
Scalable Routing in SDN-enabled Networks with
Consolidated Middleboxes

Andrey Gushchin
Cornell University

avg36@cornell.edu

Anwar Walid
Bell Labs, Alcatel-Lucent
anwar.walid@alcatel-

lucent.com

Ao Tang
Cornell University

atang@ece.cornell.edu

ABSTRACT
Middleboxes are special network devices that perform var-
ious functions such as enabling security and efficiency. SDN-
based routing approaches in networks with middleboxes need
to address resource constraints, such as memory in the switches
and processing power of middleboxes, and traversal con-
straint where a flow must visit the required middleboxes
in a specific order. In this work we propose a solution based
on MultiPoint-To-Point Trees (MPTPT) for routing traf-
fic in SDN-enabled networks with consolidated middleboxes.
We show both theoretically and via simulations that our so-
lution significantly reduces the number of routing rules in
the switches, while guaranteeing optimum throughput and
meeting processing requirements. Additionally, the under-
lying algorithm has low complexity making it suitable in
dynamic network environment.

CCS Concepts
•Networks → Middle boxes / network appliances;
Traffic engineering algorithms;

Keywords
Software-Defined Networking, Middlebox, Multipoint-to-Point
Tree, Traffic Engineering

1. INTRODUCTION
Middleboxes (e.g. proxies, firewalls, IDS, WAN optimiz-

ers, etc.) are special network devices that perform func-
tional processing of network traffic in order to achieve a cer-
tain level of security and performance. Each network flow
may require certain set of functions. In some cases these
functions can be applied only in a particular order, which
makes routing in networks with middleboxes under limited
resources constraints even a more difficult task. Mecha-
nism of controlling routing through the specified functional
sequence is called Service Function Chaining (SFC). Logi-
cally centralized traffic control offered by SDN enables traffic
routing optimization (in terms of device costs, total through-
put, load balancing, link utilizations, etc.), while satisfying
a correct traversal of network middleboxes for each flow.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotMiddlebox’15, August 17-21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3540-9/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785989.2785999

Several recent works (e.g. [10], [6], [7]) provide relevant so-
lutions.

Functionality provided by middleboxes can be incorpo-
rated in the network in several ways. Traditional middlebox
is a standalone physical device that can typically perform
one network function, and may be located at an ingress
switch. With the development of the Network Function Vir-
tualization (NFV), middleboxes may be implemented using
Virtual Machines (VMs) that can be flexibly installed at the
Physical Machines (PMs). In addition, virtualization en-
ables implementation of the consolidated middleboxes [12],
where a flow receives all of its required service functions at a
single machine. The consolidated middlebox model simpli-
fies traffic routing and helps reduce the number of routing
rules in the switches.

In this paper, we follow the model in [4], and assume that
each middlebox function is an application that can be in-
stalled at certain VMs within the PMs. It is also assumed
that every flow obtains all its required functional treatment
at a single PM, and thus the consolidated middlebox model
is implied in the paper. Network function consolidation and
flexible implementation of middleboxes were previously dis-
cussed, for example in [7], [8], [2] and [12].

Depending on the network traffic environment, two types
of routing schemes can be developed: offline, where all re-
quired traffic demands are given or can be estimated (for
example, using a service level agreement between the cus-
tomer and the provider), and online, where demands are
unknown and a routing solution for each incoming flow is
made based on the flow class and the current state of the
network. A solution obtained by a routing scheme can be
converted into a set of routing rules that are installed in the
switches. Different criteria can be used to characterize the
achievable performance of a routing scheme: total through-
put, average delay, maximum PM utilization, etc. Besides
achieving a desired network performance, a routing scheme
must also satisfy resource and routing constraints. Addi-
tionally, three new constraints are of a special interest in
the SDN-enabled networks with middleboxes.
• Switch memory capacities: number of rules in-

stalled in a single switch is limited by its memory ca-
pacity. Ternary Content-Addressable Memory (TCAM)
used in SDN switches is a scarce resource which is ex-
pensive both in terms of cost and power consumption.

