
Centrally Controlled Distributed VNF State Management

Babu Kothandaraman
Royal Institute of Technology

Stockholm, Sweden
babuk@kth.se

Manxing Du
Acreo Swedish ICT AB

Stockholm, Sweden
mandu@acreo.se

Pontus Sköldström
Acreo Swedish ICT AB

Stockholm, Sweden
ponsko@acreo.se

ABSTRACT
The realization of increased service flexibility and scalabil-
ity through the combination of Virtual Network Functions
(VNF) and Software Defined Networks (SDN) requires care-
ful management of both VNF and forwarding state. With-
out coordination, service scalability comes at a high cost
due to unacceptable levels of packet loss, reordering and
increased latencies. Previously developed techniques has
shown that these issues can be managed, at least in sce-
narios with low traffic rates and optimistic control plane
latencies. In this paper we extend previous work on coor-
dinated state management in order to remove performance
bottlenecks, this is done through distributed state manage-
ment and minimizing control plane interactions. Evaluation
of our changes show substantial performance gains using a
distributed approach while maintaining centralized control.

CCS Concepts
•Networks → Middle boxes / network appliances;
Programmable networks; Peer-to-peer protocols;

Keywords
Scalable network functions; middleboxes; software-defined
networking

1. INTRODUCTION
There has recently been an interest in replacing dedi-

cated hardware Network Functions (NFs, or middleboxes)
with software-based virtualized counterparts, with the goal
of achieving more flexible and scalable services[3, 5]. By
combining flexible compute resource allocation through e.g.
OpenStack[4] with the flexible traffic steering capabilities
provided by SDN, elastic software-based middleboxes that
can grow or shrink on-demand seems to be on the hori-
zon. However, there are some technical challenges left before
these systems are ready for a production environment, in
this paper we focus on the challenge of coordinated network

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMiddlebox’15, August 17-21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3540-9/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785989.2785996

and VNF state management during a scale-in or -out event.
As others have pointed out these two types of states has to
be synchronized to avoid service degradation. For certain
VNFs such as a stateless NAT, only the configuration state
has to be taken into account by e.g. configuring appropri-
ate address mapping rules before directing user traffic to the
new instance. In a stateful NAT the transient state created
by the traffic itself has to be transferred before user traffic
reaches the VNF to avoid that existing connections over the
NAT are disconnected. Other VNFs may in addition also
be sensitive to packet loss or reordering during the transfer
process, e.g. packet reordering and loss in an IDS VNF may
trigger false positives or fail to trigger on real positives [7].

While there are several methods for dealing with network
state or VNF state separately [6, 8, 10], there are only a few
that handle them in a coordinated manner [7, 12, 11]. In
this paper we focus on improving OpenNF [7] as it is the
most feature rich of the methods, able to guarantee loss-free
and order preserving packet and state transfers. Our imple-
mentation improves OpenNF by removing the OpenFlow /
OpenNF controller from the critical path during state and
traffic transfer, instead state and packets are transfered in a
peer-to-peer fashion between VNFs. The next section gives
a brief introduction to OpenNF, for more details see [7].

2. OPENNF ARCHITECTURE
The OpenNF architecture consists of two parts, 1) a shared

library that is linked with the VNF application on the data
plane and 2) a control application running on a controller.
The shared library provides an API with methods for ex-
porting and importing different types of state from a VNF
instance and to enable generation of various events. The
control application runs on an SDN controller and is respon-
sible for coordinating the transfer of both network and VNF
state using the OpenFlow protocol and OpenNF protocol re-
spectively. In OpenNF all VNF state is associated with the
flow(s) that updates a particular chunk of state, either as a
one-to-one mapping for an individual flow, a group of flows
or for all flows, these could e.g. be a packet counter for an
individual IP address, for an IP subnet, and for all IP pack-
ets respectively. Grouping the state into these categories
and associating the state with the flow(s) allows OpenNF
to easily export the appropriate state when a certain set of
traffic flows are to be moved to another instance.

2.1 Data plane VNF API
The data plane API is implemented using JSON over

TCP, relevant commands are shortly summarized below.

37

Here SrcVNF refers to the source of the state being trans-
ferred and DstVNF where it should be placed.

State export/import To export state the command get-
PerFlow(filter) is sent to SrcVNF, the filter defines which
flow(s) the command is referring to, and by extension which
state should be exported. State chunks are returned to the
controller in statePerFlow messages. To import state the
message putPerFlow(map<flowid, chunk>) is sent to Dst-
VNF, containing a map of flow identifiers and their state
chunks. Similar commands exist for handling state associ-
ated with multiple or all flows, and to delete state.

