
Lost in Network Address Translation: Lessons from
Scaling the World’s Simplest Middlebox

Vladimir Olteanu
U. Politehnica of Bucharest

Felipe Huici
NEC Europe Ltd.

Costin Raiciu
U. Politehnica of Bucharest

Abstract
To understand whether the promise of Network Function
Virtualization can be accomplished in practice, we set out
to create a software version of the simplest middlebox that
keeps per flow state: the NAT.

While there is a lot of literature in the wide area of SDN in
general and in scaling middleboxes, we find that by aiming
to create a NAT good enough to compete with hardware ap-
pliances requires a lot more care than we had thought when
we started our work. In particular, limitations of OpenFlow
switches force us to rethink load balancing in a way that
does not involve the centralized controller at all. The result
is a solution that can sustain, on six low-end commodity
boxes, a throughput of 40Gbps with 64B packets, on par
with industrial offerings but at a third of the cost.

To reach this performance, we designed and implemented
our NAT from scratch to be migration friendly and opti-
mized for common cases (inbound traffic, many mappings).
Our experience shows that OpenFlow-based load balanc-
ing is very limited in the context of NATs (and by relation
NFV), and that scalability can only be ensured by keeping
the controller out of the data plane.

1. INTRODUCTION AND MOTIVATION
Hardware middleboxes are as numerous as switches and

routers in enterprise networks [19] and can handle packet
processing speeds in the tens of millions. However, they
come with steep prices and are very difficult to scale or up-
grade: such operations require hardware purchases. Run-
ning network processing on commodity hardware is the ob-
vious solution: software processing can sustain reasonable
packet-level speeds for simple processing by bypassing the
network stack [9,18], and its biggest selling point is the ease
with which software can be scaled or upgraded. Scalabil-
ity in particular is crucial, as it allows the network to dy-
namically dimension its resources in response to load, lead-
ing to energy savings and smaller up-front costs. Running
middleboxes on commodity hardware has been termed Net-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMiddlebox ’15 August 21, 2015, London, United Kingdom
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3540-9/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785989.2785994

work Function Virtualisation (NFV) and is more than just
hype: all of the major network operators have gotten to-
gether to specify an architecture for Network Function Vir-
tualization [20] and to allow chaining different functions on
the same traffic flow [10].

There is already a growing body of research on how we
should approach NFV: the basic recipe is to use hardware
load balancing (e.g. OpenFlow) to split traffic to a number
of commodity servers, as proposed by Flowstream [7]. To
implement middlebox functionality, the simplest choice is to
use existing apps running over Linux; however major gains
can be made in both performance and ease of deployment
if we restrict the programming language for middleboxes as
proposed by ClickOS [12] and FlowOS [3].

One basic question, though, remains unanswered: can we
implement scalable network functions on commodity hard-
ware that achieve packet rates similar to hardware appli-
ances? In this paper we set out to answer this question for
network address translators, or NATs. Our goal is to build a
scalable software-based NAT with comparable performance
to hardware middleboxes.

We are acutely aware that NATs are far from exciting.
However they also are the simplest and most popular form
of middlebox that maintains per-flow state. NAT function-
ality is embedded in almost all network appliances including
routers, application security appliances, service gateways in
cellular networks, etc. Scaling a NAT is therefore the lowest-
common denominator in scaling more complex appliances:
if we can’t build a fast, scalable NAT, there is little hope
of building more complex functionality that performs well.
Finally, the depletion of the IPv4 address space means these
boxes are in high demand, as more network operators are
contemplating deploying carrier-grade NATs.

Designing a scalable NAT seems an easy task at first sight,
as there is a large body of literature on Software Defined
Networking that we can rely upon including [6, 16, 17, 21].
Existing works do not focus on specific network functions
or hardware, and thus fail to take into account crucial lim-
itations of OpenFlow switches or NAT requirements (e.g.,
require that both traffic directions hit the same box). In
fact, these restrictions heavily restrict the set of feasible so-
lutions to the point where existing works do not apply.

