
Love all, trust few: On trusting intermediaries in HTTP

Thomas Fossati
Alcatel-Lucent

Cambridge (UK)
thomas.fossati@alcatel-

lucent.com

Vijay K. Gurbani
Alcatel-Lucent, Bell Labs

Naperville, IL 60566 (USA)
vkg@bell-labs.com

Vladimir Kolesnikov
Alcatel-Lucent, Bell Labs

Murray Hill, NJ 07974 (USA)
kolesnikov@research.bell-

labs.com

ABSTRACT
Recent pervasive monitoring of Internet traffic has resulted
in an effort to protect all communications by using Trans-
port Layer Security (TLS) to thwart malicious third par-
ties. We argue that such large-scale use of TLS may poten-
tially disrupt many useful network-based services provided
by middleboxes such as content caching, web acceleration,
anti-malware scanning and traffic shaping when faced with
congestion. As the use of Internet grows to include devices
with varying resources and capabilities, and access networks
with differing link characteristics, the prevalent two-party
TLS model may prove restrictive. We present EFGH, a
pluggable TLS extension that allows a trusted third-party to
be introduced in the two-party model without affecting the
underlying end-to-end security of the channel. The exten-
sion stresses the end-to-end trust relationship integrity by
allowing selective exposure of the exchanged data to trusted
middleboxes.

1. INTRODUCTION
The Internet community has viewed the recent pervasive

monitoring efforts as an attack on the Internet [1], [2]. Such
large scale pervasive monitoring is indeed an attack, there
is simply no arguing that it is not. However, encrypting
all traffic as a defence mechanism leads to the preclusion of
middleboxes that provide services that benefit networks and
users.

Encryption on the Internet is performed by the Transport
Layer Security (TLS, [3]) protocol. TLS, and its predeces-
sor, Secure Socket Layer (SSL) were developed at a time
in the trajectory of the Internet where electronic commerce
was the primary application that required end-to-end se-
curity between a browser and a web server. Middleboxes,
when they existed at this time, were mostly network/port
translators. Today’s Internet is much different. It is char-
acterised by plurality of end-user devices, access networks,
and middleboxes that apply value-added services (VAS) to
the traffic transiting through them. In managed networks,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMiddlebox’15, August 17-21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3540-9/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785989.2785990

middleboxes provide a variety of services such as parental fil-
tering, caching, accelerating content across slow access links,
anti-malware scanning and traffic shaping to avoid conges-
tion; the effect of using TLS is to prohibit such legitimate
uses of middleboxes.

The absence of a well-understood and standard manner
by which to introduce a middlebox in the two-party TLS
model leads to dangerous point solutions like TLS intercep-
tion proxies that have the effect of destroying end-to-end se-
curity completely. Furthermore, thin clients (tablets, smart
phones) and the prevalence of computing resources in the
cloud are engendering a new architecture, the split browser
[4]. Split browsers offload network-intensive computation to
servers in the cloud, leaving the thin client to render content
more efficiently. By their definition, split browsers introduce
HTTP proxy middleboxes between the client and the origin
server.

Contributions: It is important that the end-to-end na-
ture of TLS is preserved while accounting for the complexi-
ties of the currently deployed Internet. To do so we propose
End-to-end Fine Grained HTTP (EFGH) security, a plug-
gable extension to the TLS protocol that allows middleboxes
to be explicitly introduced in the client-server path without
affecting the security guarantees of the end-to-end channel.
The trusted middlebox is granted access to a subset of the
traffic that the principals have agreed upon. The capability
is negotiated between the principals through the TLS hand-
shake extension mechanism. Upon completion of the hand-
shake, and if both parties support EFGH, a one round-trip
message exchange is required for key establishment between
the client, the server and the proxy. EFGH strongly stresses
the end-to-end trust relationship integrity and allows the
client and server to selectively expose exchanged traffic to
trusted intermediaries via a modified TLS record format.

The rest of this paper is structured as follows: Section 2
puts our work in context with existing literature. Section 3
describes the protocol building blocks; Section 4 discusses
its security properties. We conclude in Section 5.