Events Events are enabled and disabled by the controller
to handle data traffic during the VNF state transfer. At
the SrcVNF enableEvents(filter, drop) is used to encapsu-
late and redirect packets to the controller without further
processing. At DstVNF enableEvents(filter, buffer) is used
to redirect and buffer packets.

2.2 Controller functionality and API
The controller in turn uses the data plane API to pro-

vide different operations that control applications can uti-
lize to manage VNF and network state, our focus is on the
Move(src, dst, filter, scope, prop) operation which trans-
fers both VNF state and traffic to another VNF instance.
The filter parameter defines which network flows (and which
state) the operation refers to, prop is used to select guaran-
tees. The Move operation The different guarantees provided
by Move are:

No guarantees (NG) All packets arriving during the state
transfer are processed by the SrcVNF, state may be unsyn-
chronized after the operation.

Loss-free (LF) Packets belonging to flow(s) currently be-
ing moved are redirected using events(filter, drop) to the
controller where they buffered until the VNF state transfer
finishes. When completed buffered packets are sent to Dst-
VNF via the switch using the OpenFlow Packet-Out com-
mand. Finally the switch is updated to send traffic directly
to DstVNF.

Order preserving (OP) Extends LF with packet stream
synchronization using event(filter, buffer) at DstVNF and a
two phase forwarding update that ensures that all redirected
packets are processed at DstVNF before packets arriving
from the switch.

The LF and OP versions of the Move operation achieves
state transfer without packet loss or re-ordered packets which
e.g. Split/Merge [12] could not. However, these guarantees
come at a cost in packet latency and control plane over-
head as data plane packets are redirected and buffered at
the controller.

2.3 Optimizations
OpenNF implements three optimizations for the Move op-

eration:

Parallelize (PZ) Immediately send received state to Dst-
VNF without waiting for GetPerFlow to finish.

Late Locking (LL) Packets arriving at SrcVNF are redi-
rected to the controller on a per-state basis, redirection only
happens if the associated state has been sent to the con-
troller.

Early release (ER) Packet redirection from the controller
to DstVNF is performed on a per-connection basis. Instead

Controller DstVNF OF switch SrcVNF

1: Move(filter)

2: GetPerFlow(filter,eventDrop)

StatePerFlow(fID)

PutPerFlow(fID,state)

Redirect(packets)

ReleaseBuffer(if state moved)

PacketOut(packets,dst)

Packets

MoveDone(filter)

3: Flowmod(filter,Out(dst))

Figure 1: LF OpenNFMove with PZ|LL|ER.

of waiting for the full state transfer to complete, packets are
sent to the DstVNF if corresponding state has been sent and
acknowledged by DstVNF. LF Move with all optimizations
can be seen in Figure 1.

Both LL and ER will change the order of packets between
flows, while maintaining the order within flows. This reduces
the order preserving guarantee to be order preserving only
within flows, which may be significant for some VNFs.

2.4 Bottlenecks in OpenNF
Our main concern with the OpenNF protocol is the use

of the controller as a proxy during VNF state transfer and
redirection of data packets during both LF and OP Move.
We foresee four problems with this approach, 1) risk for con-
troller and 2) control network overload, 3) increased data
packet latency, and 4) low scalability.

Controller overload is a risk as potentially large amounts
of state data and packet flows has to traverse the controller,
placing a high load on it as incoming state and traffic has to
be processed and/or buffered before being forwarded to the
DstVNF. A high load is also placed on the control network,
in particular the OpenFlow control channel which is used to
send Packet-in/Packet-out messages, the OpenFlow control
channel typically does not support high packet rates.

The additional hop between the VNFs through the con-
troller and the low performance of the OpenFlow control
channel adds latency to the transfers and increases the time
it takes to transfer state and data, in turn causing more data
packets to be buffered. This additional latency and buffering
increases the latency experienced by data flows during the
transfer, which could affect any latency and/or jitter sensi-
tive applications generating the data flows. Finally, due to
the reliance on the controller, OpenNF does not scale well
with increasing amount state and traffic bandwidth.

3. DISTRIBUTED STATE TRANSFER
To address the four problems from the previous section we

extended OpenNF with Distributed State Transfer (DiST)
to avoid passing VNF state and data packets through the
controller, which also removes the need for packet buffering
in the controller. With DiST, the problems of OpenNF are
addressed as follows:

1-2) DiST uses the control network only for signalling, state
transfer and packet redirection is done directly between VNFs
over data plane links. This reduces both the risk of controller
and control network overload.

