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ABSTRACT
Newly virtualized network functions (like firewalls,
routers, and intrusion detection systems) should be easy
to consume. Despite recent efforts to improve their elas-
ticity and high availability, network functions continue
to maintain important flow state, requiring traditional
development and deployment life cycles. At the same
time, many cloud-scale applications are being rearchi-
tected to be stateless by cleanly pushing application
state into dedicated caches or backend stores. This state
separation is enabling these applications to be more
agile and support the so-called continuous deployment
model. In this paper, we propose that network functions
should be similarly redesigned to be stateless. Draw-
ing insights from different classes of network functions,
we describe how stateless network functions can lever-
age recent advances in low-latency network systems to
achieve acceptable performance. Our Click-based pro-
totype integrates with RAMCloud; using NAT as an
example network function, we demonstrate that we are
able to create stateless network functions that maintain
the desired performance.

CCS Concepts
•Networks → Middle boxes / network appli-
ances; Network experimentation;
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1. INTRODUCTION
Running cloud-scale applications is not easy. Star-

tups like Netflix [4] and Airbnb [1] are demonstrat-
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ing how applications can be decomposed into micro—
dominantly stateless—services that rely on backend
data stores (and middle-tier caching layers) to pro-
vide the needed state on-demand. Their architecture
achieves greater agility across three dimensions. First,
most services can be easily scaled up or down to match
incoming demand. Second, services can be developed,
tested, and deployed independently from other services.
Third, services can better withstand failures by cloud
providers [8]. Not surprisingly, these startups could not
apply this—stateless—design philosophy across every
component in their deployment. Virtualized network
functions or middleboxes (e.g., Zuul [6], Ribbon [5], and
HAProxy [3]), in particular, remain stateful and pose a
risk to their mostly stateless deployment.

In this paper, we reexamine network function virtual-
ization (NFV) using a stateless design lens. Specifically,
we focus on one primary question: can the state of a
network function be cleanly separated and persisted in
a backend store or cache without loss of performance?
Our goal is to achieve similar agility across the three
dimensions above. This would, of course, allow NFV to
naturally support stateless micro-service architectures.

Initial work in the space has focused on supporting
elasticity and high availability in middleboxes [20, 21].
The work focused on tagging and migrating flow state
between middlebox replicas. The work kept legacy im-
plementations and introduced additional support for
inter-middlebox state management. This, we believe,
introduces additional complexity into already complex
(virtualized) appliances, which in turn will hinder their
adoption into large microservice-based deployments.
Even more, this mode does not handle failures without
relying on hot standby replicas.

In this paper, we propose re-designing network func-
tions to be stateless. We call it StatelessNF. In decou-
pling the state from the processing of network functions,
we can achieve more seamless elasticity and better toler-
ate failures for the individual devices. Leveraging recent
research on low-latency communication between servers
and data stores (such as FaRM [9] and RAMCloud [17]),
we show how a StatelessNF can overcome performance
limitations.

We have implemented a prototype of StatelessNF in
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Figure 1: StatelessNF architecture

Click [14] that integrates with RAMCloud. We used
NAT as an example network function and changed the
default Click implementation in a way that the NAT
translation table is maintained in a RAMCloud clus-
ter. We have implemented three modes of operation. In
the most restrictive (blocking) mode, Click elements are
only allowed to store configuration state. Additionally,
they will block on any lookup in RAMCloud. We have
also implemented an asynchronous mode where reads
and writes are non-blocking. This allows each element
to maintain better throughput. Finally, we also imple-
mented a caching element that allows fast reads; any
writes are immediately passed through to RAMCloud.
Using InfiniBand as a low-latency transport medium
between Click and RAMCloud, we have evaluated the
performance of StatelessNF across all three modes of
operation. Our experiments demonstrate that State-
lessNF (with caching) can match the native Click imple-
mentation for a broad spectrum of configurations. Even
without caching, both throughput and latency were less
than 10% below the native Click implementation.

2. ENVIRONMENT & EXAMPLE
Without loss of generality, we assume an environment

that consists of a cluster of virtualized network func-
tions (or middleboxes). We also assume that flows are
externally assigned to an NF instance by an SDN con-
troller. In the common case, flows use the same NF
instance throughout the lifetime of each flow. They,
however, can be reassigned to different instances (for
example, on failure or to improve load balancing of flows
across replicas).