2. RELATED WORK
In the absence of techniques like EFGH that allow mod-

erated access of the traffic to intermediaries, enterprises and
service providers often resort to questionable solutions that
have the adverse and detrimental effect of degrading the
overall security. TLS interception proxies [5] are a good ex-
ample; such proxies straddle two separate sessions and act
as a man-in-the-middle (MitM) to decrypt and re-encrypt
the content as it traverses through them. The user is not

1

notified and cannot give consent to the presence of such in-
terception proxies; thus they erode any expectation the user
has of the connection being end-to-end secure. In addition,
they carry other risks: an organisation may be open to le-
gal exposure as a result of inspecting communications that
are intended to be private and such solutions act as an at-
tack target themselves since they are a single point where
encrypted sessions are decrypted and available as plaintext.

Loreto et al. [6] improve on transparent interception prox-
ies by allowing a client (browser) to discover and authenti-
cate a trusted proxy and for the user to explicitly provide
consent for traffic to flow through that proxy. Unlike our
approach, once the trusted proxy has been identified and
consented to, it (the proxy) has cleartext access to the in-
formation flowing between the client and the server. Loreto
et al. further constrain the trusted proxy such that URIs
that are available over the https scheme do not traverse the
proxy. This has the effect of precluding the proxy from per-
forming services that may be of benefit to the user. Peon [7]
allows clients to use explicit proxies as well but encourages
the use of secure hashes to detect if the proxy applied any
transforms to the message. However, unlike our work, it de-
scribes a binary proposition for security: either the proxy is
trusted and has access to decryption keying material or it
is not and traffic through it is encrypted end-to-end. Mc-
Grew et al. [8] introduce a TLS extension to allow a chain
of TLS proxies to inform a client about the capabilities of
the (proxied) server, so that the client could make knowl-
edgeable access control decisions about the server as if the
proxies were absent. The main problem with this proposal
is that it breaks the TLS end-to-end security assumption by
allowing the proxies to actually be MitM entities.

Moving down from application to the transport layer, tcp-
crypt is a transport layer encryption protocol [9, 10] that
cryptographically protects TCP segments. While tcpcrypt is
a good solution for opportunistic encryption, it does not re-
place TLS. Some drawbacks of tcpcrypt are its use of short-
lived keys to provide some forward secrecy and the lack of a
key confirmation step in its 4-way handshake. Further down
at the IP layer, Kasera et al. [11] and Zhang et al. [12] de-
scribe allowing trusted middleboxes in an IPsec association
between two endpoints. In Kasera et al. [11] the part of
the message that is destined for the proxy is sent in clear-
text. Zhang et al. [12] propose dividing the payload into
multiple zones, each encrypted with a different key. The
primary drawbacks for an IPsec-based solution remain the
need for an separate key management scheme, the cost of
incurring double encryption when TLS is used on top of an
IPsec channel, and its primary use in managed networks to
establish secure tunnels between a host and a corporate se-
curity gateway.

3. EFGH PROTOCOL
EFGH is made of four basic building blocks:
• The EFGH TLS extension (Section 3.1) allows the two

principals to introduce the trusted third party and ne-
gotiate a disclosure policy;
• the three-party key exchange protocol (Section 3.2)

provides the mechanisms to set up the group security
association;
• the framing layer defines how the data is structured

to cater for the different visibility (Section 3.3); and
lastly,

C P S

1

2

3

4

5

6

7

8

Client Proxy Server

certP

certP , certS , ms certS certP , ms

connect(2)

CONNECT server:443 HTTP/1.1

connect(2)

HTTP/1.1 200 OK

ClientHello + efgh(proxy)

ServerHello [+ efgh(proxy)],

Certificate, ServerKeyExchange, ServerHelloDone

ClientKeyExchange, ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

Figure 1: DHE TLS handshake with EFGH option

• the policy language (Section 3.4) determines which
subset of the application protocol traffic needs to be
disclosed to the third party.

3.1 EFGH TLS extension
EFGH does not modify the normal TLS handshake; in-

stead it moves the necessary three party key negotiation
protocol into a separate construct with a well defined inter-
face to the TLS handshake (see Section 3.2). There are two
main reasons for this: first, we want to simplify as much as
possible the formal analysis required to prove (or disprove)
the security of EFGH by building on top of the extensive
literature that has been produced regarding the security of
the TLS handshake [13], [14]. Secondly, we want to allow
independent evolution of the two mechanisms, especially in
these early stages of development.

Therefore, the only modification required by EFGH con-
sists of a new TLS extension [15] sent by the client along
with the ClientHello, which is intended to introduce the
identity of the proxy to the server, together with the associ-
ated fine-grained disclosure policy. The server can decide to
accept the presence of the proxy by mirroring the extension,
or to deny it, in which case the session falls back to usual
two-party TLS.

