
OpenBox: Enabling Innovation in Middlebox Applications

Anat Bremler-Barr
School of Computer Science
The Interdisciplinary Center

Herzliya, Israel
bremler@idc.ac.il

Yotam Harchol
School of Computer Science

and Engineering
The Hebrew University

Jerusalem, Israel
yotamhc@cs.huji.ac.il

David Hay
School of Computer Science

and Engineering
The Hebrew University

Jerusalem, Israel
dhay@cs.huji.ac.il

ABSTRACT
Contemporary networks contain many different kind of mid-
dleboxes that perform variety of advanced network func-
tions. Currently, a special box is tailored to provide each
such function. These special boxes are usually proprietary,
and operators control over them is limited to the set of ca-
pabilities defined by the provider of each box. Nonetheless,
many middleboxes perform very similar tasks.

In this paper we present OpenBox : a logically-centralized
framework that makes advanced packet processing and mon-
itoring easier, faster, more scalable, flexible, and innovative.
OpenBox decouples the control plane of middleboxes from
their data plane, and unifies the data plane of multiple mid-
dlebox applications using entities called service instances.
On top of the centralized control plane everyone can de-
velop OpenBox applications. An OpenBox application, for-
merly implemented as a separate middlebox, instructs the
data plane how to process packets in order to achieve its
intended function. OpenBox service instances reside in data
plane and process packets according to policies defined by
the control plane. They can be implemented in software or
use specialized hardware.

1. INTRODUCTION
Middleboxes play a major role in current large-scale net-

works such as datacenters, operators, and enterprise net-
works. Middleboxes are responsible for a wide range of per-
formance and monitoring tasks, from simple address trans-
lation such as network address translator (NAT), or load
balancing, to sophisticated security tools such as intrusion
detection and prevention systems (NIDS/NIPS).

Currently, most middleboxes are implemented as real hard-
ware boxes that are located in the exact point where the
traffic they should operate on flows. Recent works suggest
more flexible middlebox placement using software-defined
networking (SDN) [16]. The call for network function virtu-
alization (NFV) [5] propose implementing such middleboxes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMiddlebox ’15, August 21, 2015, London, United Kingdom
© 2015 ACM. ISBN 978-1-4503-3540-9/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785989.2785992

Figure 1: The general architecture of the OpenBox
framework. OpenBox applications are programmed
over the OpenBox controller, which sets the actual
classification and monitoring rules in data plane’s
service instances. OpenBox controller communi-
cates with an OpenFlow controller, if such exists,
to control traffic flow to and from OpenBox service
instances.

as virtual functions (i.e., in software), to reduce costs of pur-
chasing, deployment, and management of such functions. In
any case, middleboxes are usually closed-source and they
expose a limited provider-specific control interface.

A closer look on the variety of existing middleboxes shows
that most of them have many shared functionalities. For ex-
ample, most middleboxes perform some sort of header fields
analysis. Many middleboxes examine the application layer
payload (a process usually referred as deep packet inspec-
tion, or DPI). Such middleboxes usually reconstructs the
TCP session and decompresses the inspected traffic before
performing the actual DPI process.

Network traffic in large-scale networks flow between sev-
eral middleboxes before reaching its destination. For exam-
ple, it is common that a packet would go through a firewall,
NIPS and then a load balancer before reaching the desired
application server it was destined at. Thus, the packet in
this example will go through three very similar processing
paths, for each of them there is a separate control interface,
they may be managed by different administrators, and they
may redundantly repeat each other’s work (e.g., NIPS filters
ports that were already filtered by firewall). Moreover, it is
not rare to find multiple middleboxes with the same purpose

67

processing the same traffic, such as multiple NIPSs, each one
with different rules, managed by a different administrator.

In this work we present OpenBox : a framework that de-
couples control from middleboxes data plane whose general
architecture is shown in Figure 1. A high-level control plane
defines monitoring and performance goals. Instead of legacy
middleboxes, OpenBox applications, are developed on top on
that control plane using a simple Java API. A low-level data
plane unifies the processing stages of multiple middleboxes
as instructed by the control. The data plane is composed
of either separate or consolidated OpenBox service instances
that provide the necessary functionality of the different pro-
cessing stages.

