
CO-REDUCE: Collaborative Redundancy Reduction
Service in Software-Defined Networks

Sejun Song1 Daehee Kim1 Hyungbae Park1 Baek-Young Choi1 Taesang Choi2
1University of Missouri-Kansas City, Missouri, USA

2Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
{sjsong,daehee.kim,hpark,choiby}@umkc.edu, choits@etri.re.kr

ABSTRACT
A large portion of digital data is transferred repeatedly

across networks and duplicated in storage systems, which
costs excessive bandwidth, storage, energy, and operations.
Thus, great effort has been made in both areas of networks
and storage systems to lower the redundancies. However,
due to the lack of the coordination capabilities, expensive
procedures of C-H-I (Chunking, Hashing, and Indexing) are
incurring recursively on the path of data processing. In this
paper, we propose a collaborative redundancy reduction ser-
vice (CO-REDUCE) in Software-Defined Networks (SDN).
Taking advantage of SDN control, CO-REDUCE renders the
promising vision of Redundancy Elimination as a network
service (REaaS) as a real practical service. CO-REDUCE
is a new virtualized network function service that dynam-
ically offloads computational operations and memory man-
agement tasks of deduplication to the group of the soft-
ware designed network middleboxes. Chaining various re-
dundant REs of both storage and network into a service, CO-
REDUCE consolidates and simplifies the expensive C-H-I
processes. We develop service coordination protocols and
virtualization and control mechanisms in SDN, and index-
ing algorithms for CO-REDUCE software-designed middle-
boxes (SDMB). Our evaluation results from the system and
Mininet-based prototypes show that CO-REDUCE achieves
2-4 times more bandwidth reduction than existing RE tech-
nologies and has compatible storage space savings to existing
storage de-duplication techniques while reducing expensive
overhead of processing time and memory size.

CCS Concepts
•Networks →Middle boxes / network appliances;

Keywords
Data de-duplication, Network redundancy elimination,

Software-Defined Networking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMiddlebox’15, August 17-21, 2015, London, United Kingdom
c⃝ 2015 ACM. ISBN 978-1-4503-3540-9/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785989.2786001

1. INTRODUCTION
The explosively growing digital data volumes and net-

work traffic are greatly contributed by redundancies [1]. A
large amount of redundant data is produced in various forms
such as snapshots, disaster recovery mirrors, periodic back-
ups, and compliance archives over the storage systems and
repeatedly transferred to multiple users across network links.
For instance, a study [12] shows there were 70% of redundan-
cies in datasets collected from file systems of an enterprise.

The redundancies consume extra storage space, network
bandwidth, and energy while incurring operational over-
head of CPU and memory. Thus, as shown in Figure 1,
many redundancy reduction technologies such as Data de-
duplication (Dedup), Network Redundancy Elimination (NRE)
[2, 3], WAN Optimization and Acceleration (WOA) [5, 18],
Information-Centric Network (ICN) [6, 15], Content Deliv-
ery Network (CDN), and IP Multicast have been used in
both areas of networks and storage systems. For identifying
and removing the redundancies, they perform three common
processes, which are Chunking, Hashing, and Indexing (C-
H-I). As illustrated in Figure 2, Chunking splits a data into
a sequence of data blocks through a customized chunking
policy (fixed or variable size); Hashing creates a fixed size
fingerprint for comparison and identification using a crypto-
graphic hash algorithm, such as SHA-1 or MD5; and Index-
ing [16] is a memory I/O intensive process of identifying and
retrieving duplicated chunks by comparing with the cached
indexes. As the inline C-H-I process is very expensive – in-
creasing proportionally to the data amount, it mostly has
been deployed in the form of vendor specific special purpose
middleboxes. Although they share the common motivations
and processes of identifying and removing the redundant
data or packets, due to the lack of coordination capabili-
ties among them, they do not provide any benefits for each
other and even introduce the overhead of recursive C-H-I
procedures on the path of a data processing. For example,
as illustrated in Figure 3, when data from a data center is
transferred across network links to be stored in a storage
server via enterprises, while each Dedup, WOA, and NRE
can be performed for a benefit of its own domain, the data
goes through multiple sequences of C-H-I processes, which
incur significant computational and memory overhead.

