
Experiences Deploying a Transparent Split TCP
Middlebox and the Implications for NFV

Franck Le, Erich Nahum, Vasilis Pappas, Maroun Touma, Dinesh Verma
IBM T.J. Watson Research Center

Yorktown Heights, NY, USA
{fle|nahum|vpappas|maroun|dverma}@us.ibm.com

ABSTRACT
This paper summarizes our experiences deploying a trans-
parent Split TCP middlebox for WiFi networks in En-
terprise customer environments. Since Split TCP is
nearly two decades old, we believed this would be a
straightforward application of well-known technology.
Reality, however, would teach us otherwise.

While we began our deployment in our own office
with 3,000 users, we encountered several challenges in
deploying this technology at customer sites. Each cus-
tomer had different network architectures, security poli-
cies, and non-negotiable requirements. In particular,
modifying the network architecture was frequently im-
possible. Deployment challenges tended to fall into two
related but distinct categories. First, making the box
transparent to both clients and servers required extend-
ing the notion of transparency from beyond just layer
3 and layer 4 to include layer 2. Second, the interac-
tion of our middlebox with other middleboxes resulted
in unexpected behaviors.

Our deployments supported up to 15,000 simultane-
ous users and lasted up to 2 years. We offer up our
experiences so that others need not repeat them. We
discuss some implications of our experiences on deploy-
ing network functionality in virtual environments, or
Network Function Virtualization (NFV). If NFV is to
be successful in real environments, these challenges will
need to be overcome.

1. A TRANSPARENT SPLIT TCP PROXY
Wireless networks such as WiFi, Cellular, and Blue-

Tooth have become ubiquitous. Yet frustrations remain
with wireless network performance. Fading, attenua-
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tion, poor connectivity, and range limitations all con-
tribute to poor wireless experience.

Split TCP: One solution to this problem is Split
TCP [1, 6, 25]. The concept is simple: Split a TCP
connection between a fixed server and wireless client
into two separate connections at the middlebox – one
connection between the server and the middlebox, and
one between the middlebox and the client. This allows
packet loss recovery to occur independently over either
leg, minimizing unnecessary congestion window reduc-
tions and improving TCP performance.

Routing TCP Streams: Of course, this requires
that the middlebox be able to intercept all packets of a
flow in both directions. Many network functions (e.g.,
firewall, intrusion detection system, deep packet inspec-
tion, split TCP proxy) have the requirement that they
observe and even intercept full TCP streams. This can
be achieved in three ways: First, clients can be explic-
itly configured to direct traffic to the middlebox (e.g.,
SOCKS, HTTP Proxy). Second, the middlebox can be
placed in such a way as to force all traffic through it (at
a“choke point”). Finally, the network can be configured
to forward, route, or tunnel packets to the middlebox.
Each approach has advantages and disadvantages.

The first approach was not acceptable, in neither our
own IT environment nor any customer environment we
encountered. Managing and administering every client
to use the middlebox can be difficult, tedious, and fre-
quently impossible. The second approach presents sin-
gle point of failure problems, as we discuss in Section
2.2. The third approach requires modifying the routing
infrastructure, which at many customers is considered
untouchable.

Transparency: This brings us to the issue of net-
work transparency. Transparency has two sides: trans-
parency for the client, which does not realize it is travers-
ing a middlebox, and transparency for the server, which
sees requests as if originating from the client IP ad-
dress. Client transparency eliminates the need for ex-
plicit configuration on the client. While server trans-
parency might not be desired (e.g., using a NAT box
to hide client IPs to the external world), it also eases
deployment for many reasons. For example, a NAT box
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can complicate the processing by subsequent middle-
boxes [21], including the identification of compromised
clients by intrusion detection systems, the application of
traffic shaping to different clients, and the analysis and
characterization of user behaviors. Also, many mid-
dleboxes take advantage of network transparency (e.g.,
firewalls, IDS) for both functionality and security rea-
sons. For example, a middlebox may not wish to expose
its own IP address to reduce the risk of attacks.

For these reasons, we wished to utilize full network
transparency. Linux introduced a mechanism for this in
the 2.6 kernel called transparent proxying [14] (an earlier
version had been in version 2.4 but had been removed.)
Transparent proxying allows the middlebox to receive
and send traffic using any IP address, thus masquerad-
ing as the server to the client, and as the client to the
server. This support was originally intended for trans-
parent Web proxies such as Squid [24], but we realized
it could be used for Split TCP as well, making it much
more viable for deployment. Transparency also includes
the TCP layer, namely, the middlebox uses the client’s
source TCP port when connecting to the server. How-
ever, transparency does not extend to the MAC layer,
as we discuss in Sections 2.6 and 2.7.