Instead, we took a clean-slate approach at designing a fast,
scalable NAT for our specific OpenFlow switch. We have de-
veloped novel data structures that allow fine-grained locking
to enable cheap migration, while offering high throughput.
Finally, we present daisy migrate, a state migration that
keeps the centralized controller off the data path.

19

http://dx.doi.org/10.1145/2785989.2785994

Our experimental results show it is possible to perform
network address translation at 40Gbps with 64B packets on
six low-end commodity servers coupled to a 10Gbps Open-
Flow switch. Additionally, our NAT can seamlessly scale
up and down as load fluctuates, and can be easily extended
by adding more servers: e.g., adding 9 more servers would
allow us to process 100Gbps with 64B packets. This implies
that NFV seems indeed feasible: at around thirty thousand
dollars, this software NAT is cheaper than existing CGN
appliances1.

This paper begins by discussing in §2 the design choices we
made while building our NAT, most of which are heavily in-
fluenced by the hardware limitations of OpenFlow switches.
Next, we describe our implementation in §3 and our evalu-
ation in §4. We make a quick suvey of existing literature in
§5 and discuss the lessons learnt in §6.

2. DESIGNING A CARRIER-GRADE NAT
Our carrier-grade NAT is presented in Figure 1, and con-

sists of an IBM G8264 10Gbps OpenFlow switch connected
to six commodity servers that perform the actual transla-
tion, and another server that controls both the switch and
the machines. The controller connects to the servers and
the switch via a standard Gigabit switch, not shown in the
picture. To build a scalable software NAT, we need the fol-
lowing building blocks:

1. A fast NAT implementation for a single machine. Al-
though arbitrary performance can be achieved by scal-
ing out (at least in principle), having a fast NAT im-
plementation is key to ensure the resulting solution is
economically feasible.

2. A load balancing algorithm that spreads the traffic
over the existing NAT instances.

3. A migration algorithm that allows the controller to add
more machines to the NAT when load grows, and turn
off machines when load shrinks to save energy / costs.

For the first part, there are plenty of implementations
for NATs that we can rely on: Linux supports NAT in its
iptables suite, and the Click modular router [11] also has
configurations for NATs. To decide which ones to choose,
we profiled both, finding that native Linux can only handle
around 500K packets per second, which is rather low. If we
run our NAT in Click [11] in user-mode over netmap [18] we
can achieve a little over two million packets per second in
the most demanding scenario on a single core (see §4), and
close to 7 million packets per box; this is a good basis for
our scalable NAT.

The load balancing algorithm is the key ingredient of
a scalable middlebox, and we have found that its design
heavily depends on the capabilities of the OpenFlow switch.
Our IBM switch supports OpenFlow 1.0, which allows prefix
matching for IP addresses, and only exact matches or do not
cares for the other fields.

A strawman load-balancing algorithm can rely on the re-
active behaviour of the OpenFlow switch: when seeing a
packet from an unknown connection, the packet is forwarded
to the controller, which can then select an appropriate NAT

1For instance, the A10 Thunder 4430 CGN can process at
most 38Gbps of traffic and costs ninety thousand dollars [1].

NAT	

NAT	

NAT	

NAT	

NAT	

NAT	

IBM	 G8264	

40Gbps	

40Gbps	

10Gbps	

Inside	
network	

Outside	
network	

CONTROLLER	
1Gbps	

Figure 1: Software Carrier-Grade NAT: an OpenFlow
Switch, six commodity servers and a controller.

box (say N0) to process the packet and install a rule that
matches future packets from this connection, rewrites their
destination MAC address and forwards them to the appro-
priate NAT box. N0 creates a new mapping for the flow
and then translates the packet, changing the source address
and port of IPn and Pn, and forwards the packet back to
the switch. The new packet belongs to a flow not known by
the switch, so this packet will also be sent to the controller.
The controller now knows the translation and installs an-
other rule that forwards traffic from the server to N0.