In this paper, we propose a collaborative redundancy
reduction service (CO-REDUCE) framework in Software-
Defined Networks (SDN). CO-REDUCE renders the promis-
ing vision of Redundancy Elimination (RE) as a practical
network service by generalizing the deployments of vendor
specific middleboxes to that of software designed middle-

61

Figure 1: Redundancy reduction techniques

Figure 2: C-H-I process

boxes that benefits to all of users, applications, and ISPs.
Taking advantage of SDN control, CO-REDUCE provides
a new virtualized network function service that dynamically
offloads computational operations and memory management
tasks to the group of on the software designed network mid-
dleboxes. It establishes coordination capabilities to simplify
the expensive C-H-I processes into a service by chaining the
redundancy reduction services on the path of a data pro-
cessing. As shown in Figure 4, we design and implement
prototypes of 1) service coordination protocols with con-
trol modules on both end-systems; 2) cache placement algo-
rithms and cache application policies; 3) encoding and in-
dexing algorithms in CO-REDUCE software-designed mid-
dleboxes (SDMB); 4) CO-REDUCE service marking mech-
anisms; and 5) data encoding and forwarding methods. Our
evaluation results from the system prototypes as well as
Mininet-based emulations show that CO-REDUCE achieves
significantly higher bandwidth reduction than existing RE
technologies and has equal/close storage space savings to
existing storage de-duplication techniques by reducing ex-
pensive overhead of processing time and memory size. Fur-
thermore, in the operations of recursive redundancy reduc-
tion, CO-REDUCE leads much less processing and memory
overheads.

The rest of the paper is organized as follows. In Section 2,
we review existing data reduction approaches. We describe
the design and implementation issues of the CO-REDUCE
system in Section 3. We evaluate our approach in Section 4,
and offer a conclusion in Section 5.

2. RELATED WORK
A number of data reduction techniques have been pro-

posed for both networks and storage domains. Storage do-
main data reduction techniques are to save storage space,
and run at a client’s or at a server’s side. Client side tech-
niques [7, 13] can reduce the network bandwidth by elimi-
nating redundancy before the data transfer. However, the
de-duplication ratio can be inefficient due to the limited data
set and the processing cost can be too high for a client with
limited capacity. Server side data de-duplication approaches
have been used in traditional storage systems, and they

Figure 3: Redundant C-H-I process example

Figure 4: CO-REDUCE architecture

mainly differ in the granularity of units for de-duplication,
such as data chunks [11, 21], files [12], hybrid [9], and se-
mantic granularity [10].

Network domain data reduction techniques are to save
bandwidth and reduce latency by reducing repeating trans-
fers through network links. End-to-end Redundancy Elim-
ination (EndRE) and WAN optimizers [5, 18] remove re-
dundant network traffic at two end points (e.g., branch to
head quarter). Network Redundancy Elimination (NRE)
techniques [2, 3] eliminate repeating network traffic across
network elements such as routers and switches. NRE com-
putes indexes [16] for the incoming packet payload and elim-
inates redundant packets by comparing indexes with the
packets saved previously. The redundant payload is encoded
by small sized shims and decoded before exiting networks.
However, this approach suffers from high processing time
due to sliding fingerprinting [20] at the routers and high
memory overhead to save packets and indexes.

The ICN [6, 15] aims to reduce latency by caching data
packets toward receiving clients. In addition, ICN uses name
based forwarding table that causes extra table lookup time
and raises scalability issues. Meanwhile, Content Delivery
Networks (CDN) [4] can reduce redundant data traffic by
preventing a long path to an origin server after locating files
close to users, and IP Multicast [17] reduces traffic by al-
lowing a sender to send multiple recipients a file with only
a copy.

In summary, aforementioned redundancy reduction pro-
cesses are very expensive, mostly performed by using ven-
dor specific special purpose middleboxes. Furthermore, the
costly processes are designed and performed independently,
i.e., redundantly. As CO-REDUCE efficiently chains storage
de-duplication and network redundancy elimination func-
tions and virtualizes de-duplication processes, it achieves
effective performance without introducing high processing
and memory overhead.

