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ABSTRACT

Wireless social community operators rely on subscribers who
constitute a community of users. The pricing strategy of the
provided wireless access is an open problem for this new gen-
eration of wireless access providers. In this paper, using both
analytical and simulation approaches, we study the problem
comprised of modeling user subscription and mobility behav-
ior and of coverage evolution with the objective of finding
optimal subscription fees. We compute optimal prices with
both static and semi-dynamic pricing. Coping with an in-
complete knowledge about users, we calculate the best static
price and prove that optimal fair pricing is the optimal semi-
dynamic pricing. Moreover, we have developed a simulator
to verify optimal prices of social community operators with
complete and incomplete knowledge. Our results show that
the optimal fair pricing strategy significantly improves the
cumulative payoff of social community operators.

Categories and Subject Descriptors

C.2.1 | Network Architecture and Design]: Wireless
communication; C.2.3 [Computer-Communication Net-
works|: Network Operations

General Terms

Design, Economics, Management

Keywords

Wireless Social Community, Pricing, Wireless Internet Ser-
vice Providers

1. INTRODUCTION

Traditional licensed band wireless operators provide full
coverage with high initial costs to construct the service in-
frastructure. The infrastructure is mainly comprised of base
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stations and licensed spectrums. Wireless access providers
that use WiMAX, EV-DO, or 3G technologies are instances
of this type. On the contrary, wireless social community op-
erators are set up at much lower costs and provide wireless
coverage by the unlicensed band access points (APs) acti-
vated by subscribers who constitute a community of users.
Presently, FON [2] is the largest wireless social community
operator. In February 2006, FON announced that it had
received $21.7 million in equity financing from the Internet
giants Google and Skype, and from the venture capital firms
Index Venture and Sequoia Capital. They also made strate-
gic agreements with the most popular ISPs, such as Cegetel
in France with more than half million subscribers and BT in
England with three millions users. This should enable them
to increase their service coverage [1].

Relying on APs activated by users provides a viable al-
ternative to the deployment of costly base stations and to
the use of licensed spectrums for wireless communication.
However, as the willingness of users to join such a commu-
nity determines its evolution, there is no guarantee that the
wireless social community network will reach full coverage.
This willingness typically depends on various factors, such
as the subscription fee and the mobility of users. In this
paper, we model user subscription and mobility behaviors
in different scenarios to assess the evolution of the wireless
social community network. We compute optimal prices for
a social community operator with static and semi-dynamic
pricing. Assuming an incomplete knowledge about users, we
show that fair pricing (when prices are proportional to the
provided coverage) is an optimal strategy when the opera-
tor has to determine all its prices at the first instant (i.e.,
semi-dynamic pricing).

Furthermore, we have developed a simulator, called com-
maunity simulator [3], to verify optimal prices of social com-
munity operators with complete and incomplete knowledge,
and optimality of the fair pricing strategies. At the be-
ginning of each simulation, operators of the simulator are
capable of predicting the best static prices based on their
knowledge about the mobile users and the city map. The
simulator is described with the obtained numerical results
and is publicly available [3]. To the best of our knowledge,
this paper is the first to provide a detailed analysis of pricing
strategies for this new type of wireless access providers.

In [4], Manshaei et al. investigate the competition be-
tween wireless social community and traditional licensed
band operators with a game-theoretic approach. However,



no mobility model is considered for users and the quality of
service of wireless social community operator is proportional
with the fraction of subscribed users with same value for
all users. Whereas in our model, users choose destinations
with different probability distributions and they explicitly
assess the usefulness of the service by observing the wire-
less coverage provided by the social community and decide
to subscribe based on their observations of coverage, e.g.,
a user with an AP near his home observes different wire-
less coverage from the user with no APs around his home.
In our model, wireless social community operators may set
lower prices for the users whose homes are near public places.
Therefore, different prices may be adjusted for subscribers.