As mentioned earlier, we are interested in designing
stateless network functions that can match the perfor-
mance of existing implementations, but are simpler to
manage and scale. In designing our system, we consider
the performance requirements of three different classes
of network functions: routing software, intrusion de-
tection systems (IDSs), and inline processors (such as
firewalls and NATs). We use NAT as a running exam-
ple of a network function throughout the paper for three
reasons. First, NATs have a simple design that allow us

to reason about the various design decisions. Second,
unlike routing software and IDSs, NATs are both delay
and throughput sensitive. We wanted to capture the
effect of our design on both performance dimensions.
Third, NATs have a robust implementation in Click,
which simplifies our implementation prototype.

For simplicity, we assume that the NAT maintains a
translation between a packet’s public and private ad-
dress. This is captured in the traditional 5-tuple en-
try: Protocol, Private Address, Private Port, Public Ad-
dress, Public Port. The NAT also maintains a unique
flow ID. In going stateless, this mapping table is main-
tained externally by all NF instances. When a new flow
arrives, an NF instance must first lookup to see if a ta-
ble entry exists in the global table. If one exists, then
it will use the information from the existing entry. If
it does not, it will create a new entry for the flow and
persist the information back to the global table.

3. ARCHITECTURE
Figure 1 shows the architecture of StatelessNF. It

consists of a network processing tier and a data store
tier.1 Network functions (as is the premise of NFV) run
within isolated and deployable units such as virtual ma-
chines or containers. Each of the network functions is
able to communicate with the data store through a data
network. There are two key challenges to our design:

• Decoupling state: Traditional network functions
have been designed with state directly embedded
into their code. StatelessNF requires redesigning
the network functions to decouple the state.

• Achieving performance: Many network functions
will sit in the data path, and be required to process
a large number of packets per second. We have to
ensure that efforts to improve performance do not
compromise the consistency of the state or cause
important state to be lost upon failure.

We elaborate on these two challenges and how State-
lessNF overcome them in the following subsections.

3.1 Decoupling State in Network Func-
tions

Decoupling state from computation is integral to
many operations in cloud systems; it spans the entire
system and network stacks. For example, techniques
like Checkpoint/Restore In Userspace (CRIU) [18] are
used to extract out kernel and process state for pro-
cess/container migration. At a much finer granular-
ity, Split/Merge [21] allows movement of per flow state
across middlebox replicas. Similarly, Router Graft-
ing [13] migrates BGP session state across routers.

A common design theme among these works is that
the decoupling of state only occurs during management
1Note, the current design consists of two tiers; as se-
curity requirements grow, we anticipate the creation of
other tiers that process information in the background.
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operations. The decoupled (extracted) state, for exam-
ple, can be migrated to another replica or periodically
persisted to a backend store (to implement failure re-
covery). The rest of the time, state remains internal to
running systems. By keeping the state internal to the
network function, these designs optimize for the com-
mon case: processing performance. At the surface, this
would appear as the right design point. Practically, be-
cause state extraction is hard, especially when the state
spans the network and kernel stacks, such systems are
bug prone and hard to deploy in production environ-
ments. They also do not support graceful upgradablity
as required by microservice-based deployments.

In StatelessNF, we argue that state separation should
be a first order design principle. We separate network
function state into two types.2 The first type is cache
state. It is any state that is reproducible by a single net-
work function instance. The second is shared state. It
includes state that all network function replicas can ac-
cess. It can be thought of a collection of key-values with-
out any prescribed structure or schema to each value.
In the case of a NAT, for example, the key is the flow
ID and value is the address mapping.

When a new instance is added or removed, data con-
sistency needs to be handled properly. In the NAT ex-
ample, all address mappings from a failed instance need
to be persisted so that the new instance can ensure cor-
rect fail over. Each network function instance loosely
acts as a master for the flows that are assigned to it.
The only programming practice that is required is for
each instance to wait for any update to the flow entry,
or creation of a new entry, to be written to the backend
store (RAMCloud in our case). However the network
function instance does not need to wait for the backend
store to replicate the new data.

3.2 Achieving Performance
In going stateless, an added latency is naturally intro-

duced: reading from remote memory versus local will al-
ways be slower. The questions then become (1) whether
it actually impacts performance to a noticeable degree,
(2) whether the latency can be tolerated even if it is
noticeable, and (3) whether the latency can be masked.