3. CO-REDUCE DESIGN AND IMPLEMEN-
TATION

In this section, we present the CO-REDUCE control and
data flows to discuss how CO-REDUCE chains the entire
service elements. We then describe encoding and indexing
algorithms of SDMBs. CO-REDUCE’s elastic control capa-
bilities would provide better facilities for the interpath and

62

Figure 5: CO-REDUCE control and data flows

Figure 6: CO-REDUCE forwarding operation example

intrapath caching, cache consistency, resource constraints,
and traffic modification issues. However, due to the space
limitation, in this paper, we focus on the fundamental de-
sign ideas and the operation processes. The details can be
found in the extended version of the paper.

3.1 CO-REDUCE Control and Data Flows
The CO-REDUCE controller’s main responsibilities in-

clude end-to-end element coordination, and cache/index place-
ment and application policy management.
Control Setup: A CO-REDUCE process is initiated by a
service request from one of the end systems. As illustrated
in Figure 5, a client sends a service request with the source
and destination information (C1) to the CO-REDUCE con-
troller. Upon receiving the request, as presented in Al-
gorithm 1 the CO-REDUCE controller calculates a route
from the source to the destination, figures out the SDMB
locations along the data path, and computes encoding and
indexing policies for each SDMB. The CO-REDUCE con-
troller then adds a new flow to the Openflow switches by
sending flow setup messages (C2). Once a forwarding table
for a flow is established, the CO-REDUCE controller assigns
encoding and indexing policies to each SDMB (C3). A ser-
vice coordination message is sent to the destination (C4).
Finally, the CO-REDUCE controller completes a client’s ser-
vice request by sending an acknowledgement to the client so
that the client transfers data (C5). This loosely coupled
control setup renders the RE as a network service practice.
Forwarding Operation: CO-REDUCE supports a zero
chunking mechanism that uses a network packet payload it-
self as a chunk. Hence, instead of performing an expensive
chunking in the client, it will set a couple of TOS bits (a
service bit and an encoding bit) to indicate if the packet is
involved in the CO-REDUCE service. The service bit indi-

Algorithm 1 CO-REDUCE Controller Algorithm

Input: inPacket(ServiceRequest)
Output: outPacket

1: controlType = getType(payload)
2: senderIP = getSenderIP(inPacket)
3: // set up service
4: srcIP = getSrcIP(inPacket)
5: dstIP = getDstIP(inPacket)
6: registerToService(srcIP, dstIP)
7: (SDMBList, switchList) ← setupPath(srcIP, dstIP)
8: computeHashRange(SDMBList)
9: assignHashRange(SDMBList)
10: pushFlowEntry(switchList, SDMBList)
11: outPacket ← “confirm”
12: forward outPacket(senderIP)

cates if the packet needs a CO-REDUCE service in the net-
work and the encoding bit represents if the packet is already
encoded by the previous SDMB. Likewise, all the switches
need to do is a regular forwarding. When an OpenVSwitch
receives a packet, it simply forwards the packet according
to its flow table. The forwarding decision is configured by
the controller in the flow table associated with a specific flow
with the TOS bits. For example, as shown in Figure 6, when
a data packet D (1,0) arrives to a switch 1 from a port 1, the
switch 1 will forward the packet to an SDMB 1 via a port 3
according to the forwarding entry 3. After the service and
encoding bits are updated by the SDMB 1 according to the
cache miss/hit to either D (0,1) or D (1,1), the packet is
forwarded through the switches 2 and 3. When the packet
arrives in the destination server, the CO-REDUCE server
finds the place to store the packet either into index list or
storage according to the TOS bits.
CO-REDUCE Controller Implementation: We use Flood-
light [8] to implement a CO-REDUCE controller. We im-
plement a Floodlight module that computes hash ranges. A
client module, SDMBs, and a server module communicate
with a CO-REDUCE controller through REST API using
cURL. We add REST API URIs into the Floodlight module
for the communication. SDMBs use C++ JSON parser to
parse JSON data (with hash ranges) that is delivered from
a CO-REDUCE controller.