3) By using the data plane for state transfer and redirection

38

Controller DstVNF OF switch SrcVNF

1: Move(filter)

2: MovePerFlow(filter,eventDrop,dst)

PutPerFlow(fID,state)

Redirect(packets)

ReleaseBuffer(if state moved)

3: MovePerFlowAck(filter)

4: Flowmod(filter,Out(dst))

Figure 2: LF DiST Move with PZ|LL|ER.

of packets, and by reducing number of messages involved
in state transfer, DiST reduces the state transfer time and
as well as the number of redirected packets compared to
OpenNF. Redirection through the data plane and buffering
at DstVNF instead of the controller reduces the latency ex-
perienced by moved data flows compared to OpenNF.

4) The controller only handles control messages to and from
VNFs and switches, with no involvment on actual state or
data packets, improving scalability.

3.1 DiST Protocol
To achieve peer-to-peer state transfer and redirection, DiST

reused most functionality in OpenNF with minor changes.
At controller side, it is simplified to only handling signallings
to/from VNFs without being involved in state transfer. The
data plane API has been extended to include DstVNF ad-
dress in appropriate messages for state transfer and redirec-
tion. Buffering techniques are implemented at DstVNF to
facilitate LF and OP guarantees. The changes are explained
in detail for different guarantees below:

DiST No guarantees At controller, the initial GetPer-
Flow(filter) in OpenNF is replaced with a MovePerFlow(filter,
dst) message which is sent to SrcVNF, it contains the IP of
DstVNF. SrcVNF establishes a connection to DstVNF and
uses PutPerFlow to transfer state. DiST avoids usage of
statePerFlow messages as in OpenNF bypassing the con-
troller for handling state. When all state for the filter has
been transferred, SrcVNF acknowledges the MovePerFlow
to the controller which updates forwarding in the switch.

DiST Loss-free with PZ The LF operation starts by
sending an enableEvent(filter, drop, DstVNF) message to
SrcVNF, which initiates a TCP connection with DstVNF
and creates a filter for redirecting packets to DstVNF where
they are buffered. The only change compared to original
OpenNF is the inclusion of the DstVNF IP in the enableEvent
message. Once enableEvent is acknowledged the controller
sends a MovePerFlow message to SrcVNF and state trans-
fer starts. SrcVNF redirects packets (as events) to DstVNF
which buffers them in a hash table. Once all affected state
has been transferred SrcVNF sends a ReleaseBuffer com-
mand to initiate processing of the buffered packets. Src-
VNF finally acknowledges the MovePerFlow command to
the controller, which updates forwarding in the switch.

DiST Loss-free with PZ|LL|ER Each state for which
transfer has started is marked and arriving packets associ-
ated with marked state are redirected to DstVNF. Packets
associated with state for which transfer has not yet started
are processed directly by SrcVNF. DstVNF in turn main-
tains a hash table that buffers packets per-flow. When all

Controller DstVNF OF switch SrcVNF

1: Move(filter)

2: MovePerFlow(filter,eventDrop,dst)

PutPerFlow(fID,state)

Redirect(packets)

ReleaseBuffer(if state moved)

3: MovePerFlowAck(filter)

4: Flowmod(filter,Out(src,dst))

5: PacketOut(IBCPkt(filter,src,dst),Out(src,dst))

6: Flowmod(filter,Out(dst))

IBCPkt(filter,src,dst)

Event1

Redirect(IBCPkt)

Event2

Figure 3: OP DiST Move with PZ|LL|ER.

state for a flow has been transferred DstVNF starts process-
ing packets from that flows bucket in the hash table. If state
for a flow has been transferred and there are no packets in
the buffer, redirected packets are not buffered but processed
immediately. A message sequence chart for this flavor of
Move is depicted in Figure 2.

DiST Order-preserving with PZ|LL|ER Extends the
LF procedure with a two-phase forwarding update to ensure
that redirected packets from SrcVNF are processed before
packets forwarded from the switch. Synchronizing the two
packet streams (one redirected from SrcVNF and the other
forwarded from the switch) is done using an“InBand Control
packet” (IBCPkt). The IBCPkt must be crafted differently
for each filter and also depends on how the VNF processes
packets, the IBCPkt must match the filter definition in both
VNFs but also be distinguishable from normal data packets.
A similar problem exists in many OAM protocols in which
probe packets must be fate-sharing with the traffic flow they
measure but still be distinguishable from user traffic. The
two-phase update starts by updating the switch forwarding
rule for filter to duplicate traffic to both Src- and DstVNF,
followed by a Packet-Out message sending the IBCPkt to
both VNFs at once. Assumes that the IBCPkt is inserted
at the same place in both packet streams, this may depend
on the OpenFlow switch implementation. Finally the switch
forwarding rule is updated to send filter traffic only to Dst-
VNF.

