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“Spectral Algorithm”?? 

•  Input is a matrix or a tensor 
•  Algorithm uses singular values/vectors 

(principal components) of the input. 

•  Does something interesting!  



Applications of Spectral Methods 

•  Indexing, e.g., LSI 
•  Embeddings 
•  Combinatorial optimization 
•  Learning 
•  Data mining 

A book in preparation (joint with Ravi Kannan): 
http://www.cc.gatech.edu/~vempala/spectral.pdf 



Networks are matrices 

•  With entries indicating existence of links 
•  Or traffic or bandwidth or delay or … 

•  Tensors (multi-dimensional arrays) also arise 
naturally 

•  E.g., Nodes x Nodes x Time, with the (i,j,k)’th 
entry indicating the traffic between nodes i 
and j during time interval k  



Some questions 

How to 
•  detect anomalous behavior? 
•  learn network characteristics to use in 

routing etc.? 
•  understand the cause(s) of  congestion/

failure? 



Contents 
•  SVD basics 

•  Part I: Learning 

•  Part II: Clustering 

•  Part III: Sampling 

•  Bonus: Exercises! 



Principal components 

•  A: m x n matrix of reals 
•  Singular value, left/right singular vectors:  

   
  Av=σu       uTA= σvT 

•  u’s are orthonormal, v’s are orthonormal 
•  u=v=eigenvector if A is symmetric 



Singular Value Decomposition 
Real m x n matrix A can be decomposed as: 



SVD in geometric terms 
Rank-1 approximation is the projection to the line  

 through the origin that minimizes the sum of squared 
distances. 

Rank-k approximation is projection to k-dimensional 
subspace that minimizes sum of squared distances. 



Later: Fast PCA with sampling 

[Frieze-Kannan-V. ‘98]  
Sample a “constant” number of rows/colums of input matrix.  
SVD of sample approximates top components of SVD of full matrix. 

[Drineas-F-K-V-Vinay] 
[Achlioptas-McSherry] 
[D-K-Mahoney] 
[Deshpande-Rademacher-V-Wang] 
[Har-Peled] 
[Arora, Hazan, Kale] 
[De-V] 
[Sarlos] 
… 

Fast (nearly linear time) SVD/PCA appears practical for massive data. 



Three problems 

1.  Learn a mixture of unknown 
Gaussians 

2.  Cluster entities (e.g., IP’s) using  
pairwise similarity.  

3.  Find the “important” subspace of a 
data set quickly 



Problem 1 
•  Learn a mixture of Gaussians 

 Classify samples from 

 where each Fi  is an unknown Gaussian. 



Mixture models 
•  Easy to unravel if components are far enough 

apart 

•  Impossible if components are too close 



Distance-based classification 
 How far apart? 
 Let’s look at E(||X-Y||2) for X,Y from the same 
component and from different components: 

 E(||X-Y||2)  =  

 Thus, suffices to have 

 ||µi-µj||2 >  



Distance-based classification 

[Dasgupta ‘99] 

[Dasgupta, Schulman ‘00] 

[Arora, Kannan ‘01] (more general) 



Spectral Projection 

•  Project to span of top k principal 
components of the data 

  Replace A with   

•  Apply distance-based classification in 
this subspace 



Main idea 

Subspace of top k principal components 
(SVD subspace) 

spans the means of all k Gaussians 



SVD in geometric terms 
Rank 1 approximation is the projection to the line  

 through the origin that minimizes the sum of squared 
distances. 

Rank k approximation is projection k-dimensional 
subspace minimizing sum of squared distances. 



Exercise 0 

•  Prove that for a set of points in n-space, 
the point X in space minimizing the sum 
of squared distances to the points in the 
set is their centroid.  



Why? 
•  Best line for 1 Gaussian? 

 - Line through the mean 

•  Best k-subspace for 1 Gaussian? 
 - Any k-subspace through the mean 

•  Best k-subspace for k Gaussians? 
 - The k-subspace through all k means! 



How general is this? 

Theorem[V.-Wang’02]. For any mixture of 
weakly isotropic distributions, the best 
k-subspace is the span of the means of 
the k components. 