Hash Range Path R1 R2 R3 R4

CR-uniform
H1-H4 - [0,0.33) [0.33,0.66) [0.66,1)
H2-H4 [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1)
H3-H4 - - [0,0.5) [0.5,1)

CR-MP
H1-H4 - [0,0.5) [0.5,1) -
H2-H4 - [0,0.5) [0.5,1) -
H3-H4 - - [0,1) -

Figure 7: A network with three routes (H1-H4, H2-H4, and
H3-H4) and four SDMBs (R1, R2, R3, and R4)

63

Algorithm 2 Packet Processing in SDMB

Input: inPacket
Output: outPacket

1: // pathID is <srcIP> <dstIP>
2: pathID = getPathID(inPacket)
3: payload = getPayload(inPacket)
4: hashKey = computeHash(payload)
5: hashRangeKey = computeHashRangeKey(hashKey)
6: if hashRangeKey ∈ hashRange(pathID) then
7: if hashKey ∈ indexTable then
8: // redundant packet - encode
9: replacePayload(hashKey, inPacket, outPacket)
10: recomputeChecksum(outPacket)
11: else
12: // unique packet
13: saveToIndexTable(hashKey)
14: outPacket ← inPacket
15: end if
16: else
17: outPacket ← inPacket
18: end if
19: forward(outPacket)

3.2 CO-REDUCE Software Designed Middle-
Boxes (SDMB)

An SDMB performs encoding and indexing for an in-
coming packet. As presented in Algorithm 2, an SDMB
computes a hash-range key of the packet upon receiving a
packet. Although it is implementation specific, we perform
a modulo operation with the 18 most significant bits from a
SHA1 hash [14] to calculate a range of floating points from
0 to 1. If the calculated hash range is out of the SDMB’s
hash range, a packet is forwarded to the next hop without
any processing (passing). Otherwise, it searches its index
cache. If a match is found, it is considered a redundant
packet. Thus, an SDMB replaces the original payload with
the index (a small and fixed size) and sets an encoding bit
to forward the next hop. If a match is not found, an SDMB
adds the hash key in the table, resets a service bit, sets an
encoding bit, and forwards the original payload to next hop.
It is clearly noticed that the packet encoding is done by only
one of the SDMBs. All others on the data path do a simple
test if it needs to encode. Furthermore, once an encoding is
done, the packet won’t be forwarded to SDMB anymore.
Index/Cache Placement Algorithms: CO-REDUCE sup-
ports a distributed indexing mechanism. Using a hash-based
sampling [19], a CO-REDUCE controller computes the dis-
joint hash ranges over the route of a flow and assigns them
to SDMBs. We have implemented and tested three different
index distribution algorithms.

• CR-full is an approach that an SDMB holds a full hash
ranges [0,1). This will incur more memory overhead, but
it can achieve a better redundancy reduction ratio. The
index size complexity per route is O(n*m) where n and
m are the number of unique packets and the number of
SDMBs on a path, respectively.

• CR-uniform assigns the hash-ranges uniformly to the
SDMBs on a data path. As presented in Algorithm 3,
CR-uniform hash ranges are computed using the number
of SDMBs in each flow path. In Figure 7, a path H1 -H4
has three SDMBs. Thus, each SDMB has an encoding

Algorithm 3 Computing Hash Range

For CR-uniform & CR-MP
Input: SDMBList, pathList
Output: nodes with hash range

1: for all path ∈ pathList do ◃ retrieve each path
2: if approach == “CR-uniform” then
3: fraction = 1 / numSDMBs(path)
4: else if approach == “CR-MP” then
5: totalDegree = getTotalDegree(path)
6: end if
7: SDMBs = getSDMBs(path)
8: range = 0
9: for all SDMB ∈ SDMBs do ◃ an SDMB in a path
10: if approach == “CR-MP” then
11: fraction = SDMB.getDegree() / totalDegree
12: end if
13: SDMB.lowerBound = range
14: SDMB.upperBound = range + fraction
15: range = range + fraction
16: end for
17: end for

responsibility of 1
3

or 0.33. Hash ranges are computed
from the first SDMB (R2) to the last SDMB (R4) on a
path, starting from 0 by accumulating the hash ranges:
R2 is assigned [0, 0.33), where 0 is inclusive and 0.33 is
exclusive. The complexity of the index size per path is
O(n), where n is the number of unique packets on a data
path.

