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ABSTRACT
There is widespread agreement on the need for architectural change
in the Internet, but very few believe that current ISPs will ever ef-
fect such changes. In this paper we ask what makes an architecture
evolvable, by which we mean capable of gradual change led by the
incumbent providers. This involves both technical and economic
issues, since ISPs have to be able, and incented, to offer new archi-
tectures. Our study suggests that, with very minor modifications,
the current Internet architecture could be evolvable.

Categories and Subject Descriptors: C.2.1 [Network Architec-
ture and Design]:Network communications

General Terms: Design.

Keywords: Network Architecture, Anycast.

1. INTRODUCTION
In the early days of the commercial Internet (mid 1990’s) there

was great faith in Internet evolution. Many believed that when-
ever new versions of IP (such as IPv6), or extensions to IP (such as
IntServ or IP Multicast), were evaluated on testbeds and standard-
ized by the IETF, the ISPs would soon deploy them in the public
Internet. This was not envisioned as a one-time change, but as an
ongoing process of Internet evolution. This widespread optimism
about change fueled ambitious efforts to extend or revise the Inter-
net architecture, and we all looked forward to a brighter future.

The remarkable success of the Internet surpassed our wildest
imagination, but our optimism about Internet evolution proved to
be unfounded. The unfortunate history of IPv6, IntServ, IP Multi-
cast, and other such proposals has turned that early optimism into a
deep pessimism about evolutionary architectural change. The pre-
vailing wisdom now is that ISPs have little incentive to deploy new
architectures; since they all have to act in concert, there is no com-
petitive advantage to such advances, and the costs of universally
deploying a new architecture are immense. Thus, the ISPs, which
were once thought the agents of architectural change, are now seen
as the main cause of the Internet impasse [1].

This comes at an unfortunate time as the need for evolution is
more apparent than ever. The Internet’s success has brought with it
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unforeseen stresses and strains that have revealed numerous limita-
tions in the Internet architecture. The literature is replete with calls
for change, from the enduring worries about security [2–5], quality-
of-service [6] and mobility [7], to more recent concerns about high-
speed congestion control [8] and middleboxes [9,10], to fundamen-
tal revisions in the basic architectural framework [9, 11–17].

This collision between the improbability and the necessity of
change has produced two reactions in the community. Some have
tried to augment the Internet architecture through overlay networks.
Overlays have been proposed for a variety of services, including
multicast [18], quality-of-service [19], robust routing [20], and con-
tent distribution [21, 22]. These overlays would not lead to funda-
mental changes in the underlying architecture, but would merely
mask some of its most obvious deficiencies.

More recently, overlays have been proposed as a way to under-
mine the current ISPs. As observed in [1], overlays are not re-
stricted to offering isolated services; they can instead be used to
deploy radically new architectures (with, of course, certain limi-
tations in the QoS and security offered). As such, overlays would
enable a new entrant — that is, an aspiring rather than an incumbent
ISP — to enter the market with a new architecture. This, however,
is revolution not evolution; change would require destabilizing the
market, with the current ISPs replaced by a new generation of ser-
vice providers. Moreover, maintaining evolution would require a
succession of such revolutions.

Neither of these two stories is very comforting. One offers lim-
ited change, providing additional services but not substantial revi-
sion to the fundamental architecture. The other requires repeated
market destabilization, which is unlikely to be an easy or frequent
occurrence for such a global, large-scale business.

In this paper we return to the original goal of Internet evolution.
Rather than take ISP non-cooperation as an unchangeable given,
we regard the lack of incentives for evolution as an architectural
flaw and ask how this can be remedied. Hence, we ask: how can
one make an architecture evolvable? The term architecture can be
a somewhat fuzzy one and so, to be specific, what we’re referring
to here is IP. By evolving the Internet architecture, we mean the
ability to change IP – IP headers, addressing, forwarding and so
forth. By evolvable we mean capable of gradual (but unlimited)
change within the current market structure: that is, change that is
not restricted architecturally and that does not require a change in
the incumbent ISPs.

Many have posed this question before, and yet, we find ourselves
with no proposed solution. Here we want to address this question
in a very concrete and pragmatic fashion. Hence rather than adopt
a clean-slate approach and design the “ideal” evolvable IP, we try
and create an evolvable IP starting from the confines of today’s IP.
Our discussion is primarily a walk-through of design options and
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their implications with little to offer in novel mechanisms or radical
insights; it is the importance of the question at hand that provides
the impetus. We turn to that question in the next section.