There are at least three problems with this strawman load-
balancing algorithm:

• The OpenFlow switch has to maintain two rules per
connection. Our IBM G8264 switch supports around
80 thousand rules, which would imply a maximum of
40 thousand connections, which is very small.

• The control plane of the OpenFlow switch can only
process around 200 packets (i.e. at most 100 new con-
nections per second), which is insufficient.

• Even if a switch existed with no scalability limita-
tions, our software controller would become a bottle-
neck since it sees every new connection twice.

To avoid stressing the control plane of the OpenFlow switch,
we must proactively insert load-balancing rules into the
switch to spread the traffic to the NAT boxes. At first
sight, a hash-based load-balancing algorithm would be ideal
to spread traffic coming from the inside network to the NAT
boxes; indeed, hash-based load balancing is supported in
OpenFlow 1.1. Unfortunately, this does not solve the prob-
lem of directing outside traffic through the appropriate NAT
box: we still need one rule to be actively inserted for each
connection’s incoming traffic, and we are back to the prob-
lems above. In fact, all load balancing solutions that need
the exact mapping to work correctly have this problem.

To avoid this problem, our distributed NAT uses multiple
external IP addresses, assigning one or more to each indi-
vidual NAT box. This allows us to route traffic from the
Internet to the NAT box with traditional destination-based
forwarding and requires one rule per IP instead of one rule
per connection. In principle, we could have multiple NAT
boxes share the same external IP address and we could par-
tition the port space between these machines using prefix
matching on the ports, but OpenFlow does not support this
feature.

To load balance traffic from the inside network to the NAT
boxes, we rely on prefix matching on the IP source address

20

1 migrate(IP,dest){
2 copy(half_of_the_free_ports, dest);
3 start_daisy_chaining();
4 copy(remainig_ports, dest);
5
6 for (mapping m in mappings){
7 freeze(m);
8 copy(get_state(m),dest);
9 unfreeze(m);
10 send_buffered_packets(dest);
11 }
12 }

Figure 2: Daisy-migrate algorithm: pseudocode run by NAT
source when migration is executed.

of traffic, assigning each subnet to a fixed external address.
This technique ensures the requirements2 for NAT transla-
tion are obeyed [2,8].

To summarize, the limitations of OpenFlow switches have
forced us to assign at least one external IP address to each
NAT box. This is also a simplifies the implementation of the
NAT: there is no need to synchronize global state (i.e. the
free ports) during normal operation. The NATs are com-
pletely independent, which makes them more robust and
easy to scale.

Scaling NATs. The standard way to scale up and down
processing is to use multiple virtual machines that are spread
onto many physical machines when load is high, and consol-
idated onto fewer servers when load drops. We have run
our NAT in a Linux VM and migrated the whole VM. Un-
fortunately, at 4Gbps speeds the resulting downtime from
stop-and-copy migration results in a dip in throughput of
around 1.5Gbps. Also, the migration takes a few seconds.

To reduce the migration time, we only migrate the NAT
state instead of the whole VM, cutting the time needed to
copy the VM’s memory unrelated to the NAT.

How should NAT state be copied across? VM migration
uses a few rounds of pre-copying, where “dirty” memory is
transferred to the new NAT until the amount of memory
dirtied between rounds plateaus. A stop-and-copy phase fol-
lows, where the VM is stopped, the remaining “dirty” mem-
ory is copied across, the new VM is started and traffic is
shifted to it [4].

Applying the same mechanisms to migrating NATs is sub-
optimal. First, a large number of connections may be active
and their associated state will be altered constantly, which
means pre-copy will have limited effect; this is duly con-
firmed by experiments we ran on the MAWI traces [13].
Simply applying stop-and-copy to a large number of con-
nections simultaneously disrupts traffic massively, resulting
in unavoidable packet loss.