History: From 2011 to 2014, we developed, deployed,
and evaluated a Split TCP middlebox. The middlebox
was deployed at roughly 10 sites, ranging from hun-
dreds to tens of thousands of users, and lasting up to
2 years. After developing the middlebox implementa-
tion in the lab on a dedicated testbed, we believed we
were ready for general deployment. However, we had
not anticipated nor considered some of the more subtle
interactions that occurred in deploying a transparent
middlebox across multiple environments. In this paper,
we describe some of those interactions and, where ap-
propriate, discuss their implications in the context of
moving network functionality into the cloud, frequently
called Network Function Virtualization (NFV) [11]. In
essence, these issues are all related, centering on deploy-
ing a transparent middlebox and how it interacts with
other middleboxes.
Contributions: Middleboxes are commonly deployed

in operational networks (e.g., [23]), and one might ar-
gue that network administrators and middlebox vendors
must have therefore encountered the issues we describe.
However, although some of the problems may have been
previously reported, the information is widely scattered
across online forums. More importantly, solutions and
hacks are often suggested without fully explaining the
reasons why they solve the problems (e.g., [22]). As
such, it is difficult to reason about their limitations, and
even understand if the solutions actually work. For ex-
ample, commercial middleboxes have recognized issues
(e.g., preservation of VLAN tags), and claim to have in-
tegrated features to address them, but do not describe
the solutions [2, 4]. In contrast, we describe the issues
in detail, present the solutions we implemented, and
explain the limitations of our approaches. By expos-
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Figure 1: Sideband Mode.

ing the issues and the associated challenges, we hope
that the networking community will be able to develop
more general solutions to facilitate the deployment of
middleboxes and virtual network functions.

2. DEPLOYMENT EXPERIENCES
In this section we structure our discussion as follows.

For each issue we encountered, we describe the problem,
how we overcame it, and, where appropriate, potential
implications for deploying in the cloud.

2.1 Transparency and Network Topology
Problem: When we initially designed the Split TCP
middlebox, it was deployed at IBM Research connected
to a router as depicted in Figure 1, based on the require-
ments of our own IT staff. The router utilized Cisco’s
Web Cache Communication Protocol (WCCP) V2 [10].
to forward a subset of packets (in this case, from subnets
corresponding to WiFi APs) to the middlebox. WCCP
was originally developed for routers to redirect clients’
requests to a local Web cache, but works equally well
for a transparent split TCP proxy.

However, many customer network designs relied solely
on layer 2 networks, with the router managed by their
service provider and inaccessible to both us and the cus-
tomer. Thus, the initial deployment solution was not
feasible.

Solution: To handle layer 2 environments, we extended
the Split TCP middlebox to be deployed in an inband
mode as illustrated in Figure 2, and began to think of
the deployment model in Figure 1 as sideband mode. A
Linux bridge is created at the middlebox and both net-
work cards are added to it. With all traffic traversing
the bridge, ebtables allows packets to be intercepted.

Implications: While this particular problem was not
difficult to solve, it was the beginning of a series of re-
lated problems having to do with network transparency.
Transparent network functions offer unique challenges
to NFV, since transparency must be defined in terms of
each networking layer.
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Figure 2: Inband Mode.

2.2 Failover
Problem: A central customer requirement was that
the middlebox would fail gracefully. Particularly for a
performance enhancing proxy such as Split TCP, which
processes all data packets and even terminates TCP
connections, a failure essentially “blackholes” the net-
work. Customers required “fail-to-wire”, where a fail-
ure results in the system returning to the configuration
without the middlebox.

Solution: As discussed in Section 2.1, there are two
available approaches: inband and sideband. The in-
band base, while conceptually simpler, is actually more
difficult to manage from a failure perspective. This is
because there is no “routing around the problem” when
the middlebox fails. Instead, we used a hardware device
installed on a PCI slot triggered by a software heartbeat
from the middlebox. If the middlebox does not provide
the heartbeat after some period of time, the hardware
physically converts the Ethernet ports so that traffic
simply passes through the middlebox. This works for
both hardware and software failures.