The basic handshake through a proxy is shown in Figure
1: a client first establishes a TCP connection with a proxy
(label 1); the discovery of the proxy (and the services it of-
fers) could be through the proxy auto-config file, DHCP, or
by manually configuring the address of a proxy in browser
chrome. A HTTP CONNECT method is sent to the proxy (2),
which opens up a TCP connection to the server identified
by the Host header (3). Upon the receipt of a 200 OK re-
sponse (4), the client upgrades the existing TCP connection
through the proxy to TLS (4). The client sends a custom
extension (efgh) containing the public key (PK) certificate

2

of the proxy and the fine-grained disclosure policy. If the
server also supports the extension, and agrees on the pres-
ence of the proxy and the disclosure policy, it echoes the ex-
tension in the ServerHello message (5). If the server does
not support the extension, it simply does not echo it in the
ServerHello message (6), and the TLS handshake proceeds
as if the efgh extension was not present at all. The client
and server finish their respective handshake messages (7 and
8).

At the end of the handshake, the client knows whether the
server supports EFGH or it does not; on its end, if the server
supports EFGH, it knows the certified public key (PK) of
the proxy. Because the proxy sees all messages starting with
the ClientHello (4), it also knows whether the client and
server support EFGH. Note that up to this point the proxy
is a completely passive entity, and is unable to alter the
establishment of the end-to-end security association without
being detected by the two principals.

3.2 Key exchange protocol

3.2.1 Requirements
The primary goal of the EFGH key exchange protocol

(KEX) is to establish the cryptographic keys that are used
by the three participants to protect subsequent traffic, and
to do so in a way that doesn’t compromise the end-to-end se-
curity association between client and server created by the
parent TLS handshake. Along with that, it has been de-
signed to satisfy two additional objectives:

1. no additional round trips (+0-RTT); and
2. same perfect forward secrecy (PFS) characteristics as

the parent TLS handshake.
Since the EFGH protocol is initiated by the server, its

first two messages (server to proxy, and proxy to client) are
piggy-backed on the Finished message that closes the TLS
handshake. Note that these two messages are completely
distinct from the TLS Finished message, and they receive
independent cryptographic protection. The remaining two
messages are sent together with the first record containing
application data from client to server. This way the “+0-
RTT” requirement is met. The “same PFS” goal is achieved
by deriving the group and end-to-end keys (G and KCS ,
respectively) from the TLS master secret, thus inheriting
its PFS-ness. The remaining keys (KCP and KPS), which
serve proxy’s origin authentication, are negotiated on the fly
via the two Diffie-Hellman (D-H) sub-exchanges – as further
explained in the following sections – which always provide
PFS.

3.2.2 Protocol Overview
EFGH KEX is a three-party key agreement & distribution

protocol that needs a total of four messages to complete. It
is logically chained with a parent TLS handshake (Section
3.1) which is used to create the fresh end-to-end security
association between client and server (i.e. ms, the master
secret), and to pre-position the proxy and server public keys
needed for subsequent signature verifications.

From a high level perspective it is composed of two distinct
D-H exchanges both involving the proxy on one side and one
of client or server on the other. A further layer dealing with
the secure transport of the group key (from client to proxy),
and proof-of-possession (from server to client via proxy, and
then from proxy to server) is run on top of the two D-H

exchanges. All messages have explicit (via certificates) or
implicit (via the master secret) authentication.

Client

Proxy

Server

KCS

KCP KPS

G

Figure 2: EFGH actors & keys

A successful run of the protocol produces the following
keys (Figure 2):
G: shared by client, proxy and server – used to encrypt

traffic with group visibility;
KCS : shared by client and server – used to protect end-to-

end traffic;
KCP : shared by proxy and client – used to authenticate traf-

fic that is originated by the proxy, e.g. a HTTP re-
sponse from cache;

KPS : shared by proxy and server – used to authenticate
traffic that is originated by the proxy, e.g. sequence
number reset due to an end-to-end exchange being
short-circuited by the proxy (cache hit, filtering pol-
icy match, etc.);