As first step, we reduce part of the expected over-
head by leveraging low latency distributed systems and
networking technologies. Systems such as FaRM (fast
remote memory) [9] and RAMCloud have shown the
ability to create systems for which the memory is on a
remote machine. Next, we introduce a caching layer.

Caching introduces another layer where consistency
can be violated. In the simplest case, techniques like
consistent replication and cache invalidation can elimi-
nate such consistency issues (at the cost of higher up-
date cost). We believe that there are domain specific

2Split/Merge separates middlebox state into three
types: internal, coherent, and partitioned state. In our
design, we eliminate the need to differentiate between
coherent and partitioned state.
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Figure 2: StatelessNF Initial Prototype

solutions. For example, we can exploit the situation
where a given packet may traverse a sequence of net-
work functions. So long as the packet does not reach
the end destination before the affected state is commit-
ted to the data store, we have opportunity to rollback
upon failure if needed.

4. PROTOTYPE IMPLEMENTATION
Our initial prototype, illustrated in Figure 2 is built

using two key technologies: (i) Click, as a platform to
build new data plane network functions, and (ii) RAM-
Cloud over InfiniBand, as a platform which provides a
low-latency access to a data store.

The central component to our implementation is the
StatelessNF client. This StatelessNF client is a class
implemented in C++ that carries out data storage and
retrieval operations to RAMCloud. It also provides a
general data store interface that can be integrated into
Click elements and linked at compile time. We imple-
mented different versions of this interface to explore dif-
ferent designs, detailed in the following subsections.

In order to take advantage of RDMA transactions for
one-sided writes to RAMCloud and minimal read la-
tency, we used the infrc transport mechanism in RAM-
Cloud in preference over the tcp transport mechanism
that is compatible with an Ethernet fabric. This trans-
port implementation uses the reliable connected (RC)
InfiniBand transport. The initial connection hand-
shake between a client and a RAMCloud server is done
through a socket interface using IP over InfiniBand,
which encapsulates an IP packet in InfiniBand frames.
Once a connection has been established between client
and server, memory regions are pinned by the Infini-
Band device driver for DMA transfers bypassing the
OS, and further communication is transitioned to the
InfiniBand verbs interface.

4.1 Blocking Read/Write
The StatelessNF client provides a read/write inter-

face to a datastore. To minimize changes in Click ele-
ments, our first implementation of this functionality is
a synchronous (blocking) interface. Typical elements in
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Click might have a lookup in a data structure (such as a
Hashmap). These lookups are performed as part of the
sequentially executed code to process the packet. As a
local data structure, this is perfectly reasonable. For
our first implementation, we simply replace these reads
and writes with blocking reads and writes to RAM-
Cloud. That is, the Click element submits a lookup
to the storage client interface and does not output the
packet until the RAMCloud operation completes, with
read data or confirmation of a successful write.

4.2 Async Read/Write—Buffer Packets
As an improvement, we also implemented an asyn-

chronous (non-blocking) read and write interface to the
StatelessNF client (using the asynchronous interface to
RAMCloud). To utilize this, the Click element needs to
break the packet processing into pre-lookup and post-
lookup functionality (or more generally, into processing
stages if there are multiple reads, but for simplicity we
focus on the single read case), along with integration
of the Click scheduler. Consider an example element
which has a push interface, where the push() function
extracts some fields in the packet, performs a lookup,
and based on the results of the lookup modifies the
packet and outputs on a given port of the element.

Replacing the lookup with a read to our StatelessNF
client requires breaking apart the function. Instead in
its push() function, the element extracts fields in the
packet to be used for a lookup, submits the read request
to the StatelessNF client, and then returns from the
push function. We periodically check inside run task(),
invoked by the Click scheduler, whether any results have
completed. If they have, we call the element’s post-
processing function, which in turn outputs the packet.

4.3 Caching
Finally, we extended the StatelessNF client to sup-

port a simple least recently used cache. By simple, we
mean that for our initial exploration, we assume state
that can be cached will not be shared.3

The first change in the StatelessNF client is that the
element looks in the cache for a matching data, and if
found, returns the value immediately. Then for writes,
it will update the cache and perform a write through to
RAMCloud. If the data is not there, a read to RAM-
Cloud, and then possibly a write to RAMCloud is per-
formed, and execution returns to the calling element.

