102,344) of the current nearby networks
in the 2.4 GHz band are personal mobile hotspots (Nova-
tel, Pantech, Sierra Wireless, etc.), compared to 56,293 six
months ago. In the 5 GHz, only 1.7% of the nearby access
networks are mobile hotspots.

4.2 Impact on packet reception

In order to build a table of link metrics for use with mesh
routing, each Meraki access point periodically broadcasts a
60-byte packet at 1 megabit/sec on its 2.4 GHz radio and
6 megabits/sec on its 5 GHz radio. These broadcast pack-
ets are sent once every 15 seconds and are measured over a
sliding window of 300 seconds, and the measurements are
recorded by the Meraki backend system.

Figure [3] shows a distribution of link delivery ratios, for
16,583 2.4 GHz links and 5,650 5 GHz links which were
reported both six months ago and today. For 2.4 GHz band,
the majority of links only receive a fraction of broadcasts,
and the overall link delivery ratios have decreased over the
past six months. The intermediate links also show variations
in delivery rate over time, as demonstrated in Figure @ In
the 5 GHz bands, there are far fewer intermediate links, with
over half of the links receiving all of the broadcasts. The
5 GHz links also vary over time as illustrated in Figure 5] but
they are more consistent than the 2.4 GHz links.

The data suggests performance as a whole is degrading
in the 2.4 GHz band, even for small 60-byte packets. Larger
1,500-byte payloads and frame aggregates will be even more
adversely affected, which will have an affect of application
performance. Sub-frame error detection and correction tech-
niques such as [16] may be necessary to make effective use
of the 2.4 GHz band.

4.3 Impact on packet transmission

As the number of nearby access points grows, each chan-
nel is likely to become more heavily utilized, which would
reduce the amount of time available for transmissions. Fig-
ure[6]shows the fraction of time the carrier sense mechanism
was triggered during the last scan interval for each radio, as
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Figure 3: The distribution of the link delivery ratios,
six months ago and today. Each data point represents
the delivery rate of periodic broadcast packets from one
Meraki access point to another where they occupied the
same channel.
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Figure 6: The distribution of channel utilization today
in the 2.4 and 5 GHz bands as observed by the Meraki
MR16 access points.

measured by the Meraki MR 16 access points.

The 2.4 GHz band shows a high level of utilization, with
the median access point reporting the energy-detect trigger
25% of the time, and the 90th percentile access point report-
ing 50%. In the 5 GHz band, channel utilization is lower,
with the median access point reporting 5% and the 90th per-
centile access point reporting 30%. The Meraki MR16 ra-
dios can only measure utilization on their current channel, so
they do not each provide a view of the complete spectrum.
Section [5] examines utilization using the Meraki MR18 ra-
dios, which have a dedicated scanning radio that measures
utilization across all of the channels.

5. SPECTRUM SCANNING RESULTS

In this section, we take a more complete look at utiliza-
tion across multiple channels for a given access point. We
achieve this through the use of the more recent MR 18 access
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point, which includes a third 802.11n radio that is dedicated
to scanning the entire 2.4 GHz and 5 GHz spectrum and does
not serve clients (unlike the MR16, which only provides uti-
lization on its current channels).

In this section we gather data from 10,000 Meraki MR18
access points, located in the exclusively in the US to simplify
complications due to regulatory domains. As it scans, the
dedicated radio spends 5 ms on each channel. The backend
system collects these results every three minutes, and the
results are aggregated over three-minute periods.

5.1 Interfering APs

Figures [7]and 8] plot, for all the access points, the number
of access points detected versus the channel utilization for
all channels. Because these measurements are taken over
three-minute periods (unlike the one-week windows used in
Figure 2), these figures provide a more instantaneous view
of channel conditions. From the data we do not see a clear
correlation between utilization and the number of interferers
in either band. This lack of correlation implies that simply
using the number of nearby APs is not enough information
to accurately select the most available channel and instead it
is better to use direct channel utilization measurements.

5.2 Day/night variations

We next examine the relative impact of client usage on
channel utilization, by studying variations between day and
night. Figure 9| plots CDF of both frequency bands with uti-
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Figure 7: Scatter plot of utilization versus number of
nearby APs in the 2.4 GHz band.

lization measurements taken at 10 a.m. and 10 p.m. Pacific
time. For the 2.4 GHz band, the median channel (measured
at a specific access point), observes around 5% higher uti-
lization during the day versus the night, whereas in 5 GHz
the utilization measures are similar.

These results differ from Figure [6] because the Meraki
MR16 is only able to measure utilization on its current chan-
nel, versus the Meraki MR18 is able to take measurements
from all channels. In the 5 GHz band, the majority of chan-
nels are unused as seen in Figure 2] which skews the distri-
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Figure 9: The distribution of channel utilization, during
night and day time as observed by the Meraki MR18 ac-
cess points.

bution towards zero. This also indicates that having a radio
dedicated for channel measurement should help in making
better channel assignment decisions.