3.2.3 Protocol Steps
The computations and message exchanges are outlined in

Figure 3 and discussed next. (In the following, the Signk(·)
notation represents the signature over the whole protocol
message using k.)
Step a. The parent TLS handshake seeds the two prin-
cipals with ms, which is extracted on both sides from the
underlying TLS session context using TLS Keying Material
Exporters [16]. The same TLS session also securely deliv-
ers the agreed-upon proxy public key certificate certP to
TLS principals, and the server’s certificate certS to client.
Proxy is insecurely informed of certS : at this stage, and until
EFGH completes, proxy can’t tell whether certS is genuine
or not. The proxy and server public key certificates (certP
and certS , associated with private keys p and s, respectively)
are also shared by all the participants.
Step b. Server derives the group key G from the master
secret ms, and computes TagG, which proves the possession
of G and will bind player’s instances and messages. It then
computes fresh D-H keys and starts the EFGH KEX by
sending the first message to proxy which consists of the D-
H public key (and parameters) and the proof-of-possession
of G, signed using server’s private key s. The message is
received by proxy, and verified using certS .
Step c. Proxy computes fresh D-H keys and sends out the
second message to client, which consists of its D-H public key
(and parameters) together with the signature computed on
the D-H and TagG received from the server. This signature
binds together the proxy identity with the session (and hence
with the server), as it includes TagG, derived from ms.

Client computes G the same as server did in Step b. and
subsequently verifies that the signature on the message is
valid and that it matches G. If successful, a new D-H private
key is generated, and the proxy origin authentication key
KCP is derived from the shared D-H key. Client sends a

3

C P S

G := KDF (ms, ’G’)
TagG := MACG(’S’)
(g, p, x) DH()

(ḡ, p̄, x̄) DH()

G := KDF (ms, ’G’)
ȳ RAND()
KCP := KDF ((ḡx̄)ȳ , ’K CP’)

KCP := KDF ((ḡȳ)x̄, ’K CP’)

y RAND()
KPS := KDF ((gx)y , ’K PS’)
⇠ := KDF (GkKPS , ’Xi’)
Tag⇠ := MAC⇠(’P’)

KPS := KDF ((gy)x, ’K PS’)

KCS := KDF (ms, ’K CS’) KCS := KDF (ms, ’K CS’)

Client Proxy Server

certP , certS , ms certS certP , ms

G, KCP , KCS G, KCP , KPS G, KPS , KCS

ChangeCipherSpec, Finished

g, p, gx, TagG, Signs(·)

ḡ, p̄, ḡx̄, Signp(·, TagG)

ḡȳ, EKCP
(G)

gy, Signp(·, Tag⇠)

a.

b.

c.

d.

Figure 3: EFGH key agreement

message to proxy which consists of its public D-H key and
the group key G encrypted using the KCP itself.

Proxy receives the message, derives KCP and uses it to
decrypt G and to verify TagG, which had been received by
server in Step b. At this stage, proxy knows that it shares
key G with server and another party (i.e. the client of the
parent TLS handshake), and that it shares a KCP with an-
other party (still, the client of the TLS handshake).
Step d. Proxy generates a new D-H private key, and derives
its (other) origin authentication key KPS from the D-H pub-
lic key sent by server in Step b. Then, an ephemeral key ξ
is derived by combining G and KPS contributions, and Tagξ
is computed. Tagξ serves as a proof-of-possession of both
G and KPS by the proxy. Proxy sends its D-H public key
to server and signs it along with Tagξ. This signature binds
together the proxy identity with the session (and hence with
the server and client), as it includes Tagξ, derived from ms,
G and KPS . At this stage, proxy possibly shares KPS with
server.

Server receives the message, derives KPS and verifies both
proxy signature and proof-of-possession over G and KPS .
At this stage server knows that proxy knows G, and that it
shares KPS with proxy. It also knows that the only entity
that could have sent G to the proxy is the client.
Output All keys in Figure 2 have been computed, including
the end-to-end key, derived from the master secret indepen-
dently from any message exchange by client and server.

3.3 Framing Layer
EFGH reuses the TLS framing format – in fact, a TLS

Record Layer Header is prepended to each EFGH frame –
and defines three new classes of messages: Handshake, Ap-
plication Data, and Alert (detailed below). These three mes-
sage classes are completely separate from their TLS coun-
terparts, each being assigned a new ContentType from the
(currently) unassigned values in the TLS ContentType Reg-
istry [17].