4.4 NAT Example
We modified a NAT network function to be state-

less. In particular, we used the mazu-nat.click con-
figuration that is in the Click source tree. In it, the
IPRewriter element is the element that stores the state
for a NAT. In particular, it uses a flowID built from the

3We fully acknowledge the more difficult aspect of
caching is support for consistency and cache invalida-
tion, which we intend to implement as a next step.

received packet’s 5-tuple as a key into a table, and stores
the address-translation mapping as the value.

This follows the processing model described in the
previous section: extract lookup key, perform a lookup,
based on the result modify the packet (e.g., change the
5-tuple), and output the packet. One added step is that
if the lookup fails, signifying a new flow, a new mapping
must be added. We assume (for simplicity) that each
instance has a partition of the external mapping space.
The element then writes to the StatelessNF client this
new entry in the table and outputs the packet.

5. EVALUATION
In this section, we evaluate the performance of state-

less NAT with integration to RAMCloud in three
modes: (1) Blocking Read/Write (Sync), (2) Non-
blocking Read/Write (Async), and (3) Cache. We com-
pare these three modes and a Click Native implementa-
tion of NAT on the basis of three metrics: throughput,
round trip time, and packet processing overhead.

Setup. Our evaluation consists of one machine running
StatelessNF implemented in Click, a two node RAM-
Cloud cluster, a traffic generator, and a traffic sink. The
generator and sink each had a single 1 Gbit/s interface.
The NFV machine had two 1 Gbits/s interfaces. A 10
Gbit/s SDR InfiniBand network connected the server
running StatelessNF to the RAMCloud cluster. The
node running StatelessNF runs Click in userlevel mode
on the host OS with each NFV application having direct
access to resources on the InfiniBand device.4

We configured RAMCloud such that one replica is
sent to a backup process on a server different from where
the master process resides, with the primary copy in
DRAM. The backup process will return a write com-
pletion when it has stored the data in an 8MB buffer
in DRAM. When a backup’s buffer becomes full, the
backup will flush its entire contents to disk in a large
sequential write operation. Thus, by the time the client
is notified of a write RPC completion, a copy has been
written to DRAM by the master and a second copy has
been written to the backup’s buffer on a different server.
In this RAMCloud configuration the crash of a single
server is recoverable without data loss to StatelessNF.

Benchmarking InfiniBand. Our RAMCloud clus-
ter made use of early generation SDR InfiniBand run-
ning at PCIe gen. 1 speeds (2.5 GT/s). Table 1 shows
its performance measured by clusterperf, a benchmark
provided with RAMCloud. While SDR made for a func-
tionally complete StatelessNF implementation, signifi-
cant performance improvements are possible should the
RAMCloud servers and NFV servers utilize recent FDR

4Alternatively, techniques utilizing an system’s
IOMMU such as PCIe passthrough and SR-IOV [19]
can share these resources with one or more virtual
machines. While the possibility of virtualizing each
StatelessNF could be useful, our InfiniBand cards were
not capable of PCIe passthrough or SR-IOV.
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Table 1: RAMCloud RPC performance (100 byte data)
SDR IB
1 replica

SDR IB
0 replicas

FDR IB
0 replicas [7]

Read lat. (µs) 29.7 29.8 3.0
Write lat. (µs) 56.5 30.4 4.3
Read BW (RPC/s) 33,974 32,506 318,767
Write BW (RPC/s) 17,616 32,086 230,686

Table 2: Click TCP & UDP Throughput for 10 parallel
connections

Click
Native

Stateless
Cache

Stateless
Async

Stateless
Sync

TCP (Mbit/s) 924.8 925 894 335.2
UDP (Mbit/s) 955.6 954.8 955.4 519.6

InfiniBand hardware and PCIe gen 3 (8 GT/s) buses.
The results reported in [7] indicated that read latencies
can be reduced by 25 µs with FDR InfiniBand.

Throughput. Using Iperf [22] we measured the max-
imum UDP and TCP throughput of each implementa-
tion and that of Click native code. We used a packet size
of 1500 bytes, and averaged the results of 5 iterations.
The number of parallel streams was varied from 1 to
100. Each stream was generated with a different source
port and therefore resulted in a unique NAT ranslation.