• Middlebox processing capacities: load on each
middlebox should not exceed its processing capacity.
Overload of middleboxes has to be avoided since it may
cause loss of traffic, delay, incorrect traversal sequence
or other problems.
• Traversal constraints: required network functions

have to be applied to any given flow in a correct order.
The switch memory constraint is important: flow table

overflow is a serious problem that can significantly degrade

55

m(vj) capacity of switch vj ∈ Vsw

r(vj) number of rules in switch vj ∈ Vsw

b(vj) capacity of PM vj ∈ Vpm

g(e) capacity of link e
commodity i

comi with source si, destination ti,
< si, ti, di, ci > demand di, and class ci

pi cost (in PM resources) of comi

M total number of commodities
C number of different traffic classes
VT set of distinct destinations

Table 1: Main notations.

network performance and, therefore should be avoided. Be-
cause this constraint is of integer type, it makes the problem
of finding an optimal routing solution hard. If, in addition,
middleboxes are added to the network, finding such routing
becomes even harder.

In this paper we present an approach based on multi-
point-to-point trees that efficiently finds a routing with a
guarantee on the maximum number of rules in a single switch,
while satisfying all other network constraints. Moreover, our
routing solution scales well with the network size: the ex-
plicit bound C+2|E0|+ |VT |−2|Vpm| on the number of rules
is additive and depends linearly on the number of destina-
tion nodes (|VT |), links (|E0|) and flow classes (C) in the
network.

2. PROBLEM FORMULATION

2.1 Network Topology and Resources
We assume that the network topology is defined by a di-

rected graph G0 = (V0, E0), where V0 is the set of its nodes
and E0 is the set of edges. Each node corresponds either to a
switch or to a PM, and each edge is a link connecting either
two switches, a switch with a PM, or a PM with a switch.
We denote by Vsw and Vpm the node sets corresponding to
switches and PMs, respectively, so that Vsw ∪ Vpm = V0,
and Vsw ∩ Vpm = ∅. It will be assumed for simplicity that
each PM is connected with a single switch by bi-directional
links as shown in Fig. 1a. Let Vsw→pm be the subset of
nodes in Vsw that are directly connected to the PM nodes
(Vsw→pm = {sw1, sw2, sw6} in Fig. 1a).

Each switch has a certain memory capacity that can be
expressed as a number of rules that it can accommodate.
We will denote this number by m(vj) for a switch located at
node vj (j = 1, . . . , |Vsw|), where |A| is the cardinality of a
set A. Additionally, let r(vj) be the number of rules in this
switch in a routing solution.

Although a PM may have several types of resources (e.g.
memory, CPU), it will be assumed for simplicity that each
PM is characterized by a single resource capacity that will
be denoted by b(vj) for a PM located at node vj (j =
1, . . . , |Vpm|). Similarly, each link ek ∈ E0 (k = 1, . . . , |E0|)
has an associated link capacity that will be denoted by g(ek).

2.2 Network Functions and Commodities
There exist several types of network functions (firewall,

IPS, IDS, WAN optimization, etc.), and each function has
its own cost per unit of traffic in terms of PM resources.
Although in this work we assume that this processing cost
is the same for all PMs, it is easy to generalize it to the case
when the costs are distinct for different PMs.

Additionally, there is a set of M traffic demands or “com-
modities” that have to be routed in the network. We will

use the terms traffic demand and commodity interchange-
ably. Commodity comi is defined by a four-tuple comi =
< si, ti, di, ci >, where i = 1, . . . ,M . Here si ∈ Vsw and
ti ∈ Vsw are, respectively, source and destination nodes, di
is an amount of flow that has to be routed for commod-
ity comi, which we will call the commodity’s demand, and
ci is an ordered set of network functions required by this
commodity. Any such ordered set of network functions de-
fines the class of a commodity. We will denote by C the
total number of different classes of traffic demands. Due to
various functional requirements, different commodities may
have different per unit of traffic costs in terms of PM’s pro-
cessing power. Let p(i) be such cost per unit of traffic for
traffic demand comi.

Each PM hosts at most C VMs, where a single VM cor-
responds to a single commodity class. It is assumed that
when a packet from a commodity of class k arrives to a PM,
it is transfered to the virtual machine associated with class
k, and all network functions of class k are applied to this
packet in a correct order. Distribution of each PM’s pro-
cessing capacity among C VMs has to be determined. It is
assumed, however, that positions of PMs (nodes Vpm) are
given as an input and are not subject to change.