DstVNF will now receive two IBCPkts, one directly from
the switch and the other redirected by SrcVNF. If the IBCPkt
arrives first from the switch (Event1) DstVNF starts buffer-
ing packets from the switch (Packets matching filter com-
ing from the switch before IBCPkt are dropped, these will
also arrive from SrcVNF) while still processing redirected
packets from SrcVNF, until the second IBCPkt arrives. At
that point processing of redirected packets stops and pro-
cessing of buffered packets from the switch starts. If an
IBCPkt arrives from SrcVNF before the IBCPkt from the
switch (Event2) processing of redirected packets from Src-
VNF is stopped. Once the second IBCPkt arrives pro-
cessing of packets from the switch is started. The dupli-
cation of traffic may seem unnecessary here, however it is
needed to avoid packet loss for packets arriving between the
Packet-Out sending the IBCPkt and the final rule update

39

SrcVNF

DstVNF

OpenFlow
switch

OpenNF
controller

SinkSource

Control Plane
10 Mbit/s 20ms RTT

Data Plane
100 Mbit/s 2ms RTT

Figure 4: Testbed setup

getting (even though SrcVNF redirects them, they arrive
after IBCPkt so they are dropped at DstVNF). A message
sequence chart for order-preserving Move is depicted in Fig-
ure 3.

4. DiST EVALUATION
We evaluate our initial implementation of DiST in the

testbed configuration shown in Figure 4. Based on an as-
sumption of roughly one order of magnitude performance
difference between control and data plane networks the data
plane links between switches and VNFs are limited to 100
MBit/s bandwidth with a 1 ms one-way delay, control plane
links are set to 10 MBit/s with 10 ms one-way delay. As
VNF we use the PRADS implementation from the authors of
[7]. Currently only the NG and LF DiST extensions to Move
are implemented, there we compare these with the original
OpenNF versions by replaying a live network traffic trace
using tcpreplay[2] and after 20 seconds we initiate a Move.
We replayed the traffic at 100, 500, 1000, 2500, and finally
5000 pps. At 2500 pps the OpenNF SrcVNF starts dropping
incoming packets during Move, the same happens in DiST
at 5000 pps. Both are likely due to locking of shared data
structures between the packet processing and state transfer-
ring threads. For a fair comparison we therefore focus on
the results where no packet loss occours, at 1000 pps.

4.1 Controller load
In the original OpenNF LF/OP Move the total amount

of messages sent is approximately 3N + 2R + C (including
ACKs) where N represents the number of states, R the num-
ber of redirected packets, and C a constant for each Move
type (typically < 10). All these messages are either sent
or received by the controller. With the DiST extension the
number of messages is approximately 2N +R +C, since we
don’t need two messages to transfer a state chunk nor two
messages to redirect a packet. However, in DiST only C
messages concern the controller, all other messages are sent
between VNFs. While the cost of the DiST Move still scales
with the amount of state to transfer and the number of redi-
rected packets, that cost is placed at the VNFs, keeping the
cost at controller constant.

4.2 Operation Time
Some of the data we collected is shown in Table 1, these

are results at 1000 pps which corresponds to about 4 MBit/s.
MoveTime is the time from start of the Move operation
on the controller until the switch forwarding update, as ex-
pected the MoveTime for the original OpenNF solution is
about 3 to 6 times higher than DiST for the PZ|LL|ER
case. This is mostly explained by the latency differences
on the control vs. data plane, but the reduced number of
messages in DiST contributes as well. To separate the con-
tribution from latency versus number of messages we also
ran OpenNF with control plane latency same as data plane,

DiST
OpenNF*
OpenNF

Number of state chunks transferred

M
ov

e
tim

e
(s

)
0

1
2

3
4

5
6

0
1

2
3

4
5

6
7

M
ov

e
tim

e
ra

tio

214
(100 pps)

1080
(500 pps)

2200
(1000 pps)

5400
(2500 pps)

OpenNF/DiST
OpenNF*/DiST

Figure 5: MoveTime for different number of state
chunks (left). Ratio between OpenNF and DiST
(right), all for LF with PZ|LL|ER.

this case is marked with an asterisk. MoveTime in LF mode
with PZ|LL|ER versus number of state chunks transferred
for the different pps values is shown in Figure 5 on the left
side, on the right side is the ratio between OpenNF and
DiST MoveTime. As can be seen, DiST is always faster
than OpenNF. Looking at the ratio for OpenNF* it is clear
that the reduced number of message makes DiST about 50%
faster even with a control plane as fast as the data plane.