The paper is organized as follows. In Section 2, we ex-
plain our system model. In Sections 3 and 4, we discuss
the pricing problem with static and fair pricing strategies.
In Section 5, we present the community simulator in detail.
In Section 6, we analyze numerical results and finally we
conclude in Section 7.

2. SYSTEM MODEL

Our system model represents a service area in which a so-
cial community operator provides wireless access for a set of
mobile users N who intend to subscribe to the service. In
our model decision times are instants of time at which the
operator decides on prices of its service and users subscribe
to or unsubscribe from the operator. We assume decision
times are at the end of each month. Index m designates
the sequential order of decision times, i.e., m € {0,1,2,...}.
Observation times are instants of time at which each user
observes if he is provided with wireless access by the opera-
tor between decision times. There are T, observation times
between each two decision time, i.e., t € {1,2,...,T,}.

2.1 System Graph

We introduce a graph to model a city consisting of build-
ings, roads and APs. Buildings and road junctions are repre-
sented by graph vertices and road segments are represented
by graph edges. Our definition of system graph should be
rich enough to model the mobility of users and the topol-
ogy of cities. The System graph, M = (V,E), is a finite,
planar, connected, weighted graph, where V' is the finite set
of vertices (nodes) and E is the finite set of bi-directional
weighted edges. Nodes of the system graph are either road
nodes or building nodes, as shown in Figure 1.

A node is a building node if its degree is equal to one. B
denotes the set of building nodes B = {v € V | degree(v) =
1}. A node is a road node if it is not a building node. R
denotes the set of road nodes R = V\B. Building nodes
are divided into three disjoint subsets: residential nodes H,
workplaces W and public places J. A residential node is a
building node to which a user is assigned as its owner. The
building node assigned to a user represents his home. nj
denotes the home of user n. Workplace nodes W represent
workplaces of mobile users. There is a one-to-many mapping
from the set of workplace nodes W to the set of all mobile
users N. n,, denotes the workplace of user n. Places such as
shopping centers and restaurants are represented by the set
of public place nodes J. In order to simplify wireless cover-
age formulation, we introduce a binary function on pairs of
nodes:

DEFINITION 1. Letd. be the effective range of access points.
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Edge
Building node
Road node

Figure 1: A System graph is a planar connected
graph. The degree of building nodes is equal to one.
The weights of edges are not shown in this figure.

The range function d : V x V +— {0,1} is defined as:

1
d(v,v') = { o

2.2 Social Community Operator

Each user activates an AP in his house when he joins the
community by subscribing to the operator. In our model,
the social community operator S is represented by & =
(NS, P, AP[0]), where AP[0] is the initial set of nodes on
which an AP belonging to S is active; N is the set of its
subscribed users at decision times N¥ = {N°[1], N¥[2],.. .},
and P is the set of its price sets for users at decision times
P = {P[1],P[2],...}, where P[m] = U, cnsy Pnlm] and
P, [m] is the price of operator S for user n at decision time
m. To specify our definition of social community operator
we use the coverage function with the following definition:

if v —v'| < de

otherwise

DEFINITION 2. Coverage function C[m] for an operator
at decision time m is defined as:

1
C(v,m) = { o

In our model, we assume all initial APs of social commu-
nity operator & have been placed on public place nodes J
and workplace nodes W. Because these operators negotiate
with owners and managers of public places and workplaces
to make their service observable for potential mobile users.
As the negotiation is not a part of our discussion, we as-
sume that the initial access point locations AP[0] of social
community S are given at time 0, and the operator never
activates any other AP on public places or workplace nodes.
In other words, AP[0] C (J U W). We also assume that if
all mobile users activate APs in their home nodes for the
social community, there would be full coverage for all nodes
of the system graph, i.e., C(v,m) = 1. Note that, in some
cities the community operators cannot provide full coverage
even when all users subscribe to the service. Considering
the above assumptions, the AP locations of any social com-
munity operator S are the residential nodes of subscribed
mobile users or AP[0]. Hence, by using Definition 1, we can

if it provides service on v at decision time m

otherwise



rewrite the coverage function presented in Definition 2 as:

1 3z € (AP[0]U N¥[m])|d(z,v) = 1
C(v,m) =

0 otherwise

The pricing strategy of an operator is static if it does not
change its price set at decision times, i.e., P[m] = PI1].
The pricing strategy of an operator is semi-dynamic [5] if
it determines its price set of all decision times at decision
time m = 0. The payoff of social community operator S for
month m is then:

>

neNS[m)]

P[m]. (1)

u[m]

We can also calculate the cumulative payoff U[m] of the
operator at decision time m by:

m

Ulm] = Z uli].

