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“Spectral Algorithm”™??

* Input is a matrix or a tensor

 Algorithm uses singular values/vectors
(principal components) of the input.

* Does something interesting!



Applications of Spectral Methods

Indexing, e.g., LSI
 Embeddings
Combinatorial optimization
Learning

« Data mining

A book in preparation (joint with Ravi Kannan):
http://www.cc.gatech.edu/~vempala/spectral.pdf



Networks are matrices

With entries indicating existence of links
Or traffic or bandwidth or delay or ...

Tensors (multi-dimensional arrays) also arise
naturally

E.g., Nodes x Nodes x Time, with the (i,j,k)'th
entry indicating the traffic between nodes |
and | during time interval k



Some questions

How to
 detect anomalous behavior?

e learn network characteristics to use In
routing etc.?

* understand the cause(s) of congestion/
failure?



Contents

SVD basics

Part I: Learning
Part II: Clustering
Part Ill: Sampling

Bonus: Exercises!



Principal components

A: m x n matrix of reals
Singular value, left/right singular vectors:

Av=0u u'A=ov'

u's are orthonormal, v's are orthonormal
u=v=eigenvector if A is symmetric



Singular Value Decomposition

Real m x n matrix A can be decomposed as:
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SVD in geometric terms

Rank-1 approximation is the projection to the line
through the origin that minimizes the sum of squared

distances.
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Rank-k approximation is projection to k-dimensional
subspace that minimizes sum of squared distances.



Later: Fast PCA with sampling

[Frieze-Kannan-V. ‘98]
Sample a “constant” number of rows/colums of input matrix.
SVD of sample approximates top components of SVD of full matrix.

[Drineas-F-K-V-Vinay]
[Achlioptas-McSherry]
[D-K-Mahoney]
[Deshpande-Rademacher-V-Wang]
[Har-Peled]

[Arora, Hazan, Kale]

[De-V]

[Sarlos]

Fast (nearly linear time) SVD/PCA appears practical for massive data.



Three problems

1. Learn a mixture of unknown
Gaussians

2. Cluster entities (e.g., IP’s) using
pairwise similarity.

3. Find the “important” subspace of a
data set quickly



Problem 1

 Learn a mixture of Gaussians

Classify samples from /\

where each F; is an unknown Gaussian.



Mixture models

« Easy to unravel if components are far enough

apart

* Impossible if components are too close

BN\



Distance-based classification

How far apart?

Let’s look at E(||X-Y]|?) for X,Y from the same
component and from different components:

E([IX-Y]]?) =

Thus, suffices to have

[ -] |2 >



Distance-based classification

[Dasgupta ‘99] I - ,.;n > .. J\T\
[Dasgupta, Schulman ‘00] ,-,r\l’4-
1K

|
[Arora, Kannan ‘01] (more general)



Spectral Projection

* Project to span of top k principal
components of the data |

Replace A with AI : D0 LV,
< -
v=l

* Apply distance-based classification in
this subspace



Main idea

Subspace of top k principal components
(SVD subspace)

spans the means of all k Gaussians

N,




SVD in geometric terms

Rank 1 approximation is the projection to the line
through the origin that minimizes the sum of squared

distances.
| |
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Rank k approximation is projection k-dimensional
subspace minimizing sum of squared distances.



Exercise 0

* Prove that for a set of points in n-space,
the point X in space minimizing the sum
of squared distances to the points in the
set Is their centroid.



Why?

» Best line for 1 Gaussian?
- Line through the mean

» Best k-subspace for 1 Gaussian?
- Any k-subspace through the mean

» Best k-subspace for k Gaussians?
- The k-subspace through all k means!



How general is this?

Theorem[V.-Wang'02]. For any mixture of
weakly isotropic distributions, the best
k-subspace is the span of the means of
the k components.

Covariance matrix = multiple of identity

Ex 1: Prove cube is isotropic.

Ex 2: Prove covariance = identity iff variance is 1 in
every direction



Sample SVD

« Sample SVD subspace is “close” to
mixture’s SVD subspace.

* Doesn’t span means but is close to
them.



Gaussians in 20 Dimensions
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Gaussians in 49 Dimensions

30

20

10

-10

-30

40

1]
. ® .
. . . . .
RN R PR AT S
L . - - -
R AW S L UL A
. . 3 Vv XN U
. . .. L PR A e . .« @ °
- * a® ': v . e s .
.
. . X
.
. . .o
-~ . .
- e ¢
.