Covariance matrix = multiple of identity 

Ex 1: Prove cube is isotropic. 
Ex 2: Prove covariance = identity iff variance is 1 in 

every direction 



Sample SVD 

•  Sample SVD subspace is “close” to 
mixture’s SVD subspace.  

•  Doesn’t span means but is close to 
them.  



2 Gaussians in 20 Dimensions 



4 Gaussians in 49 Dimensions 



Mixtures of logconcave Distributions 

Theorem [Kannan, Salmasian, V, ‘04]. 
 For any mixture of k distributions with 
SVD subspace V, 



Questions 

1.  Can Gaussians separable by 
hyperplanes be learned in polytime? 

2.  Can Gaussian mixture densities be 
learned in polytime? 

   



Separable Gaussians 

•  PCA fails 
•  Even for “parallel pancakes” 

•  Separation condition that specifies distance 
between means is not affine-invariant, i.e., 
rotation and scaling can change the condition.  

•  Probabilistic separability is affine-invariant 
•  So is hyperplane separability. 



Fisher criterion 

•  For a direction p,  

             intra-component variance along p 
 J(p) =  -------------------------------------------- 
       total variance along p 

•  Overlap of a 2-component mixture:  
 Min J(p) over all directions p. 

•  Small overlap => large separation along 
        some direction 



Fisher subspace for k > 2 

•  Overlap in a subspace S: 

      intra-component variance within S 
 J(S)= -------------------------------------------- 
            variance within S 

•  Overlap for k-component mixture 
    Min J(S), S: k-1 dim subspace 

 This parameter is affine-invariant. In fact, 
 For an isotropic mixture, Fisher subspace is the span 
of the component means! 



Separability 



How to find the Fisher subspace? 

•  Make isotropic: the mean of the mixture 
the origin and the variance in every 
direction equal (to 1). 

•  Moves parallel pancakes apart. 

•  But, all singular values are equal, so 
PCA finds nothing! 



Idea: Rescale and Reweight 
•  Apply an isotropic transformation to the 

mixture. 
•  Then reweight using the density of a spherical 

Gaussian centered at zero. 
•  Now find the top principal component. 



Two parallel pancakes 

•  Isotropy pulls apart the components 

•  If one is heavier, then overall mean 
shifts along the separating direction 

•  If not, principal component is along the 
separating direction 



Unraveling Gaussian Mixtures 

Unravel(k) 
•  Make isotropic 
•  Reweight 
•  If mixture mean shifts significantly, use 

that direction to partition and recurse 
•  Else use top principal component to 

partition and recurse. 



Unraveling Gaussian Mixtures 

Theorem [Brubaker-V. 08] 
 The algorithm correctly classifies 
samples from two arbitrary Gaussians 
separable by a hyperplane with high 
probability. 



Mixtures of k Gaussians 

Theorem [B-V 08] For a k-Gaussian mixture 
with overlap at most 1/k3, the algorithm 
classifies correctly whp using poly(n) 
samples. 



Original Data 

•  40 dimensions, 8000 samples (subsampled for 
visualization) 

•  Means of (0,0) and (1,1). 



Random Projection 



PCA 



Isotropic PCA 



Original Data (k=3) 

•  40 dimensions, 15000 samples (subsampled for 
visualization) 



Random Projection 



PCA 



Isotropic PCA 



Questions 

•  Is it hard to learn the density of a 
mixture when the components are 
allowed to overlap significantly? 

•  Other applications of Iso-PCA? E.g., it 
can distinguish a cylinder from two 
parallel disks. What does it do in 
general? 



Part II: Spectral Clustering 

•  Generic Algorithm: 

  -Project to top k principal components 
  -Map each point to component to which it   
has largest projection 

•  Q. When do singular vectors identify clusters?  



Spectral Clustering 
•  Motivating example: block-diagonal matrix with k 

blocks, 1 per cluster.  