=1

(2)
In our model, we say that the price sets P and P’ are equiv-
alent, if and only if:

im Ulm] =
% Tm]

L, ®3)

where U[m] and U’[m] are the cumulative payoffs of the
operator with price sets P and P’, respectively.

2.3 User Model

Mobile users observe coverage provided by the operator
at each observation time and at the following decision times
they may subscribe or unsubscribe from the operator. In
this section we explain different parameters of mobile users
that determine their mobility and subscription behaviors.

2.3.1  Mobility

In our model, the mobile users move between nodes with
a modified version of graph-based random waypoint algo-
rithm [8], i.e., instead of choosing a random destination,
mobile users choose their destination node with distribution
D" For any user n, destination choice distribution D"
indicates the probability that he chooses any building node
v € B as his next destination. In other words, if he chooses
destination at any observation time t, then DS (v,t) is the
probability that n chooses v. We also assume that if mobile
user n chooses a public place node as his destination, his
choice is uniform among the set of public place nodes J:

ch 1 o
DM t) = 7l > D', t)
j'ed

Vied (4)

Similarly, if mobile user n chooses a destination from other
users’ houses, his choice is uniform among the set of other
users’ houses:

1

DM ) = ———

> Di(ht) VR e HT" (5)
heH—"™

where H™" = H — {np}. A shortest path algorithm (e.g.
Dijkstra or Floyd-Warshal shortest path algorithms [9]) is
used to find a path to the chosen destination. Before moving
on the selected route, mobile users randomly choose a speed
between (speed,,;,,speed,,..)- Upon arrival, users stay at
their destinations for an upper bounded random interval.
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In our model, the mobility estimation of users is desirable
for operators. For any user n, presence distribution Dj, in-
dicates the probability that his location is node v € V at
any observation time ¢, i.e.,

D;, (v, t) = Pr{location of n = v, at observation time t}.

The expected value of the number of observation times that
the location of user n is node v would be:

Eps(v) =S Di(v,1), (6)

and the expected value of the number of observation times
that his location is one of the nodes of set L would be:

Eps(L) =Y Epz(v)=)_ Z D (v,t).

veEL veEL t=0

(7)

Given D", computing D? is not trivial. But, we can com-
pute the expected value of the number of time steps a user
spends in his home, workplace, public places and other users’
houses, by simulation. Using Equation (4) and (5), we derive
the expected value of the number of observation times that
any user spends at public places and other users’ houses.

> Epz ()

jled

Epa (5) !

-t vieJ
" [J]

®)
1
Epz(h™")= ——— Epz(h VR~ e H™™ (9
D = ey 3 Eog() EH™ (9)
heH—™
2.3.2 Coverage Observation
Mobile users observe the coverage provided by the opera-

tor expressed in Definition 2, at observation times with the
frequency f,. For instance, f, could be:

5 forv=mnp

2 for (ve HAv#np)
20 for v = ny,

8 forved

fa(v) (10)

where user n has his highest frequency of observations when
he is at his workplace. Because, the service is more im-
portant for him at his workplace node n.,,. The observed
coverage @, for user n at decision time m is defined as:

Zvnw (fn(na) x C(ng,m))
2wy fn(ne) 7

where n, is a traversed node between decision times m and
m — 1. A node may be traversed and counted several times.