. . e - -
. et Siew 2t nes, Lo
. o * M S 25 o ..
' -n’-'S‘..:'-"'"-\}-!"""#: N « O . .
¢ . e v gl W00 l:' et | PR
. " WL T e R A 4 a «* .
* e s . . .
- . '
l‘ - "
A e

. Tan g -

. .

|

64 66 68
ou e

20

ouv o

76

8 )



Mixtures of logconcave Distributions

Theorem [Kannan, Salmasian, V, '04].

For any mixture of k distributions with
SVD subspace V,

3 2 K )
Zbaﬂ((l‘ﬂ-/\/> 4 K 2“167
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Questions

. Can Gaussians separable by
hyperplanes be learned in polytime?

. Can Gaussian mixture densities be

learned in polytime?



Separable Gaussians

PCA fails
Even for “parallel pancakes”

Separation condition that specifies distance
between means is not affine-invariant, i.e.,
rotation and scaling can change the condition.

Probabilistic separability is affine-invariant
So is hyperplane separability.



Fisher criterion

* For a direction p,
Intra-component variance along p
total variance along p

« Overlap of a 2-component mixture:
Min J(p) over all directions p.

- Small overlap => large separation along
some direction



Fisher subspace for k > 2

« Overlap in a subspace S:
iIntra-component variance within S
variance within S

* QOverlap for k-component mixture
Min J(S), S: k-1 dim subspace

This parameter is affine-invariant. In fact,

For an isotropic mixture, Fisher subspace is the span
of the component means!



Separability




How to find the Fisher subspace?

» Make isotropic: the mean of the mixture
the origin and the variance in every
direction equal (to 1).

* Moves parallel pancakes apart.

» But, all singular values are equal, so
PCA finds nothing!



ldea: Rescale and Reweight

* Apply an isotropic transformation to the
mixture.

* Then reweight using the density of a spherical
Gaussian centered at zero.

* Now find the top principal component.



Two parallel pancakes

* |sotropy pulls apart the components

N\ — 0|6

* |f one is heavier, then overall mean
shifts along the separating direction

* If not, principal component is along the
separating direction




Unraveling Gaussian Mixtures

Unravel(k)
 Make isotropic
 Reweight

* |f mixture mean shifts significantly, use
that direction to partition and recurse

 Else use top principal component to
partition and recurse.



Unraveling Gaussian Mixtures

Theorem [Brubaker-V. 08]

The algorithm correctly classifies
samples from two arbitrary Gaussians

separable by a hyperplane with high
probability.



Mixtures of k Gaussians

Theorem [B-V 08] For a k-Gaussian mixture
with overlap at most 1/k3, the algorithm
classifies correctly whp using poly(n)
samples.



Original Data
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* 40 dimensions, 8000 samples (subsampled for
visualization)

 Means of (0,0) and (1,1).



Random Projection
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|sotropic PCA




Original Data (k=3)

05}

* 40 dimensions, 15000 samples (subsampled for
visualization)
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Random Projection







|sotropic PCA
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Questions

* |s it hard to learn the density of a
mixture when the components are
allowed to overlap significantly?

* Other applications of Iso-PCA? E.qg., it
can distinguish a cylinder from two
parallel disks. What does it do In
general?



Part |Il: Spectral Clustering

* Generic Algorithm:

-Project to top k principal components

-Map each point to component to which it
has largest projection

* Q. When do singular vectors identify clusters?



Spectral Clustering

Motivating example: block-diagonal matrix with k
blocks, 1 per cluster.

Top eigenvalue is repeated k times, with 1
eigenvector per cluster, the top eigenvector of each
block

To identify clusters, map each row to the eigenvector
to which it has the highest projection

Works also if A = B+E where B is block-diagonal and
E is a perturbation of small norm [PRTV, FKMS]



Spectral Clustering

* Planted clique problem:

Find a large hidden clique in a random
graph

* More generally: planted partitions

[Bopanna, Alon-Kahale, McSherry, Dasgupta-
Hopcroft-Kannan-Mitra, Kannan]



Planted clique

A: adjacency matrix of a random graph, with a
planted clique of size k.

Reporting highest degree vertices works when k > ?7?

Reporting largest component vertices of the top
eigenvector works for k > ?7?

Finding smaller planted cliques is a major open
problem



Clustering from pairwise similarities

Input:

A set of objects and a (possibly implicit)
function on pairs of objects.

Output:
1. Aflat clustering, i.e., a partition of the set

2. A hierarchical clustering
3. (A weighted list of features for each cluster)



Typical approach

Optimize a “natural” objective function
E.g., k-means, min-sum, min-diameter etc.