Looking at Table 1 it is clear that the LL and ER optimiza-
tions are very effective at reducing the number of redirected
packets. In DiST these optimizations reduce the MoveTime
by about 20% at 1000 pps, whereas for OpenNF the re-
duction is about 70%. However, the effectiveness of these
optimizations depends on the composition of the incoming
traffic.

RedirTime is the time from initiating state transfer at the
SrcVNF until the last packet is redirected. We measured
RedirTime in order to see how long time packets are still
being redirected after the VNF state has been moved. This
can be significant if we e.g. shut down SrcVNF once we
believe Move is completed. As can be seen, in some cases
RedirTime is longer than MoveTime indicating that RedirT-
ime should be considered when determining if the Move has
completed or not.

We also measured Ser and Deser which is the percentage
of MoveTime spent (de-)serializing data in the VNF dur-
ing state export and import respectively. As can be seen a
large part of the MoveTime in DiST is spent on serializing,
showing another bottleneck to be removed.

4.3 Traffic Pattern at Sink
Figure 6 depicts the traffic pattern of the processed pack-

ets at Sink for LF Move with PZ|LL|ER at 1000 pps. The
dotted boxes indicate the start and end of Move. With
PZ|LL|ER the SrcVNF should continue to process packets
during the operation and hence the packet rate should not
be affected, which is observed for DiST. In original OpenNF
the traffic rate drops to zero in the beginning of Move, likely
due to shared resources being locked by the state transfer
thread when the Move is initiated. This in turn causes in-
coming packets to be queued, the release of the lock explains

40

Config # States # Redirected MoveTime(s) RedirTime(s) Ser% Deser%
OpenNF LF PZ 2186±1 6678±179 7.44±0.21 8.11±0.17 2.63 1.95
DiST LF PZ 2184±2 489±39 0.51±0.06 0.82±0.04 40.22 33.01
OpenNF LF PZ|LL|ER 2186±1 17±5 2.25±0.04 1.51±0.05 7.99 6.67
DiST LF PZ|LL|ER 2204±2 6±1 0.41±0.04 0.41±0.21 48.63 40.81
(OpenNF* LF PZ|LL|ER) 2187±1 6±2 0.78±0.02 0.96±0.17 26.83 22.07

Table 1: Data gathered from experiments at 1000 pps, with 95% confidence intervals. OpenNF* indicates
equal latency in data and control plane.

20 21 22 23 24

0
50

0
10

00
15

00

DiST

Time(s)

N
um

be
r o

f p
ro

ce
ss

ed
 p

ac
ke

ts
/2

00
m

s

20 21 22 23 24

0
50

0
10

00
15

00

OpenNF

Time(s)

N
um

be
r o

f p
ro

ce
ss

ed
 p

ac
ke

ts
/2

00
m

s

Figure 6: Traffic rates at Sink for OpenNF and
DiST, with PZ|LL|ER. The dotted boxes indicate
when the Move operation was active.

the spike in the traffic pattern. Moreover, these packets up-
dated the state in SrcVNF instead of DstVNF, leading to
unsynchronized state. Table 1 shows that OpenNF trans-
fers the same number of states regardless of optimization
while DiST PZ|LL|ER also transfers states created at Src-
VNF during the operation.

5. CONCLUSIONS
Distributing the Move operation significantly reduces the

amount of messages exchanged during the operation, halving
the amount of messages per redirected packet and removing
a third of the messages per state chunk transferred. Addi-
tionally, only a small, constant, number of messages traverse
the control network to put load the controller, increasing the
scalability of the system as a whole. In a scenario with a
control plane that has less performance than the data plane
these changes show a substantial performance gain, being
roughly 3 times faster at 100 pps, 5 times at 1000 pps, and
6 times at 2500 pps. These performance values are however
depending on the assumption of 10 times higher latency on
the control plane, how accurate this assumption is depends
on many factors. There are however good reasons to be sus-
picious of control plane performance, e.g. in some switches
Barrier messages can cause up to 400 ms control plane la-
tency [9].