Qn[m] =

(11)

2.3.3  Subscription and payoff function

Any mobile user n subscribes to the operator if his payoff
is positive. In our model, the Payoff un[m] of user n at
decision time m is defined as:

Un[m] = an X Qn[m — 1] — P,[m)],

where parameter a, indicates the importance of provided
coverage @, for user n. a, has distribution D" over all
users. At each decision time, any mobile user subscribes or
stays subscribed to the operator if his payoff is positive. If
a subscribed mobile user’s payoff becomes negative, he will
unsubscribe from the operator with no penalty.

Note that we assume operators know system graph M,
probability distribution of parameter a, and the expected
number of observation times users spend in their workplaces,



other users’ houses, road nodes, public place nodes and at
home. Moreover, operators know the frequency of observa-
tions f,, and subscriptions/unsubscriptions of users at pre-
vious decision times.

3. STATIC PRICING STRATEGY

Having defined the system model, we can now find an op-
timal price set for the operators with complete knowledge in
different scenarios. The aim of a social community operator
with static pricing strategy is to find the optimal price set
that maximizes its cumulative payoff. In order to achieve
this goal, the operator predicts its cumulative payoff for dif-
ferent price sets and chooses the optimal one.

3.1 Pricing with Complete Knowledge

A social community operator with complete knowledge
not only knows the distribution of parameter a, over all
users but also knows the exact value of parameter a, of
each user. We explain how the operator computes its cu-
mulative payoff for a price set P. The operator calculates
its coverage at decision time 0 from its initial access point
locations AP[0]. With complete knowledge, it determines
whether or not each user subscribes to or unsubscribes from
it. Therefore, it finds locations of its access points AP[1]
at decision time 1. By repeating this procedure, the opera-
tor can calculate its cumulative payoff at any decision time.
Here we describe the computation of coverage @, for any
user n based on AP locations at decision time m. By know-
ing system graph M and locations of access points AP[m],
operator S calculates coverage function C' from which it finds
the observed coverage of each user:

Epz (fn x C)
Epz (fn)

Soev L2 (DE(,0) X falv) x Cv,m))
Soev L2 (D5(,8) x fu(v))

Soev (Fa(0) x C(v,m) x Epg (v)
Svev (fa(0) x Epg ()

Using Equations (8) and (9), we can rewrite (12) as:

Qn[m]

(12)

fn(nh) X C(nh,m) X ED.Z:L (nh)
Sev (£2(0) x Epy (v)

fn(nw) X C(Nw, m) X Epﬁ(nw)

Qn[m]

Jr
Soev (fa(0) x Epg (v)
Eps (J) X ey (a0) x C(v,m))
+
1% Xy (fa(v) x Epg ()
L Eoal") X Socrn (fn0) x Clw.m))
(1H| = 1) x Tyey (£a(v) x Epz (v))
L Eoa@) X Bucp (2(0) x Cosm)) "

Svev (fa(0) x Epg (v)

The computation of all terms of Equation (13) is trivial,
except the last term. The point is that the social community
operator cannot simply assume that mobile users uniformly
spend their time on road nodes:

Epy (R)

— Vr € R.
|R|

Epz (r) #
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As we are using a shortest path algorithm, we give more
weight to those nodes that appear more often on shortest
paths between building nodes. Let T'(v) be the set of all
shortest paths between building nodes that go through node
v. Each shortest path goes through each node at most once
(There is no cycle in a shortest path). With this approxi-
mation we obtain:

Epz (R)x | T(r) |
Foa(n = =5 1w

Having calculated the observed coverage by users )., the
operator can compute its payoff at all decision times for a
given price set. By changing the initial price set, it can find
the optimal price set that maximizes its cumulative payoff.