Making EFGH framing compatible with TLS is an ex-
plicit design choice with a threefold aim. The first is to
improve protocol robustness by reducing the chances that
other in-path middleboxes modify or strip out EFGH bytes
[18]. The second goal is to reuse as much existing soft-
ware (OpenSSL) as possible while implementing the proto-
col so that it works without modification with the necessary
packet-capture tools (Wireshark, tcpdump). Finally, TLS
compatibility allows us to migrate EFGH from an external
to a fully in-stack TLS feature in the future with minimal
disruption.
Handshake: There are four Handshake frames, each cor-
responding to one of the key exchange protocol messages
defined in Section 3.2. Each has its own format and sub-
identifier. No additional cryptographic transforms are ap-
plied to these messages other than those that they them-
selves define.
Application Data: Application Data (AD) frames carry
end-to-end traffic generated by the application. There are
two types of AD frames: those visible to the proxy, and
those that are not. Regardless of its type, an AD frame can
be broken down in three different sections:
• A common header (H), which carries an explicit se-

quence number and a flag indicating whether this frame’s
data are visible to the proxy or not;
• A metadata block (M), which is always made visible to

the proxy, containing high level information about the
transported data – at a minimum the application pro-
tocol, plus any information that can relate this frame
to other frames pertaining to the same logical stream
(e.g. an unique transaction identifier);
• The data block (D), which carries a specific fragment

of the application data.
The blocks are treated differently depending on the over-
all visibility/opacity of the AD frame they belong to; how-
ever, the same Authenticated Encryption with Associated
Data (AEAD [19]) algorithm, Ek(nonce, P,A), is used in
both cases. Figures 4 and 5 illustrate the applied crypto-
graphic protection: a solid color means the enclosed data
is encrypted using the associated key, whereas a single line
means the surrounded data is authenticated using the as-
sociated key. To guarantee the confidentiality, authenticity
and integrity properties of the AEAD-based construction,
the same nonces must not be used with the same key and
distinct plain-text values.
Proxy-visible frames. First, G is used to authenticate and
encrypt the metadata and data blocks (i.e. P := M‖D), and
to also authenticate the header (i.e. A := H). Then, the
sender uses its key (typically KCS) to authenticate the out-
put of the previous step (i.e. A := EG(nonce1,M‖D,H)
and P := ∅):

CG ← EG(nonce1,M‖D,H)

CKCS ← EKCS (nonce2, ∅, CG)

4

G

Header Metadata Data

KCS

Figure 4: proxy-visible frames

Proxy-opaque frames. First, G is used to authenticate and
encrypt M , and authenticate H. Then, the end-to-end key
KCS is used to authenticate and encrypt D, and also au-
thenticate the output of the previous step:

CG ← EG(nonce1,M,H)

CKCS ← EKCS (nonce2, D,CG)

In both cases the resulting frame is:

nonce1‖nonce2‖H‖CG‖CKCS

Note that the header block contains the clear-text flag that

G

Header Metadata Data

KCS

Figure 5: proxy-opaque frames

allows the receiver to decide how to interpret the rest of the
frame.
Alerts: Alerts are used for in-band signalling of protocol
errors/warnings (similarly to TLS), but also for EFGH spe-
cific events like a sequence number re-synchro-nisation. The
latter is needed whenever a short-circuited response is sent
from proxy instead of being forwarded to the intended desti-
nation (typical use cases include a cache hit on a transparent
caching proxy, or a filter match on a filtering proxy). Alerts
are encrypted (with G) or sent in clear-text, depending on
the specific protocol phase in which they are emitted.

3.4 Policies
An EFGH policy encodes the fine-grained disclosure rules.

In its current form it is a simple two column matrix: <allowed
party, protocol element tag> that informs the principals about
who is allowed to see what. In particular, allowed party is
one of “3rd-party” or “anyone”, while protocol element tag
is an unique identifier defined by the application protocol
that is encapsulated by EFGH. For HTTP, a tag namespace
could be organized as follows:
• http.request-line
• http.response-line
• http.header.content-type
• http.header.user-agent
• http.body[start-pos, end-pos]
• . . .

The enforcement of the policy rules is done by the sending
party, which starts by denying 3rd-party visibility of any-
thing, and then discloses the protocol element listed in the
policy. Examples: to allow a parental-control service based
on URL filtering: <3rd-party, http.request-line>; to allow
a traffic prioritisation based on content-type: <3rd-party,
http.header.content-type>.