6. FUTURE WORK
We observed packet losses at 5000 pps (about 20 MBit/s)

with DiST, while the PRADS VNF seems to be capable of
at least 15000 pps (about 60 MBit/s) during normal exe-
cution. We believe the reason for these losses is lock con-
tention between the packet processing thread and the state
transferring thread, combined with the extra load of packet
redirection. One solution could be to change the order of
the steps in Move and start by re-routing traffic to DstVNF

Controller DstVNF OF switch SrcVNF

1: MoveState(filter)

2: eventDrop(filter,IBCPkt)

3: Notification(filter,dst,IBCPkt)

Check for IBCPktCheck for IBCPkt

4: Flowmod(filter,src,dst)

5: PacketOut(IBCPkt,Out(src,dst))

6: IBCPkt

Drop filter packetsBuffer filter packets

7: Flowmod(filter, dst)

PutPerFlow(fID,state)

8: MovePerFlowAck(filter)

9: ReleaseBuffer(filter)

Figure 7: OP DiST Move with redirection and
buffering first.

and perform buffering there, and then transfer VNF state.
This would reduce contention as the packets associated with
the state we are transferring would arrive at DstVNF rather
than at SrcVNF. Another benefit is that SrcVNF does not
have to redirect packets, reducing its load. An OP version
of this solution is illustrated in Figure 7.

One negative effect of redirecting traffic before moving
state is that we cannot implement the Late Locking op-
timization, packets that with the LL optimization active
would be processed at SrcVNF will instead be buffered at
DstVNF. The Early Release optimization can however be
implemented even in this scenario.

Without Late Locking in this alternative solution we risk
buffering flows at DstVNF for a long time while waiting for
their VNF state to be transferred, inducing long latencies for
those flows. Individually transferring smaller flows instead
of grouping them into a single large Move could reduce the
impact of this (e.g. performing 255 Move operations on
/16 IP subnets instead one Move operation on a /8 IP sub-
net). The order of moving flows within larger Move opera-
tion could also be done based on amount of state associated
with the matched flows, for e.g. flows with less state can be
moved and traffic can be rerouted before moving flows with
more state. Even network conditions can be used for de-
ciding which flows should be moved first, e.g. moving flows
with a larger traffic load first in order to offload the SrcVNF
quickly. However, many Move operations would consume
more flow rule entries in the switch and likely increase the
total time.

Acknowledgment
This work was conducted within the framework of the FP7
UNIFY project, which is partially funded by the Commis-

41

sion of the European Union. In addition one author recieved
funding from a Swedish Institute scholarship for studies at
KTH.

7. REFERENCES
[1] Comparing various aspects of serialization libraries.

https://code.google.com/p/thrift-protobuf-compare/
wiki/BenchmarkingV2. Accessed: 2015-04-01.

[2] Tcpreplay: Pcap editing and replay tools for* nix.
http://tcpreplay.synfin.net. Accessed: 2015-04-01.

[3] The UNIFY project. http://fp7-unify.eu. Accessed:
2015-04-01.

[4] Openstack: Open source cloud computing software,
2014.

[5] ETSI. White Paper: Network Functions Virtualisation
(NFV), 2013.

[6] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl,
X. Gao, A. Anand, T. Benson, V. Sekar, and
A. Akella. Stratos: A network-aware orchestration
layer for virtual middleboxes in clouds. arXiv preprint
arXiv:1305.0209, 2013.

[7] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. Opennf:
Enabling innovation in network function control. In

Proceedings of the 2014 ACM conference on
SIGCOMM, pages 163–174. ACM, 2014.

[8] D. A. Joseph, A. Tavakoli, and I. Stoica. A
policy-aware switching layer for data centers. ACM
SIGCOMM Computer Communication Review,
38(4):51–62, 2008.

[9] M. Kuzniar, P. Peresini, and D. Kostic. What you
need to know about sdn control and data planes.
Technical report, 2014.

[10] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar,
and M. Yu. Simple-fying middlebox policy
enforcement using sdn. In ACM SIGCOMM Computer
Communication Review, volume 43, pages 27–38.
ACM, 2013.

[11] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico
replication: A high availability framework for
middleboxes. In Proceedings of the 4th annual
Symposium on Cloud Computing, page 1. ACM, 2013.

[12] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/merge: System support for elastic
execution in virtual middleboxes. In NSDI, pages
227–240, 2013.

42