Similarly to software-defined networks (SDN), having a
centralized control with a simple programming API, and a
unified interface to data plane, makes it easier to innovate
both high-level applications and low-level data plane fea-
tures. Several works have shown how simple middleboxes
such as Layer-3 load balancers [21] can be implemented on
SDN switches. However, for more sophisticated processing,
a switch would naturally not suffice. OpenBox interplays
with SDN environments such as OpenFlow [7], although the
existence of such an environment is not a precondition.

Other benefits of the OpenBox framework are performance
improvement when processing stages can be consolidated,
better scalability and flexibility in resource provisioning, re-
duced cost of ownership and management, and easier multi-
tenancy.

2. RELATED WORK
In recent years, network middleboxes have been a major

topic of interest. Perhaps the most relevant related works
are those calling to consolidate middleboxes, for the rea-
sons listed before. In ComB [18], a new architecture is pro-
posed to consolidate multiple middleboxes into a single loca-
tion. A centralized control allocates middlebox applications
throughout several consolidated locations in the network.
Each consolidated location is built as a hypervisor that lets
multiple middlebox applications to run. This increases hard-
ware utilization and sometimes common procedures such as
session reconstruction can be done once per flow for all mid-
dlebox applications. Though, most logic is not shared among
applications, and each middlebox performs its own code on
network traffic. The allocation mechanism presented in this
work can be used for service instance allocation in our data
plane.

xOMB [1] is a platform to create middleboxes using a
general purpose server that provides a programmable gen-
eral packet processing pipeline. It allows to program simple
middlebox such as load balancing switch, and NAT. How-
ever, it does not consolidate multiple applications to the
same processing pipeline, and does not have any network-
wide view.

Kekely et al. [12] presents a hardware architecture for uni-
fied flow measurement and collection of application layer
protocols information. It uses a centralized control software
to aggregate demands from multiple middlebox applications
and achieve them using their suggested hardware. OpenBox
can use such hardware implementations in its data plane,
while providing richer control logic for wider range of appli-
cations.

OpenBox uses network services to provide the necessary
processing for packets. An example for such a service that

Figure 2: An example for general packet processing
stages for multiple Box applications.

is centrally controlled is DPI, which was presented in [3]. In
some sense, OpenBox extends this idea and generalizes it.

Another problem with middleboxes is that they should
be placed in locations where the traffic they should handle
flows. Several works tried to provide higher flexibility, either
by modifying the link layer [11] or using software-defined
networking [8,16]. In addition to the placement problem, [8]
also deals with the problem of provisioning new of instances
of middlebox applications. Gember et al. [9] proposes a cen-
tralized control plane for sharing information between soft-
ware middlebox applications (network functions). However,
this work focuses only on the state maintained by each mid-
dlebox and the forwarding problem, so in a sense it is orthog-
onal to OpenBox. Sherry et al. [20] propose outsourcing the
middleboxes to cloud services. This is completely orthog-
onal to our work as OpenBox can be used in the cloud in
order to provide the outsourced middlebox functionality, or
locally, instead of outsourcing at all.

Two interesting works can be used as building blocks for
the OpenBox data plane service instance: The Click modu-
lar software router [13] is an extendable software package for
programming network routers and packet processors. It has
numerous modules for advanced routing and packet process-
ing and additional modules can be added using the provided
API. By adding a communication layer that communicates
with the OpenBox controller, the Click package can be used
as a basic service instance.

The other related work in this context is the P4 pro-
grammable packet processor language [2]. The P4 language
aims to define the match-action table of a general purpose
packet processor, such that it is not coupled with a spe-
cific protocol or specification (e.g., OpenFlow of a specific
version).