4. KEY EXCHANGE SECURITY
We designed our protocol to be as modular as possible

in part to be able to provide a simple security argument.
We assume a successful completion of TLS, which securely
provides the TLS client (C) and server (S) with certP and
certS and a shared key ms. In EFGH, each player derives
its new keys from authenticated DH material and is also
bound to the preceding TLS session key material. A more
detailed security argument and the explanation of protocol
messages and security guarantees they provide is done in
step-by-step discussion of Section 3.2.3. Here we just re-
iterate that tags derived from ms and players’ credentials
are used to securely bind together all messages and player
identities. For example, the DH exchange between C and
proxy (P) is authenticated by both players’ public keys, as
well as bound to ms via TagG. Similarly, the DH exchange
between P and S is authenticated by their respective public
keys, and is bound to the same ms via Tagξ.

5. CONCLUSIONS AND FURTHER WORK
We have presented a model that allows two TLS prin-

cipals to explicitly introduce an in-path, third party in an
otherwise end-to-end secure session, and to expose to the
third party a well defined and explicitly agreed subset of the
exchanged data. The proposed solution is expected to have
negligible impact on latency (in particular time to first byte)
and on additional computational resources when compared
to vanilla TLS. We construct our solution on top of TLS,
thereby inheriting the security properties of TLS. Future
work will study the computational overhead of the hand-
shake and the differential framing; extend the handshake to
more than one intermediary; and explore the feasibility of
reusing EFGH to encapsulate protocols other than HTTP.

6. REFERENCES
[1] S. Farrell and H. Tschofenig. Pervasive monitoring is

an attack. RFC 7258, May 2014.

[2] Internet Architecture Board. IAB statement on
Internet confidentiality.
https://www.iab.org/2014/11/14/, 2014.

[3] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246,
August 2008.

[4] Angeliki Zavou, Elias Athanasopoulos, et al.
Exploiting split browsers for efficiently protecting user
data. In Proceedings of the 2012 ACM Workshop on
Cloud Computing Security Workshop, CCSW ’12,
pages 37–42, New York, NY, USA, 2012. ACM.

[5] Jeff Jarmoc and Dell SecureWorks Counter Threat
Unit. SSL/TLS interception proxies and transitive
trust. Black Hat Europe, 2012.

[6] Salvatore Loreto, John Mattsson, et al. Explicitly
authenticated proxy in HTTP/2.0. IETF
Internet-Draft (work-in-progress), July 2014.

[7] Roberto Peon. Explicit proxies for HTTP/2.0. IETF
Internet-Draft (work-in-progress), June 2012.

[8] David A. McGrew, Dan Wing, et al. TLS Proxy
Server Extension. IETF Internet-Draft, July 2012.

[9] Andrea Bittau, Michael Hamburg, et al. The case for
ubiquitous transport-level encryption. In in 19th
Usenix Security Symposium, August 2013.

5

[10] Andrea Bittau, Michael Hamburg, et al.
Cryptographic protection of TCP streams. IETF
Internet-Draft (work-in-progress), July 2014.

[11] Sneha Kasera, Semyon Mizikovsky, et al. On securely
enabling intermediary-based services and performance
enhancements for wireless mobile users. In Workshop
on Wireless Security, 2003, pages 61–68, 2003.

[12] Yongguang Zhang and Bikramjit Singh. A multi-layer
IPsec protcol. In in 9th Usenix Security Symposium,
August 2000.

[13] Karthikeyan Bhargavan, Cèdric Fournet, et al.
Proving the TLS Handshake Secure (As It Is). In
Advances in Cryptology, CRYPTO 2014, volume 8617
of Lecture Notes in Computer Science, pages 235–255.
Springer Berlin Heidelberg, 2014.

[14] Hugo Krawczyk, Kenneth Paterson, et al. On the
Security of the TLS Protocol: A Systematic Analysis.
In Advances in Cryptology, CRYPTO 2013, volume
8042 of Lecture Notes in Computer Science, pages
429–448. Springer Berlin Heidelberg, 2013.

[15] D. Eastlake 3rd. Transport Layer Security (TLS)
Extensions: Extension Definitions. RFC 6066, January
2011.

[16] E. Rescorla. Keying Material Exporters for Transport
Layer Security (TLS). RFC 5705, March 2010.

[17] Internet Assigned Numbers Authority. Transport
Layer Security (TLS) Parameters, 2015.

[18] Jim Roskind. QUIC, Quick UDP Internet
Connections. https://goo.gl/XMfO6Q, 2013.

[19] Phillip Rogaway. Authenticated-encryption with
associated-data. In Proceedings of the 9th ACM
conference on Computer and communications security,
pages 98–107. ACM, 2002.

6