As shown in Table 2, the Cache implementation is
on par with the performance of Click Native. There
is a slight drop in performance with the Asynchronous
case, but much less than with the blocking alternative.
We noticed a drop in performance only with the Asyn-
chronous implementation as the number of parallel con-
nections increased, which we believe is the result our
implementation’s inefficiency in handling outstanding
RPC’s belonging to different flows. Improving on this
is an opportunity for future work.

Round Trip Time. We measured round trip time
(RTT) with D-ITG [2] where we streamed 10,000 mini-
mum size UDP packets through the NAT. We can see in
Table 3 that Cache gives us the lowest latency among
all designs. The reason all of our designs have lower
RTTs than Click Native is that our implementations
each utilized the Click scheduler, which was necessary
for asynchronous processing. The scheduler sets a timer
that waits 10 µs between each poll cycle. In the Asyn-
chronous case the scheduler’s run task() function will
check the status of a RAMCloud RPC.

Packet Processing. We measured packet processing
overhead for different packet sizes. In order to generate
a high packet rate, we ran a Click UDP generator in
kernel space. We streamed one million packets and in-
creased the rate until the traffic sink saw packet drops.
As shown in Figure 3, the Cache implementation meets
the performance of Click Native at a packet size 500
bytes while the Asynchronous implementation joins the

Table 3: Round Trip Time
Click
Native

Stateless
Cache

Stateless
Async

Stateless
Sync

RTT (µs) 371 317.2 356 332.1
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Figure 3: UDP Max Transmission Rate Before Loss

performance of Click Native at 750 bytes.
To investigate reduced Asynchronous performance as

compared to Cache, we profiled our modified Click code
at a frequency of 25,000 Hz during a UDP Iperf test.
The Async implementation spent 20.2% of the sam-
pled cycles in the storage client library’s read() func-
tion compared to 4.6% with the Cache implementation.
The read() function will either create a RAMCloud read
RPC or lookup the flow in the cache, in Async and
Cache cases respectively. As a result, the Async im-
plementation is only spending 2.7% of its time in the
poll() system call waiting for incoming packets, where
Cache is able to spend 17.6% of sampled cycles in poll(),
meaning faster packet processing.

6. DISCUSSION
We performed our initial exploration with Click run-

ning on bare metal in user space due to implementa-
tion limitations with InfiniBand and the RAMCloud
interface. Ideally, we want to run in a fully-virtualized
environment and use a lighter weight mechanism like
ClickOS [15] or NetVM [11]. Our goal is to match the
performance of Click in kernel mode. The main use case
of InfiniBand comes from user space reads over the net-
work from the backend store. As such, with the devel-
opment of high performance (e.g., zero copy) user space
I/O technologies over the past few years, our focus will
be on getting Click in user space to run faster. In this
way we can continue to use InfiniBand in userspace for
easy use of backend stores.

7. RELATED WORK
StatelessNF rearchitects network functions in a way

that maintains their internal state in a separate low-
latency storage tier. The structure of middleboxes has
been characterized in [12]. The closest work to State-
lessNF are the works seeking to create more elastic
network functions through state migration. In partic-
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ular, Split/Merge [21], OpenNF [10], and Pico Repli-
cation [20] for middleboxes and Router Grafting [13]
for router software. Olteanu and Raiciu [16] similarly
attempt to migrate per-flow state between VM replicas
without application modifications. These works migrate
or replicate state, whereas we seek an alternative archi-
tecture which decouples the state from the processing.

Going stateless allows for easier scalability and high
availability. There are many ways in which differ-
ent types of applications are dynamically scaled in the
cloud [24]. Clustering techniques have traditionally
been used to scale-out middleboxes. The NIDS Clus-
ter [23] is capable of performing coordinated analysis of
traffic, at large scale. Similar to other clustering tech-
niques, NIDS is a specialized implementation. State-
lessNF is proposing a generic architecture that matches
those in microservice-based applications.

8. CONCLUSIONS AND FUTURE
WORK

In this paper, we presented StatelessNF, an architec-
ture that uses recent advances in low-latency systems
to decompose network functions into a packet process-
ing tier and a data storage tier. We believe that our
work is a good first step towards demonstrating the po-
tential of a stateless architecture in network functions.
As for future research, we plan to improve implementa-
tion efficiency and test our implementation under higher
throughput (e.g., 10-40Gbit/s). We also plan to explore
more network functions, including off-path intrusion de-
tection systems and control plane routing software.
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