Our solution avoids the long stop-and-copy phase by ap-
plying stop-and-copy at smaller granularity, migrating con-
nections one at a time or in small groups. To do so, we
run the two NATs in parallel while the migration is taking
place, which implies we must split the available ports across
the two NATs. The pseudocode of our algorithm is given in
Figure 2, and it starts by giving half of the available ports
to the new NAT. From this point onwards, the new NAT

2We are required to use paired IP pooling; in a given session,
a client must receive the same external IP address for all its
traffic.

Inside	
network	

Outside	
network	

SOURCE	

DESTINATION	

Known	 connec1on	

Daisy	 chained	 	
connec1on	

Figure 3: Migrating a NAT using daisy chaining allows fine-
grained migration without per-flow rules at the switch.

can create mappings using the same external IP address but
different ports.

To avoid the need for per connection rules at the switch,
all traffic first hits the first NAT while the migration is tak-
ing place, as shown in Figure 3. The first NAT only trans-
lates traffic for which it has a mapping; other traffic will be
processed by the second NAT, and the first NAT forwards
it by rewriting the destination MAC address of the packet.
We call this state daisy chaining, and it is enabled as soon
as the new switch has available ports. From this point on,
the old NAT creates no new mappings, so it can send all the
available ports to the new NAT.

Next, the algorithm migrates small groups of connections
independently. First the connections are frozen: the NAT
buffers all packets destined for them. Next, the mappings
are copied across. When these mappings are acked by the
destination NAT, the source NAT also sends the buffered
packets to the new NAT. When all mappings have been
transferred across, the migration routine finishes, and the
controller updates the OpenFlow entry to forward traffic to
the new NAT. Note that the move may reorder a few pack-
ets, but this effect does not impact performance in our tests.

3. IMPLEMENTATION
We have implemented a custom Click element that deals

with packet translation and state migration and a controller
that installs rules and orchestrates migration.

The controller. The controller is based on Trema [14].
Its two responsibilities are directing traffic and overseeing
migration. When starting up, the controller starts a single
NAT instance and installs all the flow entries needed to di-
rect traffic from the inside network to this instance, as well
as return traffic from the Internet. When an administrator
decides to migrate some flows (e.g. to scale out), the con-
troller instructs the source and destination Click instances
as to the desired outcome and waits for them to finish be-
fore assigning the flows to the destination by replacing the
relevant OpenFlow rules.

The Click instances. The bulk of the work is performed
by Click instances running on commodity x86 machines. We
have chosen to run Click in usermode and to use netmap for
packet I/O. This enables Click to achieve speeds comparable
to running Click in the Linux kernel, while benefitting from
the advantages of user-level programming: robustness, easy
development.

Our Click configuration uses a custom NAT element that
we have implemented from scratch for high performance and
migration at the same time. We have decided against using
the IPRewriter element from Click because its implemen-

21

IP src IP dst P src P dst

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Mapping 1

Mapping 2

Mapping 3

Mapping 4

IP src IP dst P src P dst

hash

Hash Map Vector Map

outbound traffic inbound traffic

Figure 4: Data structures optimized for NAT and migration.

tation makes it difficult to implement our fine-grained mi-
gration algorithm. In particular, IPRewriter uses the Click
hashtable data structure, and the only way to ensure safety
during migration would be to use a big lock. Writing our
element from scratch allows us to optimize it from ground
up for both performance and migration.

Packet translation. Every external IP that is managed by
a CarrierGradeNAT element has its own data structures that
store all associated states. These data structures are further
segregated by layer 4 protocol: TCP, UDP or ICMP. For the
sake of brevity, our discussion of how packets are translated
will be focused on TCP packets within the context of a single
external IP, unless otherwise noted. A list of free ports is
also maintained, so that external ports are never allocated
to multiple internal endpoints at the same time.