3.2 Pricing with Incomplete Knowledge

A social community operator with incomplete knowledge
does not know the exact value of the preference parameter
an. The operator can predict the future of the system based
on the distribution of the parameter D*". Instead of using
coverage function C' to calculate observed coverage @, the
operator uses the expected value of coverage function E(C'):

Pr{C(v,m) = 1}
U  capm)}

v/ |d(v’,v)=1

E(C(v,m))

Pr

1- Pr{ W ¢ Ap[m])}

v/ |d(v’,v)=1

[T pr{¢aprmi} (9

v’ |d(v/,v)=1

1—

There are two different cases for the probability that an AP
is not located on node v'. Any access point node in AP[m)]
is a public place or workplace node or a mobile user’s home
node. If it is a public place node or a workplace node, it is
initially defined 0 or 1 in the initial coverage of the operator,
but if it is a residential node and user n is its owner at
decision time m > 0:

Pr{v/ ¢ AP[m]} = Pr{n ¢ Ns[m}}
= Pr{anxQn[mfl]anSO}
= Pr{an < ﬁ}

(x)dx

P,
/ Qn[m—1] Der
0

and the cumulative payoff at decision time m would be:

m

> ulk]

k=1

i S°  Pux Pr{ne NSk}

k=1neNS k]

Ulm]

D% (x)dx



The operator evaluates different price sets to find the price
set that maximizes its cumulative payoff. We have compared
predicted payoffs by simulation for different prices when the
operator sets the same price for all users, in Section 6.

4. FAIR PRICING STRATEGY

In this section, we assess semi-dynamic pricing strategies
of operators. First, we define fair pricing:

DEFINITION 3. A pricing strategy of an operator is fair if
for any user n, its price at decision time m—1 is a constant
factor ¢, of its predicted coverage for the user at month m —
1: P,[m] = ¢n X Qun[m — 1], where fairness constant cy is
defined at decision time 0, and Qn[m — 1] is the predicted
value of provided coverage for decision time m—1, computed
at decision time 0.

As the price set is determined at decision time m = 0, fair
pricing strategies are semi-dynamic [5]. We prove that for
each semi-dynamic pricing of an operator, there exists an
equivalent fair pricing if there exists a decision time after
which its user set and price set do not change. Note that
there are cases where even if the operator does not change its
price set, its set of subscribed users changes forever. Hence,
the assumption about the existence of such a decision time is
necessary. First, we find membership probabilities of users.

LEMMA 1. The probability that any mobile user n sub-
scribes or stays subscribed to a social community operator
(with fair pricing) at decision time m > 0 with fairness con-
stant ¢, 18 f:: D (z)dz.

THEOREM 1. For each semi-dynamic pricing of a social
community operator, there exists an equivalent fair pricing
if there exists a decision time after which its user set and
price set do not change.

PROOF. The proofs are given in [6]. [

4.1 Optimal Fair Prices

The goal of any operator is to find the best fairness con-
stants ¢, that maximizes its payoff. The expected value of
coverage on any node v is calculated in Equation (14). If
node v is a public place node or a workplace node, Pr{v’ ¢
AP*[m]} is initially defined 0 or 1 in initial coverage of the
operator. Otherwise for any residential node v’ with owner
n, we can use Lemma 1 to calculate the probability:

Pr{v' ¢ AP[m}} 1-— Pr{n € Ns[m}}

/ " pan (z)dz
0

Then the payoff of the operator at month m is:

3 (Pn x Prin e N‘S[m]})

neN

> (en@uPrine No[m]})

nenN

3 (chn / = pen (:U)d:a),

nenN cn

u[m]
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where the provided coverage for any user n can be computed
as a linear function of these membership probabilities:

Sev Bz (v)  fu(v) x E(C(v,m))
Epg (fn) '

Notice that all parameters of payoff u[m] do not change after
decision time 1. Therefore, the maximum payoft is:

u®[2] (u[2]).

Qn[m] =

u'[m] = =

max
{e1,eyny}

With the payoff function and its derivative with all fair-
ness constants, the optimization can be done with any non-
linear optimization method such as Levenberg-Marquardt [7]
or gradient descent. Note that the above calculated optimal
fair pricing strategy assigns different prices according to the
locations of users’ home nodes and provided coverage.