The sideband case, while at first glance more com-
plex, was actually easier to solve with WCCP. A router
using the WCCP protocol communicates with a middle-
box via periodic UDP heartbeat messages. If the mid-
dlebox does not respond within a configurable number
of seconds, the router stops forwarding packets and in-
stead performs default routing.

Implications: In the effort to virtualize network func-
tionality, failover must be considered and planned for.
VMs will eventually fail and need to be handled grace-
fully. Our deployments never required more than one
machine, but of course, VNFs may handle much more
significant load and require larger resources of CPU,
memory, etc. Failover in NFV thus has two aspects:
First, a single instance of a service may fail, while oth-
ers continue, and thus software coordinating the scaling
(e.g., load balancer) will need to redirect traffic to ac-
tive instances. Second, the service as a whole may fail
and require that some action may be taken, depending
on the service. For example, policy might dictate that if
a firewall fails, the network gets disconnected, whereas
for a Web cache, the cache is simply bypassed.
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Figure 3: Asymmetric Routing.

We believe that this requirement may even become
more critical as network functions are migrated to the
cloud. This is because intermediate ISPs may expe-
rience failures, and cloud service provider infrastruc-
tures may require unplanned maintenance, increasing
the risks for network functions to be unreachable.

One study [23] suggests DNS as a possibility to redi-
rect traffic to network functions on the cloud. However,
updating DNS entries can be slow, and such approach
may therefore not be adequate to address network func-
tions’ failures. Indeed, early approaches to Web server
load balancing and availability examined using DNS,
[18], but found it ineffective at short-term time scales.

Two problems encountered above also make deploy-
ing NFV more difficult. In the inband case, each hard-
ware vendor had its own API for managing and trigger-
ing failover. This is, of course, a headache for develop-
ers, who must write custom code for each vendor. Far
better would be to have a standard API, supported by
vendors, for managing failover. Similarly, in the side-
band case, WCCP v2 is a Cisco-developed protocol. Al-
though made available to competitors such as Blue Coat
and Riverbed, an IETF standardized failover protocol
that can be utilized by all network functions, virtualized
or not, would be preferable.

2.3 Asymmetric Routing
Problem: Enterprise networks are frequently provi-
sioned to be fault-tolerant and robust to failures by
providing multiple paths in their networks. Many net-
works follow the industry standard Cisco Enterprise
Network Architecture [8], with each access router being
connected to two distribution routers, as shown in Fig-
ure 3. Since both paths are active, asymmetric routing
can occur where upstream packets traverse one distri-
bution router and downstream packets may traverse an-
other. In particular, in our enterprise, we observed data
packets traversing one path and ACK packets traversing
the other. This was a problem as the Split TCP middle-
box could not see the full TCP stream. The middlebox
could not be placed closer to the APs, since the APs
used Cisco’s integrated controller and traffic between
the controllers and the APs is encrypted [7].
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Solution: We leveraged the WCCP protocol described
in Section 2.2 to handle routing asymmetry. Both dis-
tribution routers were configured to forward all WiFi
traffic to the middlebox, ensuring the full TCP stream
traverse the middlebox.

Implications: Many network functions require full TCP
streams, and routing asymmetry can break this. NFV
will need to preserve this property in the cloud. While
SDN can help with this issue, wide-area cases will be
more difficult, since the NFV provider will not have
control over all traversed networks.

2.4 Tunneling
Problem: In sideband mode, packets must be redi-
rected from the router to the middlebox. To achieve
this, two main methods exist: WCCP (Layer-2) L2, and
WCCP GRE. WCCP L2 overwrites the original desti-
nation MAC address of the IP packet with that of the
middlebox, instead of that of the next L2 hop. This
approach requires the middlebox to be accessible on a
neighboring LAN of the router. In some configurations,
we ran dedicated Ethernet cables from the router(s) to
the middlebox so that we could use L2 redirection. The
second method, WCCP GRE, forwards packets through
a GRE tunnel between the router(s) and the middlebox.
It allows packets to reach the middlebox even when it is
multiple routers away. However, GRE requires a mini-
mum of 8 bytes for the GRE header, which effectively
reduces the available MTU of the packet. The tunnel
is not visible to the client nor server at the TCP layer.
Thus, connections would be established, but the mo-
ment a full-size MTU packet was transmitted (typically
in a server HTTP response), the tunnel would drop it.
A connection would die shortly after it had begun.