All connections that share the same internal IP and port
(along with their states) are gathered under the umbrella of
a single bidirectional mapping of an internal (IP, port) tuple
to an external port and vice-versa. Because mappings are
independent of outside hosts’ IPs and ports3, it is possible
for multiple TCP connections to share the same mapping.
TCP mappings contain data about their corresponding con-
nections. For the purpose of looking up these mappings, two
data structures are used (see Figure 4):

• A 2-choice hash map is used to lookup mappings based
on the internal (IP, port) tuple. A hashtable lookup
is performed for all packets originating from the inside
network, and the key is a hash function applied to the
packets’ source IP and port.

• A vector map is used for looking up mappings based
on the external port.

Our hash function implements two-choice hashing, min-
imizing collisions for outgoing traffic when there are many
existent mappings. Packets originating from the outside net-
work are only matched against their destination port, which
requires a single array access and is faster than a hashtable
lookup. This optimization ensures the more voluminous in-
bound traffic is processed faster than outbound traffic.

If no packets match a mapping for a certain amount of
time, the mapping is deleted and the external port is freed
up. UDP and ICMP Query mappings have simple inactivity
timers, which are only refreshed when an outbound packet
is translated. Inbound packets do not refresh this timer for
security reasons; an external attacker would otherwise be
able to keep the mapping alive indefinitely.

Each TCP connection associated with a mapping has its
own inactivity timer, whose timeout depends on the connec-
tion’s state. As far as the NAT is concerned, a connection
falls into one of three categories: partially open, established

3This is because of endpoint-independent mapping [8].

Experiment iptables IPRewriter CGN

1 conn OUT (empty table) 0.49 2.67 2.6
1 conn OUT (full table) 0.46 2.64 2.3

65K conn OUT 0.4 1.9 2.1
1 conn IN (full table) 0.49 2.89 3.1

65K conn IN 0.39 1.93 2.65

Table 1: Basic throughput comparison on a single machine
for different solutions

configs 1 2 3 4
1 conn OUT 2.5 5 7.4 9.7

65K conn OUT 2 3.9 5.55 6.8

Table 2: Throughput on a single machine when using mul-
tiple cores

or closing (see [8]). A TCP mapping is deleted when all of
its connections have expired. The timers are implemented
using expiry queues. There is one queue for each timeout
value. Expired connections and mappings are culled period-
ically from the front of each queue.

State migration is performed by a separate thread. Our
hashmap implementation features individually-lockable buck-
ets, which allows us to migrate one connection at a time
without disrupting other traffic.

4. EVALUATION
We begin our evaluation by analyzing the performance of

our distributed NAT (see Figure 1) using a single physical
machine. We start a single Click configuration running our
NAT and use two other servers (not shown) to emulate the
inside and outside networks. In each test, the client or the
server generates UDP traffic using the pktgen utility pro-
vided by the netmap suite4, and we measure the throughput
at the destination, and the results are shown in Table 1.

The performance depends on the number of active map-
pings at the NAT, and on the direction of the traffic. We
first test performance with a single UDP connection, which
is the best case since it has great code and memory access lo-
cality. The worst case is when all 65 thousand entries are in
use and traffic is sent in a round-robin fashion among these.
The results show that iptables gives poor performance (0.4-
0.5Mpps) and that Click-based NATs provide 4 to 5 times
more throughput. Our NAT implementation gives similar
performance to the IPRewriter NAT when there are few ac-
tive connections. When there are many active connections,
our NAT provides 10% more throughput for outgoing traf-
fic and 35% more for incoming traffic, despite implementing
locks that enable migration.

Figure 5 shows how throughput evolves when packet sizes
vary. On a single core we can translate 10Gbps line-rate
when packets are larger than 1000B.