S. COMMUNITY SIMULATOR

Our developed community simulator, with high flexibility
and good performance, simulates all possible scenarios of
our model with high precision [3]. The simulator supports
any number of operators with any pricing strategy. Before
beginning a simulation, community simulator generates a
city map with an open source random map generator [3].
The following parameters can be modified in the community
simulator: the size of the city, road density, adjacency dis-
tances of road nodes, map uniformity, road smoothness and
building density. The parameters of the map generator are
set to generate a 4km x 4km map. Community simulator
works with real time format yy/mm/dd.hh : mm : ss. The
format was preferred to the cycle based timer, because mo-
bile users choose their destination according to the time of
day. Every 15 simulated seconds, all mobile users observe
coverage. Mobile users reset all their observations at the end
of each month.

Choice-destination distribution is defined in a way that
results in the expected value of the number of observation
times that any user n is present at a set of nodes L as:

48 —50% for L = {ns}

0-1% for L=H — {nyp}
Eps(L)=4 9-12% for L=R

29 —-31% for L = {nw}

9-11% for L=J

Before the simulator timer starts, we calculate all-pair short-
est paths with the Floyd- Warshal algorithm [9]. Therefore,
there is no need to run a shortest path routing during sim-
ulation. Mobile users choose their speed for each destina-
tion randomly between 10km/h and 30km/h. After reaching
their destinations, they stay from 1 to 3 hours at their desti-
nation nodes and then they choose the next destination and
repeat the steps again.

6. NUMERICAL RESULTS

In our simulation, we generate the downtown of a densely
populated city with 1104 buildings, 884 residential nodes
and 2048 road nodes. A social community operator with an
initial coverage of 10% of public place and workplace nodes
(with an equal number of initially covered workplace and
public place nodes) provides coverage in the simulated city.
The distribution of parameter a, is defined to be uniform
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Figure 3: Performance analysis of wireless social community operator with our developed community simula-
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Figure 2: Predicted payoff with complete and in-
complete knowledge and the occurred cumulative
payoff of a social community operator in 12 months.

between 1000 and 4000, over all users. The implemented so-
cial community operator can predict its payoff for different
static prices with complete or incomplete knowledge at the
first instance of simulation. In Figure 2, we compared pre-
dicted cumulative payoff of the operator of 12 months with
its occurred payoff. The results show that with complete
and incomplete knowledge, the optimal static price 1000 is
predicted and is equal to the optimal occurred payoff. As
we have proved in Section 4, optimal fair pricing is the op-
timal semi-dynamic pricing of a social community opera-
tor. In our simulations, we found optimal fairness constants
of users by applying gradient descent. We also considered
another semi-dynamic pricing with prices 0 and 1000 for
the first and second months and 2000 for all the following
months. With price 0 (free service), all users subscribe and
the provided coverage would highly increase. The improved
coverage helps to keep more users, even with the high prices
of the following months. Figure 3 shows the monthly payoff,
the cumulative payoff, and the number of subscribed users
with these two pricing strategies during 4 years. We observe
that the proposed optimal fair pricing strategy outperforms
the considered semi-dynamic pricing strategy and improves
the cumulative payoff about 10%. Moreover, the number
of subscribed users and the monthly payoff are more stable
using the proposed optimal fair pricing strategy.
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7. CONCLUSIONS

We have computed optimal strategies in different scenar-
ios of wireless social community operators with complete
and incomplete knowledge. The required information of the
proposed model can be gathered from traditional statisti-
cal studies (e.g. subscription forms) and/or data mining.
To gain complete knowledge, operators need to distinguish
personal subscription preferences. We have shown that so-
cial community operators should set different subscription
fees for users to maximize their payoffs. The reason is that
mobile users observe different wireless coverage based on
their preferred locations. Furthermore, lower subscription
fees should be adjusted for owners of houses (potential AP
locations) near public places or workplaces. In terms of fu-
ture work, contract-based subscriptions and throughput of
the network could also be considered. Moreover, simulations
can be done on maps of real cities with statistical data as
input.
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