• CR-MP assigns the disjoint hash ranges only for the
SDMBs that have more than one incoming flow of the
same destination (merge point). The approach is very
similar to the reverse multicast or multicast join protocols.
As shown in Algorithm 3, the hash range is computed by

incoming degree of a merge SDMB
total incoming degree of merge SDMBs on a path

. For example,
in Figure 7, a path H1-H4 has two merge SDMBs such as
R2 and R3. The hash ranges are assigned only to R2 and
R3 as [0, 0.5) and [0.5, 1), respectively.

SDMB Implementation: An SDMB is implemented as
a userspace program that is a callback function based on
a libnetfilter queue userspace library. An SDMB runs on a
Linux bridge that connects the incoming and outgoing net-
work interfaces. To intercept an incoming packet, we set up
the iptables rules in a filter table. The iptables rules are es-
tablished for coordinating an OUTPUT for a client module,
a FORWARD for an SDMB, an INPUT for a server module
along with iptables-extension NFQUEUE. Whenever pack-
ets come in, packets are punted to a userspace program
through a netfilter queue. A userspace program handles an
incoming packet and a processed packet is forwarded back to
network elements such as switches and SDMBs or a server.

4. EVALUATIONS
We compare the performance of CO-REDUCE with other

existing storage and network data reduction techniques in
the aspects of the storage and bandwidth savings, processing
time, and memory usage.

4.1 Setting
We use a real testbed system as well as a mininet-based

emulation. The testbed experiment is to verify CO-REDUCE

64

Figure 8: Experiment and fat-tree emulation topologies

0

0.2

0.4

0.6

0.8

1

ServerD
ClientD

CR−full

CR−uniform
CR−MP

(a) Storage space saving

0

0.2

0.4

0.6

0.8

1

NRE
CR−full

CR−uniform
CR−MP

(b) Bandwidth saving

Figure 9: Comparison of performance

algorithms within a practical system environment as shown
in Figure 8. We also set up a large fat-tree topology for
the mininet-based emulation as illustrated in Figure 8 to
validate CO-REDUCE in the typical data center network
topologies. We place a server in the right most host: H4
in the experiment and H16 in the fat-tree. Other hosts act
as clients. R{x} represents an SDMB and S{x} is an Open-
VSwitch. The path and number of nodes selected for the fat-
tree are the same as using a spanning tree, so two topologies
are considered as the same case for our evaluation.

In both system experiments and mininet-based emula-
tions, we use a dataset of campus log data that has been
captured from the university data center. All the clients
send the same dataset as other clients, so redundancy is 14

15
for fat-tree.

We use two metrics for measuring performance: storage
space and bandwidth savings, and another two metrics for
measuring overhead: processing time and memory size. To
present storage space saving, we used a de-duplication ratio.
The de-duplication ratio is a typical means to show how
much storage space is reduced and is computed by
volume of redundant data eliminated

total volume sent by all clients
∗ 100. Bandwidth saving is

computed by Reduced traffic size
Total traffic size without redundancy elimination

∗
100. For overhead metrics, we measure processing time and
memory size occurred at clients, a server, and SDMBs. We
compare CO-REDUCE with client Dedup, server Dedup,
and network wide RE (NRE) [3].