By VT we will denote the set of distinct destinations, then
|VT | ≤ M , |VT | ≤ |Vsw|. Main notations are summarized in
Table 1.

2.3 Routing via Integer Linear Optimization
In this work we employ the idea of consolidated middle-

boxes, and each packet belonging to comi gets all functional
treatment specified by ci at a single PM. It is allowed, how-
ever, that a single commodity’s traffic is split into several
paths from si to ti, and distinct paths may traverse distinct
PMs. We point out that splitting occurs at the IP flow level
and not at the packet level. This is similar to Equal Cost
Multipath [5] in Data Centers, where hashing is used to split
traffic at the IP flow level for routing on multiple paths.

If the traffic demands are known in advance, an optimiza-
tion problem can be posed whose feasible solution defines a
routing that satisfies all network constraints. The variables
of this optimization problem fx

i (e) are the amount of traffic
of commodity comi on edge e ∈ E0, i = 1, . . . ,M . Here
superscript x ∈ {0, 1} with zero value corresponds to the
traffic that has not visited a consolidated middlebox, and
unit value is used to denote the traffic that has been pro-
cessed by the required network functions. There are thus
2 ·M · |E0| variables in this optimization problem. Let di(v)
be the demand from a node v ∈ Vsw for the commodity
comi. Note that di(v) = di if v = si, and is zero, otherwise.
The problem is formulated as follows.

ILP Optimization (1):

min
∑

e∈E0,1≤i≤M,
x∈{0,1}

fx
i (e),

∀v ∈ Vsw, ∀i : 1 ≤ i ≤M :∑
(v,w)∈E0

f0
i (v, w)−

∑
(u,v)∈E0

f0
i (u, v) = di(v), (1a)

∀v ∈ Vsw : v 6= ti, ∀i : 1 ≤ i ≤M :∑
(v,w)∈E0

f1
i (v, w)−

∑
(u,v)∈E0

f1
i (u, v) = 0, (1b)

∀v ∈ Vpm, ∀i : 1 ≤ i ≤M : f1
i (u, v) = 0, (1c)

∀v ∈ Vpm, ∀i : 1 ≤ i ≤M : f0
i (u, v) = f1

i (v, u), (1d)

∀v ∈ Vpm :
∑

1≤i≤M

p(i) · f0
i (u, v) ≤ b(v), (1e)

56

(a) Example of a network
topology defined by graph
G0 = (V0, E0).

(b) Grpah G1 = (V1, E1)
constructed from graph G0
at Step 1.

(c) Graph G2 = (V2, E2)
constructed from graph
G1 at Step 2.

Figure 1: Example of a given graph G0 and graphs G1 and
G2 constructed at the first and the second steps of our al-
gorithm, respectively.

∀e ∈ E0 :
∑

1≤i≤M

f0
i (e) +

∑
1≤i≤M

f1
i (e) ≤ g(e), (1f)

∀v ∈ Vsw : r(v) ≤ m(v), (1g)

∀e ∈ E0, ∀i : 1 ≤ i ≤M, ∀x ∈ {0, 1} : fx
i (e) ≥ 0. (1h)

Constraints (1a) and (1b) are flow conservation constraints
for switches, constraint (1c) forbids the traffic that has al-
ready been processed by a middlebox (PM), to visit a mid-
dlebox again. Next constraint (1d) says that all unprocessed
traffic becomes processed at the PM associated with node
v ∈ Vpm. Further, constraint (1e) is a PM processing ca-
pacity constraint. The following constraint (1f) is a link
capacity constraint, and condition (1g) corresponds to the
switch memory constraint. Finally, (1h) requires that all
flow values are nonnegative. The objective function of this
optimization problem is the total flow over all edges. This
choice of the objective function guarantees that no cycles
will exist in an optimal solution. Notice that there is no
constraint f0

i (v, u) = 0 similar to constraint (1c), because
it will be automatically satisfied due to the optimization’s
objective function.