Finally, we ran multiple NAT instances on the same box.
Click forces us to assign one NIC exclusively to one Click
configuration, which uses a single core; in the future we plan
to modify the Click FromDevice element to receive from a
single NIC queue, rather than all queues, which would al-
low multiple Click configurations to use the same NIC. To
understand the performance we can achieve if we utilize all
available cores, we installed four 10Gbps NICs in the same

4pktgen can generate minimum-sized packets at 10Gbps line
rate (i.e. 14.88 million packets per second)

22

 0

 1

 2

 3

 4

 5

64 128 256 512 1024 1500
 0

 2

 4

 6

 8

 10

 12
T

h
ro

u
g
h
p
u
t
(M

p
p
s
)

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Packet size (B)

Packets per second
Throughput

Figure 5: Throughput for a single NAT Click
instance as a function of packet size.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16 18

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Time (s)

Daisy chaining
Stop and copy
VM Migration

Figure 6: Effects of migrating a NAT
that is translating a single high-speed
TCP connection.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Time (s)

Figure 7: NAT scaling out under heavy
load: capacity can be added in under
one second.

server and ran multiple Click configurations, each assigned
a separate NICs and CPU core to run on. Table 2 shows
the throughput as we add more Click configurations. In the
worst case, the total throughput nears 6.8Mpps, which is a
good base for our scale-out solution.

Latency. We ran pings through our otherwise idle NAT to
understand the latency it adds compared to a wire between
the two machines, where the average ping latency is 30µs.
iptables increases the ping time by 34µs, while our CGN
adds 46 µs. The extra delay is negligible, and can be reduced
if we if we run Click in the kernel.

Migration. To analyze the performance of our migration
algorithm, we use TCP traffic instead of UDP because it
is more sensitive to packet loss and thus a more reliable
benchmark for migration. We use iperf to create 1-100 TCP
connections between our client and server machines, and af-
ter a few seconds we migrate the NAT to another machine.
We compare Xen VM migration, a variant of stop-and-copy
migration we have implemented, and our daisy-chaining ap-
proach. Figure 6 shows the instantaneous throughput achieved
by a single TCP connection when migrated with the three
solutions.

First, we notice that the throughput of iperf through the
Xen VM is rather poor; this is partly due to overheads in the
Xen networking subsystem, and partly due to the fact that
there is no netmap support for the Xen guest netfront driver.
VM migration takes a few seconds and severely impacts the
performance of the connection, even in the pre-copy phase
due to CPU contention. The stop-and-copy implementation
performs much better, but there is still a noticeable dip of
around 2.5Gbps in the second the migration takes place.
This is because stop-and-copy does not buffer packets during
the migration, which also includes copying across the free
ports. Finally, daisy chaining migrates the state in a few
milliseconds and has limited effect on performance: the raw
data shows a drop of 40Mbps.

The results for running 10 and 100 parallel connections are
similar for daisy chaining, with negligible impact for perfor-
mance. The throughput penalty for stop-and-copy is around
2Gbps at 10 connections and 0.4Gbps at 100 connections.

Scaling out. We now investigate how our NAT can scale
out when under heavy load. We again use minimum-sized
UDP packets belonging to 65K different mappings to stress
our NAT. Figure 7 shows total throughput in million packets
per second achieved by the NAT.

We use six external IP addresses, initially assigned to the
same physical host. After 25s, we add one machine and re-
balance load to the two machines by migrating half of the

IPs and their associated mappings; the results show a dou-
bling of throughput. After another ten seconds a new box
is added which receives one IP from each of the existing two
machines. Finally, at 45s we add three more machines and
migrate IPs and mappings such that every machine handles
a single IP address. The figure shows almost perfect scala-
bility, within the boundaries of an OpenFlow switch. These
results, corroborated with our single box results that show
performance close to 7 million packets per second, give us
confidence that our NAT can handle packets speeds of 40+
Mpps, close to industry standards.

5. RELATED WORK
Flowstream platforms [7] have been proposed as the natu-

ral architecture for building scalable middleboxes. Our NAT
borrows several high-level ideas from the paper, most no-
tably having the traffic hit multiple machines in sequence
when needed (which is the basis of our migration algorithm).