4.2 Storage and Bandwidth Savings
We first present experimental results of performance im-

provement in CO-REDUCE compared to the existing tech-
niques. For this purpose, we compare relative value nor-

0

100

200

300

ServerD NRE
CR−full

Experiment FatTree

(a) Processing time (Sec)

0

1

2

3

ServerD
ClientD

CR−full
CR−MP

Experiment FatTree

(b) Memory size (MB)

Figure 10: Overhead per topology

malized for all metrics as in Figure 9. For storage space
saving as shown in Figure 9(a), CO-REDUCE shows the
closest performance to server Dedup (ServerD) that is the
best for saving storage space in existing techniques. CR-full
shows exactly the same space saving as ServerD. This in-
dicates CR-full does not miss any redundancy through the
network. CR-uniform, and CR-MP have close space saving
to ServerD. Meanwhile, ClientD is the worst for space saving
(1.6%). For bandwidth saving in Figure 9(b), CO-REDUCE
schemes show more bandwidth saving by 2-4x than NRE.
CR-full shows the best bandwidth saving followed by CR-
MP and CR-uniform.

4.3 Operational Overhead of Memory and Pro-
cessing Time

We now compare the overhead for the different network
topologies as shown in Figure 8. We mainly consider the dif-
ferences in the number of clients and the location of clients.
The processing time, as shown in Figure 10(a), increases pro-
portional to the number of clients for all techniques. Pro-
cessing time increases more slowly in CR-full than others.
Other CO-REDUCE approaches such as CR-uniform and
CR-MP have the almost same processing time as CR-full.
Client Dedup and variable-size server Dedup are not shown
for readability due to their excessive processing times.

We find that computers used for SDMBs in experiment
are much slower than a computer used for emulation (multi-
tree/fat-tree), which amplifies the processing time slowed by
fingerprinting. The memory size increases proportional to an
increase in the number of clients as shown in Figure 10(b).
CR-full has more index size than ServerD and ClientD, but
CO-REDUCE can reduce the number of the indexes by an
indexing scheme like CR-MP reduces the memory size of
CR-full in the figure.

4.4 Performance and Overhead: CO-REDUCE
vs. Combined Reduction Techniques

When data is transferred to a server across network links,
each Dedup and NRE can be performed for a benefit of
their own domains. The data may go through various forms
of de-duplication processes redundantly. We compare CO-
REDUCE with a couple of redundant de-duplication scenar-
ios such as the ClientD and NRE (denoted as ClientD+NRE)
and the ServerD and NRE (denoted as ServerD+NRE).

As shown in Figure 11(a), CO-REDUCE shows the best
space savings as good as the ServerD+NRE scenarios. For
space saving, both combined approaches rely on storage ser-
vices including client Dedup and server Dedup because NRE
is not applicable for storage space saving. As shown in Fig-
ure 11(b), CO-REDUCE saves the most bandwidth com-
pared to two combined approaches. For two combined ap-
proaches, bandwidth saving is determined by performance of
NRE. For processing time, CO-REDUCE outperforms two

65

0

0.2

0.4

0.6

0.8

1

ClientD+NRE
ServerD+NRE

CO−REDUCE

(a) Storage space saving

0

0.2

0.4

0.6

0.8

1

ClientD+NRE
ServerD+NRE

CO−REDUCE

(b) Bandwidth saving

Figure 11: Performance of combined approaches

100

105

P
ro

ce
ss

in
g

tim
e

(lo
gs

ca
le

)

ClientD+NRE
ServerD+NRE

CO−REDUCE

(a) Processing time (Sec)

100

101

102

103

M
em

or
y

si
ze

 (l
og

sc
al

e)

ClientD+NRE
ServerD+NRE

CO−REDUCE

(b) Memory size (MB)

Figure 12: Overhead of combined approaches

combined approaches as shown in Figure 12(a). As shown in
Figure 12(b), CO-REDUCE requires less memory size than
two combined approaches. The gap between CO-REDUCE
and combined approaches is mainly caused by NRE that
stores packets itself as well as indexes. Though ClientD
has slightly more reduction in memory size than ServerD,
the slight reduction becomes invalid due to excessive mem-
ory size by NRE. Overall, the evaluation results show that
in scenarios of both end-systems and networks performing
de-duplication redundantly, CO-REDUCE achieves very ef-
ficient processing and memory overhead.