Solution: After some investigation, the cause was iden-
tified: The “don’t fragment” (DF) flag in the IP header
was set, causing the packet to be dropped at the tun-
neling router as the size exceeds the maximum size of
the outgoing interface and the router can’t fragment
the packet. The router should instruct the server to
send smaller packets by sending an ICMP type 3 packet
(Destination Unreachable; Fragmentation Needed and
DF set.) However, routers are often configured to not
send ICMP destination unreachable messages, or fire-
walls may discard them [15]. To address the issue, we
updated the MTU of the middlebox interface(s) to ac-
count for the GRE header.

Implications: Tunneling will be an important compo-
nent of NFV to route packets through the cloud. Several
encapsulation techniques (e.g., VXLAN [16], Overlay
Transport Virtualization [9]) have recently been devel-
oped to extend layer 2 networks across data centers.
However, as described above, tunneling can create is-
sues with MTU which may ultimately disrupt connec-

tivity. MTU problems are subtle to diagnose since they
allow partial progress for a connection. Although we
fixed the problem by adjusting the MTU of the mid-
dlebox interface(s), this solution is not general: In par-
ticular, the size of the outer headers may vary. For
example, VXLAN can encapsulate both VLAN and un-
tagged Ethernet frames, which have different lengths.
GRE and IPsec also have different overheads, and IKE
may decide to tunnel IPsec packets over UDP in the
presence of NAT(s) [13]. As such, fixing the MTU of a
middlebox interface may not be optimal for all the pos-
sible cases. More preferable would be a solution that
dynamically detect MTU issues. One possibility could
the IETF standardized Packetization Layer Path MTU
Discovery (PLPMTUD) procedure [17]. It does not rely
on ICMP messages, but probes with progressively larger
packets at the transport layer. However, one study [15]
has highlighted the challenge in determining whether a
segment is lost due to congestion or MTU issues.

2.5 Network Address Translation
Problem: In one deployment setting, a customer re-
quired that a NAT be present between the wireless clients
and the Split TCP middlebox. We observed a number
of TCP connection attempt failures, where a client sent
a TCP SYN, and the Split TCP middlebox properly
received it (as observed by tcpdump). However, the
middlebox neither sends a TCP SYN to the server, nor
replies with a TCP SYN-ACK to the client. Instead,
the client’s request times out, and the TCP connection
request fails. Online forums have reported similar be-
haviors [22].

Solution: Online forums reported that disabling TCP
timestamps fixed the issue, but did not provide any ex-
planation why this worked [22]. It turns out that the
Linux TCP stack includes some mechanisms to prevent
delayed segments from one connection from being ac-
cepted by a later connection re-using the same 4-tuple
(source and destination ports, source and destination
addresses). This is the purpose of the TIME-WAIT
state in TCP [20]. For a given period of time, the Linux
TCP stack compares the timestamp of the newly re-
ceived packet with that of the last packet from the pre-
vious connection from the same IP address. If the newly
received timestamp is smaller, the packet is silently dis-
carded.

In the presence of a NAT, all hosts except one may
consequently suffer connections failures, since the mid-
dlebox perceives them all as coming from a single IP ad-
dress. Further details on the issue are described in [3],
which also presents a more direct solution: Disable the
behavior on the middlebox by setting
net.ipv4.tcp_tw_recycle to 0.

Implications: As middleboxes are migrated to the
cloud, the risks for unexpected interactions with other
middleboxes and the resulting errors may grow. This is
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Figure 4: Middlebox in a VLAN Environment.

because the number of traversed middleboxes may in-
crease, as cloud service providers often deploy different
network functions including load balancers to alleviate
network congestion, or firewalls to protect their infras-
tructure. In addition, different vendor implementations
may present slightly different behaviors, making it dif-
ficult to predict or test potential failures.

2.6 Security Gateway
Problem: In another setting, customers utilized a se-
curity gateway to prevent packet spoofing. The gateway
is both a DHCP server assigning IP addresses and a se-
curity appliance that verifies that arriving packets with
a given source IP address have the same client hard-
ware MAC address that was assigned by DHCP. If the
verification fails, the gateway silently drops the packet.

In the presence of the Split TCP middlebox, pack-
ets reaching the security gateway have their source IP
address preserved to that of the originating client. How-
ever, the sender MAC address is that of the middlebox.
This is because the middlebox terminates the TCP con-
nection from the client, and originates a new one with
the server, masquerading as the client. As a result,
the verification between the source IP address and the
sender MAC address fails, and packets from the mid-
dlebox (e.g., TCP SYN) are dropped1.