3. UNIFIED PROCESSING
We surveyed a wide range of middlebox applications to

understand the stages of processing performed by each one
of them. Each application is implemented as an ordered list
of processing steps (similarly to a pipeline, though stages
are not always completely separate and parallel, as in a

68

Application
Header Session Protocol Flow Reco- Decomp-

DPI
Modify Alert / Delay / Output /

Lookup Analysis Analysis nstruction ression Header Log Buffer Drop

NAT V V X X X X V X X V

L7 Load
V V X X X V V X X V

Balancer
L7 Traffic

V V V V V V V X V V
Shaper

Web Application
V X X X X V X X X V

Firewall

NIDS V V V V V V X V X X

NIPS V V V V V V X V X V

Network
V V V V V V X V X V

Anti Virus
Data Leakage

V V V V V V X V X V
Prevention

IPv6
V X X X X X V X X V

Translator

Table 1: Breakdown of processing stages for variety of middlebox applications.

Box Priority Header Match Payload Match Actions

NIPS HIGH
ETH TYPE=IPv4 Exact string

Alert, DropIP PROTO=TCP "attack"
TCP SRC=2040 byte 0 to 250

Layer 7

NORMAL

ETH TYPE=IPv4 Exact string Output to port 1
Load IP PROTO=TCP "GET /images/" Rewrite header:

Balancer IPV4 DST=10.0.0.10 byte 0 to 0 IPV4 DST=10.0.0.20
TCP DST=80

Layer 7

NORMAL

ETH TYPE=IPv4 Exact string Output to port 2
Load IP PROTO=TCP "GET /database/" Rewrite header:

Balancer IPV4 DST=10.0.0.10 byte 0 to 0 IPV4 DST=10.0.0.30
TCP DST=80

Layer 7

NORMAL

ETH TYPE=IPv4 Regular expression Output to port 3
Load IP PROTO=TCP "GET /[^(images|database)]/" Rewrite header:

Balancer IPV4 DST=10.0.0.10 byte 0 to 0 IPV4 DST=10.0.0.40
TCP DST=80

Table 2: Sample rules for NIPS and Layer 7 load balancer middlebox applications. By assigning priority for
rules we resolve conflicting policies of multiple applications. In this example, since the priority of the NIPS
rule is higher, when a HTTP request packet comes from port 2040 to IP 10.0.0.10 port 80, and contains the
string “attack” (thus matching two rules), it will be dropped, and not forwarded to the destination server.

pipeline). These stages can be categorized as most of them
are fairly similar in most middlebox applications. The result
of each stage is the input of the next stages, and usually
it is either a modified packet or part of it, or some meta-
data, along with a possible state update. For example, most
middleboxes perform some sort of header fields lookup be-
fore processing a packet. The result of this lookup is some
metadata used by later stages. Many middleboxes look into
packet’s payload using DPI. The result of this stage is meta-
data that tells which patterns were found in the payload.

A sample of our survey can be viewed in Table 1. A com-
plete list of the processing stages suggested in OpenBox is
presented in Figure 2. In this section we show how mul-
tiple middlebox applications can be implemented by using
a subset of the processing stages, providing the requested
functionality.

3.1 Unifying Processing Stages
In general, middleboxes use some rule mechanism. Ex-

amples for such rules are shown in Table 2 for a NIPS
and a Layer 7 load balancer. Rules define matches on in-
put traffic, and some corresponding actions to be taken.
More specifically, matches in middleboxes’ ingress process-

ing stages impose actions to be taken in their egress pro-
cessing stages. Thus, matches define the behavior of ingress
processing stages, while actions define the behavior of egress
processing stages. We would like to merge multiple rulesets
to define the logic of a single logical middlebox application
that fulfills the union of all.

In our framework, multiple rules may match a single packet.
In such a case, multiple actions should be taken based on
all rules that matched. In some cases two matching rules
may contradict each other. An example is shown in Table 2:
while load balancer rules instructs to output packets to a
specified port, NIPS rules may dictate dropping the same
packets. For such cases, each rule is assigned a priority, and
the highest priority rule that matches is the one to eventu-
ally dictate the final behavior. An OpenBox application may
set the default priority for its rules such that by default, all
of its rules will have a priority different than normal (this is
useful, for example, in security applications that would like
to override other applications in case of a conflict).