5.3 Presence of Non-802.11 Traffic

For a closer examination of what is using the unlicensed
bands, we measure the percentage of utilization that con-
tained decodable 802.11 headers. Similar to the mechanism
used to measure the amount of time spent performing en-
ergy detection, Atheros chipset exposes a set of microsecond
counters which count time receiving 802.11 traffic. These
counters look for packets that contain an intact 802.11 PLCP
header and preamble (which are sent at a more robust mod-
ulation than the data payload) and combine the duration and
interframe times to account for 802.11 protocol traffic. These
counters do not capture 802.11 frames with corrupt pream-
bles or non-802.11 traffic, which are contained by the overall
utilization counter.

Figure [I0] shows the majority of the total channel utiliza-
tion contained decodable 802.11 headers. Furthermore, we
inspected the traffic near one access point with a USRP B200
software radio acting as a spectrum analyzer as shown in
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Figure 10: The distribution of decodable traffic (%) in
2.4 and 5 GHz channels.

Figure[TT]to examine the structure of the interference. While
this view a single instance and is not representative of all
access points, we find the 2.4 GHz band to have 22% uti-
lization and includes transmissions from frequency hopping
narrow-band interference sources alongside 802.11 frames,
similar to observations noted in [[11]]. The 5 GHz band shows
lower average utilization of 2% and is mostly 802.11 trans-
missions but displays signs of frequency-selective fading as
observed in [[13]].

6. REAL-WORLD EXPERIENCES

The Meraki system was first deployed in 2006, with two
models of 802.11b/g radio hardware, for indoor and outdoor
environments. Over the next 8§ years the system added ad-
ditional 8 types of wireless access points, ranging from 2x2
and 3x3 802.11n radios, to 802.11ac devices, in both indoor
and outdoor variants. The same platform was also used to
deploy and manage Ethernet switching equipment and se-
curity appliances, which gave the designers a unique under-
standing of a wide range of network environments.

In this paper, we focused on usage data from two sim-
ilar indoor radio models to minimize the number of vari-
ables that may impact radio link performance measurements.
However, building and operating a large-scale system over
several years left us with several observations which may be
relevant to future work.

6.1 Dealing with bugs in a large system

Debugging large production systems can be complex, par-
ticularly in wireless environments where there are a wide
range of client devices and physical conditions. The code-
base for the hostapd portion of the wireless driver, which
handles authentication and control traffic for the 802.11 stack
is over 350,000 lines of C code.

In addition to the usual practices of using several test har-
nesses and beta testing, the Meraki system uses a large back-
end database system to collect information about crashes
(firmware and program counter state), along with periodic
telemetry about each device’s performance, to make it easier
to debug problems in the real world.
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and fainter transmissions with frequency selective fading.

As an example of a bug which only surfaced due to the
wide range of deployment environments, we received reports
of a small number of access points rebooting either minutes
or hours after booting on a repeated basis. They all served
fewer than a few dozen clients with a typical usage profile.
These access points eventually rebooted due to an out-of-
memory error (not at the same point in the code). Upon fur-
ther inspection, we noticed the access points were reporting
very large numbers of nearby access points: some of the ac-
cess points were located in skyscrapers in Manhattan and
could decode beacons from miles away, and in another case
the access point was on a bus traveling between cities.

Because it is difficult to anticipate such bugs, we found
it to be important to measure and instrument the system at
large scale and make it possible to examine the system under
operation whenever possible.

6.2 Difficulty in predicting user behavior

We also observed client device usage varied over time,
which made it difficult for network operators to anticipate
usage spikes. In most networks usage between clients was
uneven as expected, with a subset of clients driving most
of the usage. However, software updates from Apple and
Microsoft would drive large downloads across large numbers
of clients, sometimes causing sudden increases totaling tens
or hundreds of gigabytes.

On a larger timescale, we observed the introduction of
smartphones starting around 2006. While we found smart-
phones consume only around a fifth as much data as laptops,
as described in Section they exhibit different network
connection behavior: roaming across access points, attempt-
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ing to use cached IP address assignment upon waking from
sleep, and implementing aggressive versions of power save
poll which increased the data buffered by access points.

Similar to the long-term shift in device types, we observed
sustained growth in online video services such as YouTube
and Netflix over several years, which increased overall data
consumption. While in the past it became common to block
heavy bandwidth consuming applications like BitTorrent, we
found administrators reluctant to block services such as You-
Tube given their popularity and wide range of uses.

6.3 Non-wireless problems

Finally, we observed several common problems on net-
works which resulted in poor performance but were not spe-
cific to wireless:

e Overloaded RADIUS/Active Directory servers, result-
ing in authentication timeouts

e Misconfigured VLANSs in campus-scale deployments,
either due to numbering or reachability

e Cable problems due to aging building infrastructure,
which would result in intermittent connectivity

e MTU configuration and discovery issues
e Upstream bandwidth bottlenecks
e DNS resolution problems

e Protocols like multicast DNS, which work in home en-
vironments but cause broadcast issues at campus scale



7. RELATED WORK

Several papers have studied link delivery rates: Aguayo et
al. [2]] presented data from a 38-node outdoor 802.11b wire-
less mesh network, and found that the majority of links de-
liver only a fraction of sent packets and that it is difficult
to predict link characteristics from distance or RSSI alone.
Reis et al. [18] found similar results with a 15-node indoor
802.11a/b/g testbed. This paper studies a much larger set
of approximately 20,000 nodes, with newer 802.11n radios,
and finds that even with newer radio technology most links
only receive a fraction of packets.