OpenNF [6] and Split/Merge [17] are two migration frame-
works that aim to simplify scaling middleboxes. They pro-
pose a novel API that middleboxes must use to benefit from
migration support: Split/Merge proposes a memory-based
hash-table API, while OpenNF proposes a getState / put-
State API to allow the external controller to control state
migration. These frameworks require major code changes to
middleboxes, and use the centralized controller in the data
path which severely affects their performance.

Ananta [15] and Duet [5] are cloud-scale load balancers
that also provide NAT functionality. In Ananta, traffic orig-
inating outside the cloud is spread across and processed
by multiple software-based multiplexers using ECMP be-
fore making its way to the end-hosts. Duet leverages some
features of the hardware switches to acheive the same func-
tionality. Both of these solutions rely on the cooperation of
the machines used by the cloud tenants: each machine must
run a Host Agent, that performs some of the packet process-
ing. Port allocations are performed by a central controller
(the Ananta Manager or the Duet Controller, respectively).
Our NAT achieves higher packet processing rates in soft-
ware than the above solutions, while also offering support
for state migration, despite the fact that network address
translation is more expensive than load balancing.

6. LESSONS LEARNED
Lesson 1: NFV needs tailor-made software. Simply
running existing tools such as the iptables suite on Linux
results in poor performance; to achieve our target 40Mpps
for the NAT we would need 80 servers instead of the 6 in our

23

setup. Moreover, the Operating System kernel adds many
overheads that are unnecessary for packet processing and
bypassing it via tools like netmap or DPDK [9] is an easy
way to boost performance.

Lesson 2: OpenFlow-based load balancing is very re-
strictive in practice. Most existing SDN solutions rely on
fine-grained load balancing that can be achieved when rules
are installed reactively, after the controller receives “packet-
in” events from the OpenFlow switch [6, 16, 17, 21]. For a
NAT, the controller would need to process two such events
for every single connection, as suggested by SIMPLE [16].
The limitations in both the control plane software and the
number of rules supported by switches render this strategy
inappropriate for our NAT. Instead, we have exploited the
inherent parallelism of multiple NATs translating with dif-
ferent external IP addresses to proactively install load bal-
ancing rules in the switch.

Lesson 3: The controller is best kept out of the data
path. A centralized controller makes it possible to support
complex functionality, such as loss-free and reordering-free
migration as proposed by OpenNF [6]. To achieve this, the
controller will receive a large number of packets during mi-
gration events, becoming a performance bottleneck and a
central point of failure.

Our experiments show that the performance of TCP flows
during daisy-chaining migration is not affected by the small
amounts of reordering and packet loss our solution intro-
duces. Our controller only installs rules in the switch, and
never sees any data traffic. Even if it fails, the impact on the
system is minor: if it fails during normal operation, nothing
really happens to the traffic since all the load balancing rules
are in place. If the controller fails during migration, the ma-
chines involved will finish transferring the state across, but
the system will be left in a daisy-chaining state, with the
relevant packets hitting both the source and the destination
machines; however, it will function correctly. In both cases,
the controller can simply be restarted by a watchdog and it
is trivial to have it learn the state of the system by querying
the switch and the NAT servers.

Lesson 4: Universal migration frameworks. When
implementing migration support we are trading implemen-
tation complexity for performance. If we had used OpenNF
or Split/Merge, it would have been easy to add scaling sup-
port, but at the expense of performance. Both OpenNF and
Split/Merge rely on a centralized controller on the datapath
during migration, severely limiting performance. Further-
more, the Split/Merge API makes it difficult to create data
structures optimized for inbound traffic.

Acknowledgements
This work was partly funded by Trilogy 2, a research project
funded by the European Commission in its Seventh Frame-
work program (FP7 317756).