Solution to this optimization problem expressed in terms
of variables fx

i (e) can be translated to a path-flow formula-
tion [1], and the routing rules in switches can be obtained
that implement this path-flow solution. Each routing rule
in a switch corresponds to a single path in the path-flow so-
lution. Notice that in the solution to the optimization prob-
lem, more than one source-destination path can be used to
transfer traffic for a single commodity.

The optimization problem formulated above contains in-
teger switch memory constraints (1g) and thus belongs to
the class of Integer Linear Programs (ILP). This problem,
therefore, is NP-hard, and it is extremely difficult to obtain
its solution. In this work, we adapt the idea of multipoint-to-
point trees to construct a feasible routing scheme for SDN-
enabled networks with middleboxes and known traffic de-
mands. Although the integer switch memory constraints
are not explicitly incorporated into our solution, we can ob-
tain the worst case bound on the number of rules in each

switch. Moreover, we show that this bound scales well with
the network size and is low enough for our routing scheme
to be implemented in the networks with existing switches.

3. SOLUTION OVERVIEW
3.1 MPTPT Approach

In this work we take advantage of the capabilities pro-
vided by SDN to design efficient routing. In particular, SDN
facilitates global design optimization based on inputs and
measurements collected from various points of the network,
and the ability to translate design solutions into rules which
can be downloaded to the switches. One of the major com-
ponents of our routing solution is MPTP trees that were
previously used, for example, by the label based forwarding
mechanism of MPLS [11]. Each MPTP tree is rooted at
some node, and all its edges are oriented towards this root
node. Such trees can be used to route traffic from several
sources to a single destination, and each tree is assigned with
its own tag which is used to label all traffic belonging to this
tree. Utilization of MPTPTs helps to reduce the number of
routing rules in the whole network [3].

Our solution contains two main steps. These steps are
purely computational (not actual routing steps), and allow
to determine how the traffic for each commodity is labeled
and routed. At the first step we route all traffic from the
sources si, (i = 1, . . . , M) to PMs. At the second step,
we route all traffic that has been processed by the required
network functions during the first step from the PMs to the
corresponding destinations ti, (i = 1, . . . ,M). Both steps
involve construction of MPTP trees: there are C roots for
MPTP trees built at the first step, where each root corre-
sponds to a particular flow class, and there are |VT | roots for
the trees at the second step. There can be in general more
than one MPTP tree rooted at a single node. In Fig. 2 we
show the schematic of our MPTPT-based routing algorithm.

3.2 Step 1: Routing from Sources to PMs
At the first step we consider a graph G1 = (V1, E1) which

is obtained from the initial graph G0 as follows: we add C
additional nodes P1, . . . ,PC such that node Pk corresponds
to the traffic class k. This set of C new nodes is denoted
by VP , and |VP | = C. We further remove ”PM” nodes be-
longing to the set Vpm, together with the edges going to
and from these nodes. Then, we connect each node from
Vsw→pm by edges to every node from VP . These new edges
are not assigned with capacities explicitly, but the maximum
amount of flow on them will be determined by the capaci-
ties of PMs and the capacities of removed links from graph
G0 that were connecting nodes in Vsw→pm with nodes Vpm.
The vertex set of graph G1 is a union of node sets Vsw and
VP : V1 = Vsw ∪ VP . Number of links in the graph G1 is
|E1| = |E0|+ |Vpm| · (C − 2). In Fig. 1 we show an example
of a network topology defined by a graph G0 (Fig. 1a) and
corresponding constructed graph G1 (Fig. 1b). In this ex-
ample it is assumed that there are two classes of flows and
the nodes P1 and P2 are associated with flow classes one
and two, respectively. In Fig. 1b the new added links are
shown by dashed arrows.

We additionally modify destinations of the given com-
modities. In particular, destination of all traffic demands
of class k is node Pk, k = 1, . . . , C. Therefore, for each
commodity comi, its destination is one of the nodes in VP .
We can now formulate an LP optimization problem that we
solve at the first step of our method. In contrast to the
commodity-based ILP problem (1), the optimization here is
in a tree-based formulation, and we do not distinguish traffic
from different sources if they are for the same destination,
i.e. if they belong to the same network class. Let v̂ denote

57

Figure 2: Schematic of the MPTPT-based routing algo-
rithm.

a PM connected to node v ∈ Vsw→pm in graph G0 (for ex-
ample, v̂ = pm3 for v = sw6 in the example from Fig. 1),
and p(t), where t ∈ VP , denotes the cost of PM resources
per unit of traffic of class corresponding to the node t.