Using EM/local search (widely used) OR
a provable approximation algorithm

Issues: quality, efficiency, validity.
Reasonable functions are NP-hard to optimize



Divide and Merge

* Recursively partition the graph induced by the
pairwise function to obtain a tree

* Find an “optimal” tree-respecting clustering

Rationale: Easier to optimize over trees;

k-means, k-median, correlation clustering all
solvable quickly with dynamic programming



Divide and Merge




How to cut?

Min cut? (in weighted similarity graph)
Min conductance cut [Jerrum-Sinclair]

@ ¢(S>: w(S,_§>

min{ W) a(3)]

Sparsest cut [Alon]
Normalized cut [Shi-Malik]

Many applications: analysis of Markov chains,
pseudorandom generators, error-correcting codes...



How to cut?

Min conductance/expansion is NP-hard to compute.

- Leighton-Rao O (;603' n)
Arora-Rao-Vazirani O ( W‘>

- Fiedler cut: Minimum of n-1 cuts when vertices are
arranged according to component in 2"d largest

eigenvector of similarity matrix. O (\l OPT)

B ey I




Divide phase

Normalize similarity matrix

Order according to components in
second eigenvector

Choose best of the n-1 cuts in this
ordering

Recurse on the two parts



Merge phase

Clusters are subtrees

Use dynamic programming to find optimal
tree-respecting clustering for specified
objective function

Ex. 1: Maximize min conductance while
keeping number of clusters at most k.

Ex. 2: Minimize fraction of inter-cluster edges
while keeping min conductance at least a.



Worst-case guarantees

* Suppose we can find a cut of
conductance at most a.C” where C is
the minimum.

Theorem [Kannan-V.-Vetta '00].

If there exists an («, £)-clustering, then
the algorithm is guaranteed to find a

clustering of quality '/v v
(&

o [ozm



Experimental evaluation

Evaluation on data sets where true clusters are
known

= Reuters, 20 newsgroups, KDD UCI data, etc.

= Test how well algorithm does in recovering true
clusters — look an entropy of clusters found with
respect to true labels.

Question 1: Is the tree any good?

Question 2: How does the best partition (that
matches true clusters) compare to one that
optimizes some objective function?



data set || Spectral QR p-Kmeans | K-means
alt.atheism/comp.graphics || 926 £ 26 | 8302 £ 75806 £ 69| 762 + 121
comp.graphics/comp ce.ms-windows.misc || 819 + 6.3 | 624 £ 84| 638 + 37| 616 + 80
rec.autos/rec.motorcycles || 0.3 + =4 FREEN EEEE R
recsport.baseball) rec.sport hockey || 701 + 80 | 73.2 £ 0.1 | 740 + 8.0 | b2l + 86
alt.atheism, scspace || 94.3 + 4.6 | 797 £ 0.1 | 740 + 8.0 | 620 + 56
tall politics mideast | talk. politicamisc || 603 + 118 | 630 + 6.1 | 640 £ 7.2 | 640 + 5.5

Takble 1: 20 newsgroups data set (Accuracy)

data set || Spectral | BEX(2 | LAOS | NIMO1
R.654 articles || 712 57 00 N/A
G.075 articles || 732 N/A N/A | .665

Table 2: Reuters data set (F-measure)

data s=t | Spectral | Dhillon 2001
MedCran J 032 26
MedCis: [ 002 152
CisiCran J 045 16
Classicd § .000 089

{a) SMART data set {Entropy)

data set || Spectral | B97
J1 [ 77 (Y
J2 ) 81 1.12
J3 [ .54 )
J4 || 1.12 1.10
J5 | 81 74
Jo [ .51 SA
J7 63 0
JR .84 A6
T0 [ o5 To7
JI0 || 1.77 117
J11 || .90 1.05

(b} Webpage data set { Entropy )

Table 3: SMART and Webpage data sets



Clustering medical records

Medical records: patient records (> 1 million) with symptoms, procedures & drugs

Goals: predict cost/risk, discover relationships between different conditions, flag at-risk
patients etc.. [Bertsimas-Bjarnodottir-Kryder-Pandey-V.-Wang]

Clusters for “diabetes”:

Cluster 44: [938]

64.82%: Antidiabetic Agents, Misc..
51.49%: Ace Inhibitors & Comb..
49.25%: Sulfonylureas.