3.2 Enhanced Performance
The decision on whether to unify the processing of mul-

tiple applications mainly depends on the potential perfor-

69

Figure 3: Processing graph for a data plane that unifies a NIPS and a Layer 7 load balancer. While all traffic
should go through NIPS, which requires session analysis, decompression, text normalization, and deep packet
inspection, HTTP traffic should also go through deep packet inspection to identify Layer 7 signatures used
by load balancer. Load balancer is assumed here to search patterns on raw payload (without decompression
or normalization), thus the fork in the graph. Actions are taken based on rules from both NIPS and load
balancer (see Table 2).

mance gain (or loss). Naturally, we would like to unify the
processing when a potential performance gain exists. Usu-
ally, packet processing functions are fairly simple with regard
to computational complexity. Let n be the number of rules
of some middlebox, and f(n) be the processing function for
a packet. The run-time complexity of f(n) is usually sublin-
ear with n (that is, f(n) = o(n)). Thus, given two rulesets
with sizes n and m rules each, f(n + m) < f(n) + f(m). In
general, it makes sense to unify the processing for tasks that
are sublinear with the number of rules. This criteria is true
for most packet processing tasks, from simple IP lookup to
complex deep packet inspection algorithms [3].

3.3 Dependencies and Precedence
In today’s networks middleboxes are ordered such that

packets go through them one after each other, according to
the policies of the network [8, 16]. The order in which a
packet should go through multiple services or middlebox is
usually called a policy chain or a service chain.

When unifying the processing stages of multiple middle-
boxes applications we can make packets go through multiple
applications at once. However, this may produce incorrect
results in the cases when the result of one application (such
as NAT) should be the input of a second application (such
as a firewall). In this case, a packet will be processed twice:
once with the rules from the first application, then, the out-
put will be redirected to make another pass with the rules
from the second application.

3.4 Room for Innovation
Of course, the OpenBox framework and the list of pro-

cessing stages suggested in Figure 2 may not suffice to pro-
gram all types of middleboxes. An example for one such
middlebox is a WAN optimizer, which decodes, compresses
or transforms network traffic according to specific policies.
The specific transformation executed by each optimizer may
not be common or may be proprietary. However, a vendor
may provide WAN optimizer OpenBox application by pro-
viding, along with it, a modified OpenBox service instance
implementation. By placing this version of service instance
in the locations in network where WAN optimization is re-
quired, the provided OpenBox WAN Optimizer application
can operate on network traffic as intended.

4. OPENBOX ARCHITECTURE
In this section we present the architecture of the Open-

Box framework. The general framework consists of a data
plane where OpenBox service instances are located, and a

control plane, which sets the rules and actions for data plane
processing.

4.1 Data Plane
The data plane of OpenBox consists of OpenBox service

instances (OBIs), which are low-level processing entities that
perform one or more stages of the unified processing de-
scribed in Section 3. Each such OBI receives a processing
graph (PG) and a set of processing rules from the Open-
Box controller (described in Section 4.4). The PG defines
the processing stages of packets that go through an OBI.
An example for a processing graph is shown in Figure 3. In
this example the data plane unifies the processing for both
a NIPS and a Layer 7 load balancer, based on the rules in
Table 2. The rules specify information to be looked at in
packet headers or payload, and corresponding actions to be
taken.

Hardware or Software Implementation.
Each OBI may be implemented either purely in software,

running on a general-purpose CPU or as a virtual machine in
the network (denoted as a virtual OBI), or using some spe-
cialized hardware as used in many middleboxes today. How-
ever, even if implemented using specialized hardware, the
OBI should still communicate with the OpenBox controller
using the OpenBox protocol and thus is still programmable
just like a software-based OBI.