LP Optimization (2) of Step 1:

min
∑

e∈E1,t∈VP

ft(e),

∀t ∈ VP , ∀v ∈ V1, v 6= t :∑
(v,w)∈E1

ft(v, w)−
∑

(u,v)∈E1

ft(u, v) = dt(v), (2a)

∀e ∈ E1 ∩ E0 :
∑
t∈VP

ft(e) ≤ g(e), (2b)

∀v ∈ Vsw→pm :
∑
t∈VP

ft(v, t) ≤ min
{
g(v, v̂), g(v̂, v)

}
, (2c)

∀v ∈ Vsw→pm :
∑
t∈VP

p(t) · ft(v, t) ≤ b(v̂), (2d)

∀e ∈ E1, ∀t ∈ VP : ft(e) ≥ 0. (2e)

In this optimization problem variable ft(e) is an amo-unt
of flow to destination t ∈ VP on link e ∈ E1. Constraint
(2a) is a flow conservation at node v, condition (2b) is a link
capacity constraint that should be satisfied for any link that
belongs to the both edge sets E0 and E1 of graphs G0 and
G1, respectively. Further, constraint (2c) is a link capacity
constraint for the links that connect switches with PMs in
graph G0. This constraint is necessary for feasibility of the
solution to optimization problem (2) in the original graph
G0. Notice that in the right hand side of (2c) there is a
minimum between capacities of the links going from a switch
to a PM and from a PM to a switch. It will guarantee that
all traffic processed at a PM can be sent back to a switch
connected to this PM. Next constraint (2d) is a PM capacity
constraint, and by (2e) we require that flow on each link is
nonnegative. As in the ILP optimization (1), we minimize
the total network flow to avoid cycles.

Solution to the optimization problem (2) determines how
the traffic is routed from the sources to the PMs. Using Al-
gorithm Flow2Trees(t) from [3] that is listed as Algorithm
1 below for completeness, from a basic feasible solution [1]
ft(e) to the LP (2) we construct MPTP trees rooted at the
destination nodes from VP , so that all network traffic in the
solution is distributed among these trees. Each tree contains
traffic of the same class, leafs of a tree are the sources for this
traffic class, and amount of traffic from each source in any
tree can be determined. It is possible that several Vsw→pm

nodes belong to the same tree, i.e. one tree can route traffic
to several PMs. Algorithm 1 is iteratively applied to con-
struct trees to each destination t ∈ VP . We will provide an
upper bound on a total number of trees in the subsection
3.4. We refer the reader to [3] for the details and analysis of
Algorithm 1.

Algorithm 1: Flow2Trees(t)

Input : G = (V,E), t, ft(e) (∀e ∈ E).
Output: Set of MPTP trees rooted at t and containing

all traffic to t.
1 while there is a source s with demand to t do
2 using only edges e with flow to t (ft(e) > 0),

construct a tree R to t spanning all sources with
demand to t;

3 move as much flow as possible to R;
4 end

3.3 Step 2: Routing from PMs to Destinations
At the second step of our algorithm we use MPTP trees

to route traffic from the PMs to destinations in graph G2

obtained from G1 as follows. First, nodes VP and links to
them are removed from the network. Therefore, the node
set of the resulting graph G2 = (V2, E2) only contains nodes
from Vsw: V2 = Vsw. Number of links in graph G2 is |E2| =
|E1 ∩ E0| = |E0| − 2 · |Vpm|. Second, the link capacities are
updated: for each link e, the amount of traffic on it in the
solution to (2) is subtracted from this link’s initial capacity
g(e). We will denote by ḡ(e) the updated capacity of link e.
Graph G2 corresponding to graph G0 from Fig. 1a is shown
in Fig. 1c.