Solution: We developed a module on the middlebox
to learn the mapping between the client IP and MAC
addresses by listening to ARP messages. The module
overwrites outgoing packets, replacing the source MAC
address of the middlebox with the appropriate MAC
address of the client. However, while the main func-
tionality appears simple, the module has to ensure race
conditions do not still cause connection failures, and
clients do not experience abrupt disconnections if the
daemon process dies.

Implications: This reinforces the issue from Section
2.5, that problems may increase from unexpected inter-
actions between middleboxes as more of them are intro-
duced. We could not reproduce the problem in our local
lab, as the gateway was not available to us for testing.

1In one sense this is proper behavior, as the middlebox
is spoofing the client.

2.7 VLAN
Problem: A number of customers rely on VLANs and
required us to deploy the Split TCP middlebox on a
trunk link. Figure 4 illustrates such a scenario: The
VLAN controller defines the mapping of the WiFi SSID
to VLAN. The middlebox is deployed in the inline mode
(Section 2.1), and uses a Linux bridge and ebtable rules
to intercept the traffic. However, outgoing packets from
the middlebox lacked the proper VLAN tags and could
not be properly forwarded to the corresponding gateway
router(s). The middlebox therefore broke the connec-
tivity of the wireless clients.

Solution: An additional module was developed and
added to the middlebox to perform VLAN tagging of
the outgoing packets. To properly tag the packets, the
module must be configured with the VLAN IDs, the
IP address ranges belonging to each VLAN, and the IP
address of the default gateway router for each VLAN.
With such information, given the source IP address of
a packet, the middlebox can identify the proper VLAN
tag to attach to the packet. However, this solution is
limited in that it does not allow the same subnet (e.g.,
192.168.1.0/24) to be used by multiple VLANs. This
scenario did not occur in any of the environments we
deployed the middlebox; but because of this restriction,
the solution may not be applicable to all environments.
Commercial middleboxes can preserve VLAN tags [2,
4]. However, their solutions are not described in detail
and thus, their features and limitations (e.g., support
for a same subnet across multiple VLANs) are unclear.

Implications: Virtual Extensible LAN (VXLAN) [16]
enables clients, switches and virtualized network func-
tions deployed on the cloud to belong to the same layer 2
network/VLAN. However, deploying a network function
in a VLAN environment creates challenges to correctly
tag outgoing packets. At the same time, this presents
an opportunity for NFV for customers to simplify their
networks by separating the functionality they require
(e.g., security, traffic isolation) from how it is currently
implemented (e.g., VLANs).

3. DISCUSSION
Certain types of network functions are sensitive to

RTT in a way that others are not, particularly perfor-
mance enhancing proxies (PEPs) [5] such as Split TCP.
Thus, their placement in the network topology is fun-
damental to their success. Split TCP, for example, is
most effective when it is adjacent to the wireless hop. A
Web cache needs to be close to the client to effectively
reduce response times.

For these types of latency-sensitive network functions,
some have suggested cloud providers with a “CDN-like
footprint” [23]. However, it is not clear how likely such
cloud providers will be. More likely, we believe, is that
these functions will be hosted in a local private cloud.
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Similarly, introducing virtualization and wide-area de-
lays will increase the variability of the service provided
by the network function, due to issues such as network
congestion, network failures or oversubscribed clouds.

Finally, network functions may be exposed to unusual
threats from their co-tenants in a cloud. This may re-
quire further hardening of services, requiring more strin-
gent or additional firewall protection, adding to the cost
and delay in NFV.

4. CONCLUSIONS AND FUTURE WORK
This paper has focused on the deployment issues en-

countered as part of designing, deploying, and evaluat-
ing a transparent Split TCP middlebox for wireless net-
works. There are other issues we encountered but, due
to space limitations, cannot include them here. Broadly,
they fall under two categories:

Debugging. These issues centered on development
decisions that aided or hindered debugging running sys-
tems, particularly under high load, or after extended
deployments (i.e., months).

Measurement. While it was simple to measure per-
formance improvements in a dedicated testbed, it was
much more difficult to quantify to customers how well
the system worked for their traffic and environment.
In particular, variability introduced by using real work-
loads, networks and servers made this much more chal-
lenging. Constraints required by the customers also re-
stricted our actions.

We are currently writing up our entire experience in-
cluding the above in longer form and hope to publish
that as a full paper.
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