Multiple OBIs.
Each OBI may implement all or part of the required pro-

cessing steps. An OBI that only implements part of the
steps attaches the results of its processing as metadata to
the original packet. There are numerous ways to do that
but the cleanest is using network service header [17] which
is designed for such cases1. In this case, another OBI that
implements the next required processing steps should receive
the packet with the metadata and continue processing it, or
use the metadata to take the necessary actions.

A network may contain multiple OBIs, either to sepa-
rate the processing steps as described above or also to load-
balance network resources such as links and servers. Virtual
OBIs can be brought up and down as network load changes,
and can be migrated if traffic sources are migrated within a
datacenter, for example using OpenNF [9]. Packets should
flow from ingress points or source hosts through a chain of

1While NSH is not yet available on every network, Cisco’s vPath
[19] implements a similar idea and attempts to use it in SDN are in
progress [14].

70

OBIs, denoted as a service chain, before reaching their des-
tination or egress point. We elaborate on this in Section
4.4.

4.2 The OpenBox Protocol
The OpenBox protocol is the communication protocol be-

tween OBIs and the control plane. It defines the various
messages and data structures to be sent between an Open-
Box controller and OBIs. For example, it allows adding and
removing rules, specifying processing graphs, sending alerts
and log messages, and inquire OBIs for statistics.

Messages in the OpenBox protocol are sent in JSON for-
mat [4], which makes it easy to develop OBIs and controllers.
The definition of the OpenBox protocol is still in progress.

4.3 Rules
Each rule comprises of a header match structure, a payload

match structure, and one or more instructions. A header
match specifies values for specific header fields to be matched
in order for the rule to be applied. A payload match contains
one or more patterns to be searched in packet’s payload.
These can either be exact strings or regular expressions. If
both header and payload were matched, instructions are ex-
ecuted. Currently we only define instructions for applying a
list of actions, but more instruction types can be added to
the protocol.

Each rule may also be assigned a priority (as explained in
Section 3.1), and a cookie - a 64-bits word assigned by the
application for that rule, which makes it possible to later
query the data plane on specific rules or make changes.

4.4 Control Plane
The OpenBox controller (OBC) is a logically centralized

software server that communicated with the various OBIs
in the network. Using the Box abstraction layer it exposes,
OpenBox applications can be written on top of it to define
the desired traffic monitoring and classification tasks in the
network.

The Box abstraction layer (BAL) is an abstract API for
writing OpenBox applications. In general, an OpenBox ap-
plication specifies a processing path (which consists of mul-
tiple processing steps in some specified order) and a set of
rules, which define actions to be taken based on information
from traffic. The BAL provides a set of classes and interfaces
to define such OpenBox applications.

The OBC has a global view of the network: it knows topol-
ogy from the OpenFlow controller (OFC) and locations and
properties of OBIs as they report this information directly
to OBC. Thus, the OBC is in charge of splitting the process-
ing load over multiple OBIs, defining service chains between
them, and communicating with the OFC to enforce these
service chains (using a traffic steering SDN application such
as [8, 16]).

Given the knowledge about OBIs in the network and mul-
tiple processing paths from BAL, the OBC constructs a PG
for each OBI by merging the paths (or partial paths) se-
lected for execution on a specific OBI. The OBC decides
which processing stages should be unified, and is responsible
for precedence validation and for verifying the correctness of
the resulting processing steps.

The control plane may also be in charge of OBI provision-
ing in data plane, as OBIs can report their status, such as
their current load and throughput, to the controller.

4.5 OpenBox Applications
An OpenBox application defines a single traffic monitor-

ing or classification application, such as a NIDS or a NAT,
or new kinds of applications yet to be invented. An Open-
Box application essentially defines which processing steps it
requires and how each such step should work. In addition,
it defines a set of rules.

4.5.1 Metadata
Each processing step produces metadata that may be used

by later steps. For example, when implementing NAT, the
source IP address and transport port are later used to deter-
mine the NAT port number. An OpenBox application can
specify for each processing module what data it needs for
next steps, and this data will be stored in a metadata map
in the OBI. Later processing steps can access this map and
retrieve the stored information.