We then create a set of commodities for the second step.
It is assumed that all traffic processed at a PM v̂ returns
to switch v ∈ Vsw→pm connected to it. Therefore, all traffic
at Step 2 is routed from the nodes Vsw→pm to the destina-
tions ti, where i = 1, . . . , |VT |. Solution to optimization (2)
determines amount of traffic of every class and from every
source arriving to each PM. However, amount of traffic to
each destination ti arriving to a PM, in some cases can not
be determined unambiguously. This can happen when there
exist more than one commodities with the same source and
of the same class but with different destinations. We will
use the following heuristic to determine the traffic distribu-
tion by destination at each node v ∈ Vsw→pm. Let R be a
set of trees obtained at Step 1 of our algorithm that carry
traffic of the same class c from a source node s to the root
node Pc corresponding to this traffic class. In addition, let
T be the set of destinations of commodities with source s
and of class c, and d1, . . . , d|T | are corresponding demands.
By the definition of a tree, in each tree Ri from set R, there
is a unique path from s to Pc, and therefore, all traffic from
s in the same tree obtains functional treatment at a single
PM. According to our heuristic, in each tree Ri, amount of
traffic to destination t ∈ T is proportional to the fraction
of traffic to this destination in the total amount of traffic to

all destinations, i.e. proportional to dt/
|T |∑
i=1

di. We refer the

reader to the extended version of our paper [9] for a more
detailed description of the heuristic and an example.

Using this distribution heuristic, we form a set of com-
modities for the second step of our algorithm. At the Step 2
we do not distinguish traffic from different sources and from
different network classes if they have the same destination.
We construct MPTP trees with the roots at the destina-
tions ti, i = 1, . . . , |VT |. Similarly to Step 1, we first solve
the following LP:

LP Optimization (3) of Step 2:

min
∑

e∈E2,t∈VT

ft(e),

∀t ∈ VT , ∀v ∈ V2, v 6= t :∑
(v,w)∈E2

ft(v, w)−
∑

(u,v)∈E2

ft(u, v) = dt(v), (3a)

58

∀e ∈ E2 :
∑
t∈VT

ft(e) ≤ ḡ(e), (3b)

∀e ∈ E2, ∀t ∈ VT : ft(e) ≥ 0. (3c)

Here (3a) and (3b) are flow conservation and link capac-
ity constraints, respectively, and (3c) is a requirement for
flows to be non negative on each link. Using a basic fea-
sible solution to this problem, we apply again Algorithm 1
and obtain another set of MPTP trees. Complete version
of our MPTPT-based routing approach is summarized in
Algorithm 2.

Algorithm 2: MPTPT-Based Routing

Input : G0 = (V0, E0), commodities comi

(i = 1, . . . ,M).
Output: Set of MPTP trees rooted at PM nodes and

destination nodes.
1 Step 1: routing from sources to PMs:
2 construct graph G1 = (V1, E1) from G0 = (V0, E0);
3 obtain commodities for Step 1;
4 find a basic feasible solution to LP (2);
5 find MPTP trees for the solution to LP (2) using

Algorithm 1;
6 Step 2: routing from PMs to destinations:
7 construct graph G2 = (V2, E2) from G1 = (V1, E1);
8 obtain commodities for Step 2;
9 find a basic feasible solution to LP (3);

10 find MPTP trees for the solution to LP (3) using
Algorithm 1.

After both steps of our algorithm are performed, we can
determine for any initial commodity < si, ti, di, ci > what
trees carry its traffic to the destination ti. Each commodity’s
packet is assigned with two tags at the source switch: one
for a tree label from Step 1, and another one for a tree
label from Step 2. The first label can be removed from a
packet during functional processing at a PM, and therefore
the maximum number of routing rules in a single switch does
not exceed the total number of MPTP trees of both steps.
As suggested in previous works (e.g. [10]), VLAN and ToS
fields of a packet header can be used for labels.

3.4 Analysis
In this subsection we provide and prove an upper bound

on the total number of MPTP trees generated by Algorithm
2. Each tree has its own label and any switch may contain
at most one routing rule corresponding to this tree. The
bound, therefore, also limits the number of routing rules in
any switch.