7. REFERENCES
[1] A10 Networks. A10 Networks Introduces ...

https://www.a10networks.com/press-releases/a10-
networks-introduces-industrys-first-100-gigabit-
ethernet-adc-layer-4-7-services-four-new?id=1830530.

[2] F. Audet and C. Jennings. Network address
translation (nat) behavioral requirements for unicast

udp. BCP 127, RFC Editor, January 2007.
http://www.rfc-editor.org/rfc/rfc4787.txt.

[3] M. Bezahaf, A. Alim, and L. Mathy. Flowos: A
flow-based platform for middleboxes. In HotMiddlebox,
2013.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In NSDI, 2005.

[5] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,
L. Yuan, and M. Zhang. Duet: Cloud scale load
balancing with hardware and software. In SIGCOMM,
2014.

[6] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling Innovation in Network Function Control. In
SIGCOMM, 2014.

[7] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou,
M. Handley, and L. Mathy. Flow processing and the
rise of commodity network hardware. SIGCOMM
Comput. Commun. Rev., 39(2):20–26, Mar 2009.

[8] S. Guha, K. Biswas, B. Ford, S. Sivakumar, and
P. Sriruresh. BCP 412: NAT Behavioral Requirements
for TCP, October 2008.

[9] Intel Corporation. DPDK: Data Plane Development
Kit. http://dpdk.org/.

[10] Internet Engineering Task Force. Working Group on
Service Function Chaining.
https://datatracker.ietf.org/wg/sfc/documents/.

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. F.Kaashoek. The Click modular router. ACM
Trans. Computer Systems, 18(1), 2000.

[12] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,
M. Honda, R. Bifulco, and F. Huici. ClickOS and the
Art of Network Function Virtualization. In NSDI,
2014.

[13] MAWI Working Group Traffic Archive.
http://mawi.wide.ad.jp/mawi/.

[14] NEC Corporation. Trema.
http://trema.github.io/trema/.

[15] P. Patel, D. Bansal, L. Yuan, A. Murthy,
A. Greenberg, D. A. Maltz, R. Kern, H. Kumar,
M. Zikos, H. Wu, C. Kim, and N. Karri. Ananta:
Cloud scale load balancing. In SIGCOMM, 2013.

[16] Z. A. Qazi, C. C. Tu, L. Chiang, R. Miao, V. Sekar,
and M. Yu. SIMPLE-fying Middlebox Policy
Enforcement Using SDN. In SIGCOMM, 2013.

[17] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/merge: System support for elastic
execution in virtual middleboxes. In NSDI, 2013.

[18] L. Rizzo. netmap: A novel framework for fast packet
i/o. In Proc. USENIX Annual Technical Conference,
2012.

[19] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making Middleboxes
Someone Else’s Problem: Network Processing as a
Cloud Service. In SIGCOMM, 2012.

[20] E. N. F. Virtualisation. http://www.etsi.org/
technologies-clusters/technologies/nfv.

[21] R. Wang, D. Butnariu, and J. Rexford.
Openflow-based server load balancing gone wild. In
HotICE, 2011.

24

https://www.a10networks.com/press-releases/a10-networks-introduces-industrys-first-100-gigabit-ethernet-adc-layer-4-7-services-four-new?id=1830530
https://www.a10networks.com/press-releases/a10-networks-introduces-industrys-first-100-gigabit-ethernet-adc-layer-4-7-services-four-new?id=1830530
https://www.a10networks.com/press-releases/a10-networks-introduces-industrys-first-100-gigabit-ethernet-adc-layer-4-7-services-four-new?id=1830530
http://www.rfc-editor.org/rfc/rfc4787.txt
http://dpdk.org/
https://datatracker.ietf.org/wg/sfc/documents/
http://mawi.wide.ad.jp/mawi/
http://trema.github.io/trema/
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv

	Introduction and Motivation
	Designing a Carrier-Grade NAT
	Implementation
	Evaluation
	Related work
	Lessons Learned
	References