4.5.2 Proactive Approach
To preserve high performance, Box applications are mostly

proactive, as they proactively define the behavior of data
plane without waiting for packets to first arrive at the net-
work (as sometimes performed in OpenFlow applications).
To allow such a proactive approach, OpenBox defines the
spawn-rule action, which dynamically creates rules in data
plane based on incoming traffic.

An example for a simple application that requires such
an action is NAT: Upon the arrival of the first packet of a
session, translation rules for outbound and inbound traffic
of this session are created automatically in data plane. In
OpenFlow, where dynamic rule spawning is not available,
a reactive approach must be taken, and the first packet of
every new session must go to controller, which plants the
new rules back in data plane.

All rules spawned from the same parent rule by the same
spawn-rule action have the same cookie value, which helps
grouping them together in further operations such as statis-
tics queries and ruleset modification.

Due to the proactive approach of OpenBox, applications
use event handlers in code only to handle events such as
alerts and logging.

4.5.3 State Management
Many middleboxes keep some sort of a state across mul-

tiple packets of the flow, or a collection of flows (usually
denoted as a session). This state helps the different mod-
ules of a middlebox to remember information across different
packets of a session and consequently take actions based not
only the current packet but also its preceding (and some-
times succeeding) packets.

The session analyzer module of OpenBox is responsible,
among other tasks, to generate a unique session identifier
for packets of the same session. Then, each OBI holds a
map for each session ID, which plays as a key-value store
for the corresponding state information. For example, for
NAT implementation the random port number and original
port and address will be stored. Alternatively, an OBI that
performs payload analysis such as decompression and deep
packet inspection would store the compression window re-
quired to decompress next packets (e.g., in gzip, last 32KB
of uncompressed data), and the state where the DPI au-
tomaton stopped scanning the last packet.

71

4.5.4 Content Storage
Some applications require storing content such as payload

or whole packets for future use. Simple examples are web
cache, which stores HTTP responses, and spam filter, which
quarantines messages for future inspection. The OpenBox
Storage Server (OBS) stores content received from OBIs,
making it available for OpenBox applications and for OBIs.
Multiple instances of OBS can exist in a network, usually
one per each OBI or a set of OBIs. Data is stored separately
for different applications for security purposes, and can be
retrieved by the OpenBox Application that stored it or by
an OBI on behalf of that application, using a key (e.g., a
URL). OBS instances can be placed on the same physical
machine that runs their corresponding OBI or in a remote
location, thus data is sent to and from it over the network.

5. INITIAL IMPLEMENTATION
We have began implementation of an OpenBox frame-

work that consists of an OpenBox controller named Moon-
light, implemented in Java (sources: https://github.com/
DeepnessLab/moonlight). OBIs are implemented in Python
and C (sources: https://github.com/DeepnessLab/obsi). In
addition, we implemented an OpenFlow 1.3 based traffic
steering application (TSA) that manages and enforces ser-
vice chains, as an OpenDaylight [6] bundle. We emulate a
network in Mininet [15] where OBIs and OBC run as hosts.

The Moonlight controller defines the following processing
modules: header lookup, session analyzer, protocol analyzer,
ingress hasher, payload handler, and decision maker. Each
module has some settings that can be applied to it. For
example, an OpenBox application can tell the header lookup
module which fields it needs for future processing and thus
should be saved in metadata map. The payload handler can
be set to use decompression and normalization modules.

On top of the Moonlight controller we have implemented
three sample OpenBox applications: a NAT, a NIPS, and a
L7 load balancer. Their code is available under the Moon-
light github repository. The NAT implementation, which
provides fully-functional NAT capabilities, takes about 100
lines of code.