48.40%: Antihyperlipidemic Drugs.
36.35%: Blood Glucose Test Supplies.
23.24%: Non-Steroid/Anti-Inflam. Agent.
22.60%: Beta Blockers & Comb..
20.90%: Calcium Channel Blockers&Comb..
19.40%: Insulins.

17.91%: Antidepressants.



Clustering medical records

Cluster 97: [111]
100.00%: Mental Health/Substance Abuse.

58.56%:
46.85%:
36.04%:
32.43%:
28.83%:
21.62%:
21.62%:
14.41%:

Depression.
X-ray.

Neurotic and Personality Disorders.

Year 3 cost - year 2 cost.
Antidepressants.

Durable Medical Equipment.
Psychoses.

Subsequent Hospital Care.

8.11%: Tranquilizers/Antipsychotics.

Cluster 48: [39]

94.87%:
69.23%:
66.67%:
61.54%:
48.72%:
41.03%:
35.90%:
28.21%:
25.64%:
20.51%:

Cardiography - includes stress testing.
Nuclear Medicine.

CAD.

Chest Pain.

Cardiology - Ultrasound/Doppler.
X-ray.

Other Diag Radiology.

Cardiac Cath Procedures

Abnormal Lab and Radiology.
Dysrhythmias.



Other domains

Clustering genes of different species to discover
orthologs — genes performing similar tasks
across species.

Eigencluster to cluster search results

Compare to Google
[Cheng, Kannan,Vempala,\Wang]

Behavioral blacklisting of IP’s with SpamTracker
[Ramachandran, Feamster, Vempala]



Exercise 3

1. FInd data set on the web

2. Apply eigencluster, choose a (
http://arc2.cc.gatech.edu)

3. Interpret results



What next?

Move away from explicit objective functions? E.g.,
feedback models, similarity functions

[Balcan-Blum-Vempala]

Efficient regularity-style quasi-random clustering:
partition into a small number of pieces so that edges
within a piece or between pieces appear random.

Tensors: using relationships of small subsets; Tensor
PCA?

[Frieze-Kannan, FKKV]

?1



Part Ill: Sampling

Approximate data in a low-dimensional
space

Preserve “important” structure

Important = ?
Pairwise distances?
Hidden model (relevant subspace)?



An illustrative problem

* Suppose data is close to a line or a
plane.

* How to tell by sampling only a few
points?



Sampling method I: Uniform sampling

* Pick rows (or entries) uniformly at
random. Deduce approximation to full
matrix from these samples



Matrix-vector product
o ()
J=1

|dea: sample terms of this summation
Q. From what distribution?

P, PL {7ﬂ ZPJ:i

]



Matrix-vector product

AV = Z A v
J=
X - IA\(}‘V} Nf)
s



Matrix-vector product

What is optimal sampling distribution?
l.e., one that minimizes Var(X).



Sampling 2: Length-squared sampling

* Pick rows (or entries) with probability
proportional to their squared length.

* Exercise 4: Prove that length-squared sampling is
optimal.

« Exercise 5: Given N numbers arriving in arbitrary
order, show how to pick one from the LS distribution,
while using only O(1) memory.



Matrix product

Myxn
Nxp J
Pick index J with probability p;
S (Je)
V=L 2 A By
S L= 7[9
e

- (YY) = AR i (V) £

i
S

AB = (A" AR AB")

Il 1817



Low-rank approximation

Algorithm: Fast-SVD

1. Sample s columns of A from the length-squared
distribution to form a matrix C.

2. Find U, ... U, the top k left singular vectors of C.

3. Output I< T
Z U, u‘. A

as a rank-k approximation to A.



Low-rank approximation

Theorem [FKV, DFKVV].

Let A be the approximation found by
algorithm Fast-SVD. Then,

E(ia-RI7) < (1A AK(I; t ZVTSf [ AL

< OPT + ¢ | All;’

s k)



Low-rank approximation

* [FKV]: Any matrix contains a constant-
sized submatrix from which a nearly
optimal low-rank approximation can be

constructed.

* Error is additive and cannot be avoided
for a fixed sampling scheme.

Q. What about relative error?



Sampling 3: Volume sampling

* Pick subset of rows with probability
proportional to the squared volume of
the simplex they induce with the origin.



Sampling 4: Isotropic subspace

* |sotropic RP: Pick random vectors from
a Gaussian with the same covariance
matrix as the data. Project to the span

of the sample.



Spectral Algorithms

Insightful
Fast
Widely applicable

Notes: http://www.cc.gatech.edu/~vempala/
spectral.pdf

Please send feedback!