•  Top eigenvalue is repeated k times, with 1 
eigenvector per cluster, the top eigenvector of each 
block 

•  To identify clusters, map each row to the eigenvector 
to which it has the highest projection 

•  Works also if A = B+E where B is block-diagonal and 
E is a perturbation of small norm [PRTV, FKMS] 



Spectral Clustering 

•  Planted clique problem: 

 Find a large hidden clique in a random 
graph 

•  More generally: planted partitions  
 [Bopanna, Alon-Kahale, McSherry, Dasgupta-
Hopcroft-Kannan-Mitra, Kannan] 



Planted clique 
•  A: adjacency matrix of a random graph, with a 

planted clique of size k. 

•  Reporting highest degree vertices works when k > ?? 

•  Reporting largest component vertices of the top 
eigenvector works for k >  ?? 

•  Finding smaller planted cliques is a major open 
problem  



Clustering from pairwise similarities 

Input:  
 A set of objects and a (possibly implicit) 
function on pairs of objects.  

Output:  
1.  A flat clustering, i.e., a partition of the set 
2.  A hierarchical clustering 
3.  (A weighted list of features for each cluster) 



Typical approach 

Optimize a “natural” objective function 
E.g., k-means, min-sum, min-diameter etc. 

Using EM/local search (widely used) OR  
a provable approximation algorithm 

Issues: quality, efficiency, validity. 
Reasonable functions are NP-hard to optimize 



Divide and Merge 

•  Recursively partition the graph induced by the 
pairwise function to obtain a tree 

•  Find an “optimal” tree-respecting clustering 

Rationale: Easier to optimize over trees; 
 k-means, k-median, correlation clustering all 
solvable quickly with dynamic programming 



Divide and Merge 



How to cut? 

Min cut?   (in weighted similarity graph) 
Min conductance cut [Jerrum-Sinclair] 

Sparsest cut [Alon]  
Normalized cut [Shi-Malik] 
Many applications: analysis of Markov chains, 

pseudorandom generators, error-correcting codes... 



How to cut? 

Min conductance/expansion is NP-hard to compute. 

-  Leighton-Rao 
 Arora-Rao-Vazirani 

-  Fiedler cut:  Minimum of n-1 cuts when vertices are 
arranged according to component in 2nd largest 
eigenvector of similarity matrix.  



Divide phase 

•  Normalize similarity matrix 
•  Order according to components in 

second eigenvector 
•  Choose best of the n-1 cuts in this 

ordering 
•  Recurse on the two parts 



Merge phase 

•  Clusters are subtrees 
•  Use dynamic programming to find optimal 

tree-respecting clustering for specified 
objective function 

•  Ex. 1: Maximize min conductance while 
keeping number of clusters at most k. 

•  Ex. 2: Minimize fraction of inter-cluster edges 
while keeping min conductance at least α. 



Worst-case guarantees 

•  Suppose we can find a cut of 
conductance at most a.C   where C is 
the minimum.  

Theorem [Kannan-V.-Vetta ’00]. 
 If there exists an (        )-clustering, then 
the algorithm is guaranteed to find a 
clustering of quality  



Experimental evaluation 

•  Evaluation on data sets where true clusters are 
known 
  Reuters, 20 newsgroups, KDD UCI data, etc. 
  Test how well algorithm does in recovering true 

clusters – look an entropy of clusters found with 
respect to true labels. 

•  Question 1: Is the tree any good? 

•  Question 2: How does the best partition (that 
matches true clusters) compare to one that 
optimizes some objective function? 





Cluster 44: [938]                                                             
 64.82%: Antidiabetic Agents, Misc..                              
 51.49%: Ace Inhibitors & Comb..                                 
 49.25%: Sulfonylureas.   
 48.40%: Antihyperlipidemic Drugs.                                    
 36.35%: Blood Glucose Test Supplies.   
 23.24%: Non-Steroid/Anti-Inflam. Agent.  
 22.60%: Beta Blockers & Comb.. 
 20.90%: Calcium Channel Blockers&Comb..  
 19.40%: Insulins.                                                
 17.91%: Antidepressants.   