Halperin et. al. [[13]] studied link delivery in 802.11n and
suggested frequency selective fading caused by multipath
interference is the primary cause of intermediate links. In
their paper, they develop a model for packet delivery based
on Channel State Information (CSI) from their Intel radios,
which is a better predictor than RSSI alone. The Meraki
radios use a different Atheros-based chipset which does not
expose CSI in the current driver, but recent work [20, 4] sug-
gests the capability exists for Atheros and Intel radios.

Many papers also indicate non-802.11 sources of interfer-
ence lead to packet loss. Gummadi et al. [11]] showed even
weak or narrowband signals from cordless phones, Blue-
tooth or Zigbee devices can disrupt packet reception or delay
transmissions by triggering carrier sense. Gollakota et al. 8]
showed similar results with an indoor testbed and studied the
physical layer impact of interference at a more granular level
before demonstrating software radio-based methods of can-
celing the interference. In this paper, we quantify the effects
of non-802.11 interference on a larger scale but do not em-
ploy any active measures for noise cancellation.

Interference alignment and cancellation [10]] has also been
proposed in different contexts for increasing the through-
put of wireless systems. Halperin et al. [[12] showed that
receivers can recover from colliding packets by employing
interference cancellation, and thereby significantly reducing
the packet loss rate. Gollakota et al. [9] use interference can-
cellation to combat hidden terminals, while Lin et al. [[15]]
built a system that enables more nodes to transmit in paral-
lel without harming the ongoing transmissions. Given the
observed interference, we expect these mechanisms to im-
prove throughput; however, we currently do not employ any
of these techniques in our devices.

There have also been several studies examining usage on
802.11 networks. Rodrig et al. [[19] examined usage during
a five day technical conference in 2004 and found several
link-level phenomena such as bit-rate selection and retrans-
missions affected overall network capacity.

Ghosh et al. [7] present larger scale data from AT&T’s
hotspot network, tracing over 243,000 devices over a four-
week period. While the data covered several sites, their
study was of hotspot users and developed a model of usage
distribution in terms of session times and bytes transferred.
Their study did not examine specific application usage pat-
terns or present link level measurements.

A 2010 study of Google’s WiFi network [1]] examined
data from 500 outdoor wireless mesh nodes and studied both
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link-level measurements and usage from 30,000 client de-
vices. Similar to the AT&T study, the Google data primarily
focused on outdoor hotspot usage and did not examine the
application usage patterns. Both papers also characterized
hotspot usage, which differs from campus or office usage.

Gember et al. [6] studied over 32,000 devices connected
to the University of Wisconsin’s wireless network, with a
specific look at application usage inferred from hostname
analysis. Similar to this paper, they found web traffic and
streaming media to be the largest source of usage, and ob-
served the growing popularity of handheld devices. This pa-
per examines similar types of data but from a much larger
set of users and five years later when both applications and
devices types have changed.

8. CONCLUSION

Wireless networks using 802.11 have become common-
place, but their performance and link-level characteristics
vary because of their use of unlicensed spectrum. In this
paper, we conducted a large scale study of several thousand
wireless networks, to better understand their behavior.

We surveyed over 20,000 networks and found a wide va-
riety of client devices co-exist, from 2.4 GHz-only 20 MHz
mobile devices to three-stream 802.11ac desktop computers
supporting 80 MHz channels. Overall client usage grew con-
siderably, driven by bandwidth-intensive applications such
as video streaming from YouTube and Netflix and down-
loading photographs via social media.

We then used measurement data from regular transmis-
sions between access points to study several thousand wire-
less links over a long period of time. We found that inter-
mediate packet delivery ratios are very common and found
in the majority of 2.4 GHz links and many of the 5 GHz
links as well. We also noticed the overall delivery ratios of
2.4 GHz links have degraded over the past six months.

Finally, we measured channel utilization using dedicated
radio hardware. While most access points share channels
with dozens of other access points, but there was no direct
relationship between the number of nearby access points and
channel utilization. We did, however, observe higher uti-
lization levels during the day, and were able to character-
ize most of the interference as 802.11, which suggests the
802.11 MAC can avoid interference on the same channel.

These measurements are intended to provide insight into
the behavior of unlicensed spectrum for both network and
protocol designers. Some practical implications for networks
include the importance of (1) traffic shaping at the wireless
access point to better serve the growing number of band-
width hungry clients and applications, and (2) channel plan-
ning using a utilization measure to identify the best wireless
channel. For protocol designers, the measurements suggest
that it is rare to find large blocks of unused unlicensed spec-
trum and that new protocols will have to co-exist with large
amounts of 802.11 traffic.

A copy of the wireless link measurements, nearby net-
works, and channel utilization data used in this paper is avail-
able at http://dl.meraki.net/sigcomm-2015.


http://dl.meraki.net/sigcomm-2015
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