5. CONCLUSION
We proposed CO-REDUCE, an efficient software-designed

de-duplication as a network and storage service where servers,
clients and middleboxes collaboratively operates to provide
effective storage space and network bandwidth savings while
significantly reducing processing time and memory size. A
client only tags a packet on TOS bits for service indication
and does no extra chunking, since a packet is the unit of
deduplication. All the servers need to do is to check TOS
bit and to store the data into its index list or storage block.
There is no extra overhead in switches. Only one of the
SDMBs on the path will do encoding of a packet - indexing
and replace the payload. Other SDMBs on the data path
will do a simple test if it needs to encode. If not just pass the
packet. Furthermore, once an encoding bit is set, the packet
won’t be forwarded to SDMB at all. We developed effi-
cient encoding and indexing algorithms for a CO-REDUCE
software-designed middlebox (SDMB) and effective control
mechanism for an SDN controller. We also built a prototype
of testbed experiments and conducted Mininet-based emula-
tions to evaluate CO-REDUCE on real system environments
and typical DCN topology, respectively. Our evaluation re-
sults show that CO-REDUCE saves 2-4 times more band-
width than the state-of-art NRE technique and same/close
storage space saving to the Dedup technique with low over-
head by achieving very efficient processing and memory over-
head.

Acknowledgment
This work was supported by Institute for Information &

communications Technology Promotion (IITP) grant funded
by the Korea government (MSIP) (14.000.05.001, Smart Net-
working Core Technology Development).

6. REFERENCES
[1] The digital universe in 2020.

http://www.emc.com/collateral/analyst-reports/idc-
the-digital-universe-in-2020.pdf.

[2] A. Anand, A. Gupta, A. Akella, S. Seshan, and
S. Shenker. Packet caches on routers: the implications

of universal redundant traffic elimination. In
SIGCOMM, 2008.

[3] A. Anand, V. Sekar, and A. Akella. SmartRE: an
architecture for coordinated network-wide redundancy
elimination. In SIGCOMM, 2009.

[4] J. Apostolopoulos, T. Wong, W. tian Tan, and
S. Wee. On multiple description streaming with
content delivery networks. In INFOCOM, 2002.

[5] Citrix. Cloudbridge. http://www.citrix.com/products/
cloudbridge/overview.html.

[6] A. Detti, N. Blefari Melazzi, S. Salsano, and
M. Pomposini. CONET: A Content Centric
Inter-networking Architecture. In ICN, 2011.

[7] EMC. Avamar. http://www.emc.com/backup-and-
recovery/avamar/avamar.htm.

[8] Floodlight. http://www.projectfloodlight.org/.

[9] D. Kim and B.-Y. Choi. HEDS: Hybrid Deduplication
Approach for Email Servers. In ICUFN, 2012.

[10] D. Kim, S. Song, and B.-Y. Choi. SAFE:
Structure-Aware File and Email Deduplication for
Cloud-based Storage Systems. In CloudNet, 2013.

[11] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,
G. Trezise, and P. Camble. Sparse Indexing: Large
Scale, Inline Deduplication Using Sampling and
Locality. In FAST, 2009.

[12] D. T. Meyer and W. J. Bolosky. A Study of Practical
Deduplication. In FAST, 2011.

[13] A. Muthitacharoen, B. Chen, and D. Mazières. A
low-bandwidth network file system. In SOSP, 2001.

[14] N. I. of Standards and Technology. Secure Hash
Standard. http://csrc.nist.gov/publications/fips/
fips180-4/fips-180-4.pdf.

[15] D. Perino, M. Varvello, and K. P. Puttaswamy.
ICN-RE: redundancy elimination for
information-centric networking. In ICN, 2012.

[16] M. O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Harvard Univ., 1981.

[17] P. Rajvaidya and K. Almeroth. Analysis of routing
characteristics in the multicast infrastructure. In
INFOCOM, 2003.

[18] Riverbed. SteelHead for WAN Optimization. http://
www.riverbed.com/products/wan-optimization/.

[19] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R.
Kompella, and D. G. Andersen. CSAMP: a system for
network-wide flow monitoring. In NSDI, 2008.

[20] N. T. Spring and D. Wetherall. A
protocol-independent technique for eliminating
redundant network traffic. In SIGCOMM, 2000.

[21] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk
Bottleneck in the Data Domain Deduplication File
System. In FAST, 2008.

66