Clustering medical records 
Medical records: patient records (> 1 million) with symptoms, procedures & drugs 

Goals: predict cost/risk, discover relationships between different conditions, flag at-risk
 patients etc.. [Bertsimas-Bjarnodottir-Kryder-Pandey-V.-Wang] 

Clusters for “diabetes”: 



Cluster 97: [111]                                                              
100.00%: Mental Health/Substance Abuse.                               
 58.56%: Depression.                             
 46.85%: X-ray.                                                        
 36.04%: Neurotic and Personality Disorders.                             
 32.43%:  Year 3 cost - year 2 cost.                               
 28.83%: Antidepressants.                                            
 21.62%: Durable Medical Equipment.                                    
 21.62%: Psychoses.                                   
 14.41%: Subsequent Hospital Care.                                     
 8.11%: Tranquilizers/Antipsychotics.  


Cluster 48: [39]                                                               
94.87%: Cardiography - includes stress testing.                      
69.23%: Nuclear Medicine.                        
66.67%: CAD.                                                 
61.54%: Chest Pain.                                  
48.72%: Cardiology - Ultrasound/Doppler.                             
41.03%: X-ray.                           
35.90%: Other Diag Radiology.                                        
28.21%: Cardiac Cath Procedures                      
25.64%: Abnormal Lab and Radiology.                         
20.51%: Dysrhythmias.  

Clustering medical records 



Other domains 

Clustering genes of different species to discover 
orthologs – genes performing similar tasks 
across species. 

Eigencluster  to cluster search results 
Compare to Google  
[Cheng, Kannan,Vempala,Wang] 

Behavioral blacklisting of IP’s with SpamTracker  
[Ramachandran, Feamster, Vempala] 



Exercise 3 

1.  Find data set on the web 

2.  Apply eigencluster, choose α (
http://arc2.cc.gatech.edu) 

3.  Interpret results 



What next? 
•  Move away from explicit objective functions?  E.g., 

feedback models, similarity functions  
 [Balcan-Blum-Vempala] 

•  Efficient regularity-style quasi-random clustering: 
partition into a small number of pieces so that edges 
within a piece or between pieces appear random. 

•  Tensors: using relationships of small subsets; Tensor 
PCA?  
 [Frieze-Kannan, FKKV] 

•  ?! 



Part III: Sampling 

•  Approximate data in a low-dimensional 
space 

•  Preserve “important” structure 

•  Important = ? 
•  Pairwise distances? 
•  Hidden model (relevant subspace)? 



An illustrative problem 

•  Suppose data is close to a line or a 
plane. 

•  How to tell by sampling only a few 
points? 



Sampling method I: Uniform sampling 

•  Pick rows (or entries) uniformly at 
random. Deduce approximation to full 
matrix from these samples 



Matrix-vector product 

Idea: sample terms of this summation 
Q. From what distribution? 



Matrix-vector product 



Matrix-vector product 

What is optimal sampling distribution? 
i.e., one that minimizes Var(X).  



Sampling 2: Length-squared sampling 

•  Pick rows (or entries) with probability 
proportional to their squared length.  

•  Exercise 4: Prove that length-squared sampling is 
optimal. 

•  Exercise 5: Given N numbers arriving in arbitrary 
order, show how to pick one from the LS distribution, 
while using only O(1) memory. 



Matrix product 

Pick index j with probability pj 



Low-rank approximation 

Algorithm: Fast-SVD 

1. Sample s columns of A from the length-squared 
distribution to form a matrix C. 

2. Find               the top k left singular vectors of C. 

3. Output 
   

 as a rank-k approximation to A. 



Low-rank approximation 

Theorem [FKV, DFKVV]. 
 Let A be the approximation found by 
algorithm Fast-SVD. Then, 



Low-rank approximation 

•  [FKV]: Any matrix contains a constant-
sized submatrix from which a nearly 
optimal low-rank approximation can be 
constructed. 

•  Error is additive and cannot be avoided 
for a fixed sampling scheme.   

•  Q. What about relative error? 



Sampling 3: Volume sampling 

•  Pick subset of rows with probability 
proportional to the squared volume of 
the simplex they induce with the origin.  



Sampling 4: Isotropic subspace 

•  Isotropic RP: Pick random vectors from 
a Gaussian with the same covariance 
matrix as the data. Project to the span 
of the sample.   



Spectral Algorithms 

•  Insightful  
•  Fast 
•  Widely applicable 

•  Notes: http://www.cc.gatech.edu/~vempala/
spectral.pdf  

•  Please send feedback! 