Proposition 1. Number of MPTP trees produced by Al-
gorithm 2 does not exceed C + 2|E0|+ |VT | − 2|Vpm|.

Proof. It was shown in [3] that when Algorithm 1 is
iteratively applied to a basic feasible solution of the multi-
commodity flow problem (3), the maximum possible number
of created trees is |VT |+|E2|, i.e. bounded above by the sum
of number of destinations and number of links in a network.
The second term in this sum (|E2|) corresponds to the num-
ber of bundle constraints in LP. A constraint is called bundle
if it involves variables for different destinations. In optimiza-
tion problem (3) link capacity constraints (3b) are bundle,
and there are |E2| such constraints. Although optimization
problem (2) is slightly different from (3), a similar bound for
it can also be established. Number of bundle constraints in
(2) is |E0| − 2 · |Vpm| + |Vpm| + |Vpm| = |E0|, and number
of destinations is equal to the number of traffic classes C.
Therefore, the total number of trees produced by Algorithm
2 is C + |E0|+ |VT |+ |E2| = C + 2|E0|+ |VT | − 2|Vpm|.

Notice that while our bound depends on the number of
classes C, it does not depend on the number of commodities,
because |VT | is bounded by |Vsw|. The bound is additive and
thus scales well with the network size. Moreover, as shown
by simulations, the real number of routing rules obtained
by our algorithm is generally much smaller than this worst
case bound. It is crucial that a basic feasible solution is used
as an input to the Algorithm 1 at both steps of Algorithm
2. We refer the reader to [1] and [3] for a more detailed
discussion of basic feasible solutions and bundle constraints.

Therefore, Algorithm 2 efficiently solves a routing prob-
lem (it contains two linear optimizations and Algorithm 1
with polynomial time complexity) with a guarantee that the
number of routing rules in each switch is limited by an ad-
ditive bound.

4. EVALUATION
In this section we evaluate the performance of Algorithm

2 and compare it with three other routing schemes. The
first routing scheme is defined by optimization problem (1)
with relaxed integer switch memory constraint, and a ba-
sic feasible solution for it is found using simplex method.
The second scheme uses the same relaxed LP, but an inte-
rior point method (IPM) is applied to find a solution. Fi-
nally, the third scheme is based on a greedy shortest path
approach. In this approach the commodities are initially
sorted in descending order by their total PM capacity re-
quirement. Then, iteratively for each commodity a shortest
path is found from its source to a PM, and then a shortest
path from the PM to commodity’s destination. If link and
PM capacity constraints on the shortest path do not allow to
send commodity’s total demand, a maximum possible frac-
tion of it is sent along this path, and the remaining traffic
is sent along the next shortest paths until all commodity’s
demand is routed. If at some point there is no path available
to send commodity’s residual demand, the algorithm stops.

Our evaluation analysis consists of two experiments. In
the first experiment we find routing solution using each of
four algorithms and calculate an average number of routing
rules in switches for each solution. Second experiment allows
to estimate for each routing algorithm the maximum total
throughput that it can route. Both experiments are car-
ried out for three network topologies: example from Fig. 1,
Geant topology, and fat tree topology. Geant network con-
tains 41 switch nodes and 9 additional PM nodes that are
connected to 9 switch nodes having the highest nodal degree
(so that each PM is connected to exactly one switch). Fat
tree topology consists of 22 switch nodes (2 core, 4 aggrega-
tion and 16 edge switches), and 6 PM nodes such that each
PM node is connected to a single core or aggregate switch
node. Link and PM capacities were fixed in each simulation,
and took values, respectively, 100 and 500 for the network
on Fig. 1, and 500, 500 for Geant topology. For the fat tree
topology links between core and aggregation switches had
capacities 200, links between aggregation and edge switches
had capacities 10, and links between switches and PMs were
fixed at 100. In addition, each PM had capacity 500.

Experiment 1: Average Number Of Routing Rules.
In the first experiment we varied number of classes and num-
ber of commodities, and each commodity’s source, destina-
tion and class were generated randomly. The demands of
the commodities, however, were all equal and fixed at 0.2.
Results of Experiment 1 for 7 traffic classes are shown in
Fig. 3. It can be observed from the results that Algorithm 2
allows to reduce average number of routing rules in switches
by a factor of up to 10. We did not add plots correspond-
ing to the interior point method solution for Geant and fat
tree topologies because in the IPM solution average number
of rules is much higher compared to the other algorithms.