6. CONCLUSIONS AND FUTURE WORK
In this paper we present OpenBox - an open framework

for development of advanced network control applications
on top of a network that contains general purpose service
instances. The OpenBox framework can replace legacy mid-
dleboxes and provide more flexible and scalable development
and deployment of applications with the same roles, and al-
low innovative solutions to be easily created. The framework
can be augmented and extended by any vendor by adding
more sophisticated functionalities to its data plane.

Our research now focuses on finishing the definition of the
OpenBox protocol, and the implementation of the OpenBox
service instances and the Moonlight OpenBox controller.
Future research may focus on interesting problems of the
suggested framework, such as smart allocation of OBIs, smart
allocation of tasks for OBIs to avoid overloading, and ques-
tions related to traffic engineering in a network with Open-
Box. Of course, the framework invites innovative develop-
ment of applications for enhanced network security and per-
formance.

Acknowledgments
This research was supported by the European Research Coun-
cil under the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013)/ERC Grant agreement no 259085,
the Israeli Centers of Research Excellence (I-CORE) pro-
gram (Center No. 4/11), and the Neptune Consortium, ad-
ministered by the Office of the Chief Scientist of the Israeli
ministry of Industry, Trade, and Labor.

7. REFERENCES
[1] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and

A. Vahdat. xOMB: extensible open middleboxes with
commodity servers. In ANCS, pages 49–60, 2012.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,
and D. Walker. P4: Programming protocol-independent packet
processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95,
Jul 2014.

[3] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral. Deep
packet inspection as a service. In CoNEXT, pages 271–282,
2014.

[4] ECMA. The JSON data interchange format, October 2013.
http://www.ecma-international.org/publications/files/
ECMA-ST/ECMA-404.pdf.

[5] ETSI. Network functions virtualisation - introductory white
paper, 2012.
http://portal.etsi.org/NFV/NFV White Paper.pdf.

[6] L. Foundation. Opendaylight. http://www.opendaylight.org/.

[7] O. N. Foundation. Openflow switch specification version 1.4.0,
October 2013. https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.4.0.pdf.

[8] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao,
A. Anand, T. Benson, A. Akella, and V. Sekar. Stratos: A
network-aware orchestration layer for middleboxes in the cloud.
CoRR, abs/1305.0209, 2013.

[9] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella. OpenNF: enabling innovation
in network function control. In SIGCOMM, pages 163–174,
2014.

[10] V. Heorhiadi, M. K. Reiter, and V. Sekar. New opportunities
for load balancing in network-wide intrusion detection systems.
In CoNEXT, pages 361–372, 2012.

[11] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware
switching layer for data centers. In SIGCOMM, pages 51–62,
2008.

[12] L. Kekely, V. Pus, and J. Korenek. Software defined monitoring
of application protocols. In INFOCOM, pages 1725–1733, 2014.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans. Comput.
Syst., 18(3):263–297, Aug 2000.

[14] P. Kothari. Network Service Header support for OVS. OVS
Code Patch, September 2013. http://openvswitch.org/
pipermail/dev/2013-September/032036.html.

[15] Mininet. http://mininet.org/.

[16] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.
SIMPLE-fying middlebox policy enforcement using SDN. In
SIGCOMM, pages 27–38, 2013.

[17] P. Quinn, P. Agarwal, R. Manur, R. Fernando, J. Guichard,
S. Kumar, A. Chauhan, M. Smith, N. Yadav, and
B. McConnell. Network service header. IETF Internet-Draft,
February 2014.
https://datatracker.ietf.org/doc/draft-quinn-sfc-nsh.

[18] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi.
Design and implementation of a consolidated middlebox
architecture. In NSDI, pages 323–336, 2012.

[19] N. Shah. Cisco vPath technology enabling best-in-class cloud
network services, August 2013. http://bit.ly/1F6bbMH.

[20] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar. Making middleboxes someone else’s problem:
network processing as a cloud service. In SIGCOMM, pages
13–24, 2012.

[21] R. Wang, D. Butnariu, and J. Rexford. OpenFlow-based server
load balancing gone wild. In Hot-ICE’11, pages 12–12, 2011.

72