59

(a) Network topology from Fig. 1. (b) Geant topology. (c) Fat tree topology.

Figure 3: Comparison of average numbers of routing rules in switches for seven traffic classes.

(a) Network topology from Fig. 1. (b) Geant topology. (c) Fat tree topology.

Figure 4: Comparison of maximum total throughputs for seven traffic classes.

We also performed simulations for one, three and five traffic
classes, and the results look similar to Fig. 3. The values
of bounds on the maximum number of rules in switches are
43, 295 and 137 for the topologies in the same order they
are presented in Fig. 3 and for 7 traffic classes. These val-
ues were obtained under assumption that |VT | = |Vsw| and
therefore, limit the number of routing rules in each switch
for any arbitrary large number of commodities.

Experiment 2: Maximum Total Throughput. In
the second experiment we measured the maximum total
throughput that can be routed in a network by the Algo-
rithm 2. Notice, that ILP (1) with relaxed switch mem-
ory constraint always finds a routing solution when it ex-
ists. Therefore, we used the relaxed LP (1) to determine the
maximum possible network throughput. For a given set of
commodities, we increased iteratively demands of all com-
modities by the same value until the relaxed LP (1) became
unfeasible. We stored this maximum demand value, and re-
peated the procedure for the Algorithm 2 and also for the
Greedy Shortest Path algorithm. Results provided in Fig.
4 demonstrate that a loss in maximum throughput of the
Algorithm 2 is relatively small.

5. CONCLUSION
In this work we proposed a multipoint-to-point tree based

algorithm for SDN-enabled networks with middleboxes and
given required traffic demands. We showed both theoret-
ically and experimentally that in the routing solution ob-
tained by our algorithm, the maximum number of routing
rules in a single switch is bounded, and this explicit bound
scales well with the network size. Moreover, the low com-
plexity of the algorithm allows its application the algorithm
in dynamic network environment.

Acknowledgements
The research is partially supported by ONR under N00014-
12-1-1055.

6. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin. Network

flows: theory, algorithms, and applications, 1993.
[2] J. W. Anderson, R. Braud, R. Kapoor, G. Porter and

A. Vahdat. xOMB: extensible open middleboxes with
commodity servers. In Proc. ANCS, 2012.

[3] D. Applegate and M. Thorup. Load optimal MPLS routing
with N+ M labels. In Proc. IEEE INFOCOM, 2003.

[4] M. Charikar, Y. Naamad, J. Rexford and X. K. Zou.
Multi-Commodity Flow with In-Network Processing.

[5] M. Chiesa, G. Kindler and M. Schapira. Traffic Engineering
with ECMP: An Algorithmic Perspective.

[6] S. K. Fayazbakhsh, V. Sekar, M. Yu and J. C. Mogul.
FlowTags: enforcing network-wide policies in the presence
of dynamic middlebox actions. In Proc. HotSDN, 2013.

[7] A. Gember, R. Grandl, A. Anand, T. Benso and A. Akella.
(2012). Stratos: Virtual middleboxes as first-class entities.
UW-Madison TR1771.

[8] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou,
M. Handley and L. Mathy. Flow processing and the rise of
commodity network hardware. In Proc. ACM SIGCOMM
CCR, 2009.

[9] A. Gushchin, A. Walid and A. Tang. (2015) Scalable
routing in SDN-enabled networks with consolidated
middleboxes, arXiv preprint.

[10] Z. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar and M. Yu.
SIMPLE-fying middlebox policy enforcement using SDN. In
Proc. ACM SIGCOMM, 2013.

[11] E. Rosen, A. Viswanathan and R. Callon. Multiprotocol
label switching architecture, RFC 3031, 2001.

[12] V. Sekar, N. Egi, S. Ratnasamy, M. Reiter and G. Shi.
Design and implementation of a consolidated middlebox
architecture. In Proc. NSDI, 2012.

60