2. REQUIREMENTS FOR EVOLVABILITY

2.1 General Discussion
To express the problem of evolvability in very concrete terms,

we reduce it to a single question:

When a new version of IP, call it IPvN, becomes standardized or
otherwise defined, what conditions would lead ISPs to deploy it?

This question, which the remainder of this paper will attempt to
answer, is primarily one of incentives and the mechanisms needed
to support them. While it is technically straightforward (though
perhaps expensive) for ISPs to support a new protocol, they must
have the incentive to do so. However, this need for the proper incen-
tives influences the technical means by which IPvN will be initially
offered. Thus, it is the incentive issues that drive the evolutionary
requirements. In this section we motivate and identify the technical
conditions necessary to provide ISPs with the incentives to deploy
IPvN. The following section then presents the details of how these
technical requirements might be met. As before, we don’t claim
novelty for the ensuing discussion, merely (we hope) relevance.

The key to ensuring the right incentives is fostering competition.
Early-adopting ISPs will offer new architectures only if they be-
lieve it will give them a competitive edge, and late-adopting ISPs
will do so only if they feel they are at a competitive disadvantage
without it. There are several (related) factors in encouraging com-
petition:

• Foster independent innovation: an ISP should not be able
to block innovation by others.

• Enable customer choice: ISPs will then have to compete for
customers.

• Allow ISPs some degree of control: if ISPs have no control,
then they cannot recoup their expenses and are unlikely to
deploy.

These overly general principles are best appreciated in the con-
text of a specific technical decision and hence, rather than expand
on them here, we will repeatedly return to these points when dis-
cussing design options. One recurring theme is the conflict between
user choice and ISP control; our discussion will highlight the trade-
offs we make between these.

Our technical discussion begins with four very basic assumptions
that must be incorporated in any discussion of Internet evolvability.
The first three limit our expectations, while the fourth offers hope:

(A1) Assume partial ISP deployment. Clearly, we can-
not expect that all ISPs will simultaneously adopt IPvN. Requiring
ISPs to move in lockstep allows individual ISPs to block deploy-
ment, and prevents early-adopters from gaining a competitive ad-
vantage. Thus, we should assume that only a subset of the ISPs,
perhaps only one, will initially deploy IPvN. Moreover, we cannot
even expect an adopting ISP to initially deploy IPvN in all of its
routers. Hence, all mechanisms must work with only a subset of an
ISP’s routers implementing IPvN.

(A2) Assume partial ISP participation. While an ISP might
choose not to deploy IPvN in its network, one might hope that
it would participate in a larger, general plan for evolvability (for
example, through general configuration tools that would help its
clients access IPvN services deployed elsewhere). However, for the
same reasons as above, any proposal requiring explicit participation
by all ISPs is unlikely to achieve ubiquity. Hence, while any tech-
nical solution should accommodate ISP participation where avail-
able, we require that any plan for evolution to IPvN not rely on such
global participation.

(A3) Assume the existing market structure and contrac-
tual agreements. For example, we avoid requiring that clients
enter new contractual agreements beyond their current ones with
access providers for basic Internet connectivity. In particular, we
do not require that clients sign up with specific (possibly in addi-
tion to their current ISP) providers in order to obtain IPvN service.
This constraint is to some extent self-imposed because of our desire
for solutions that are practical in today’s Internet. More importantly
however, this assumption follows from our “evolution, not revolu-
tion” argument; i.e., the general process of transition should avoid
requiring such upheaval. Note though that we do not preclude such
change; we merely avoid requiring it.

(A4) Assume revenue flow. If there is no financial gain to be
realized from offering IPvN, then it won’t be deployed. What we
assume here is that if IPvN attracts users, then revenue will flow to-
wards those ISPs offering IPvN. An ISP that attracts new customers
would obviously increase revenue. We also posit that an ISP that
attracts new traffic, by offering IPvN, will also gain revenue possi-
bly due to increased settlement payments (traffic from non-offering
ISPs to offering ISPs would increase).

The need for certain technical mechanisms follow from these as-
sumptions. Tolerating partial deployment, both within an ISP and
across ISPs, immediately implies the obvious conclusion that evo-
lution will initially require some form of overlay or virtual network
to bridge across ISPs that do not support IPvN. While overlays are
common, the IPvN overlay is not administered as a single unit (un-
like, for example, RON [20], PlanetLab [23], Akamai [24], Over-
Cast [21]), but instead is formed by peering arrangements across
the IPvN overlays within individual ISPs (akin to the MBone [25],
XBone [26], etc.). We sketch an example of how this might be done
in Section 3.3.

The assumption of revenue flow means that an ISP would be re-
warded for attracting usage. This is a crucial component in foster-
ing competition, and points to the single most important technical
requirement for evolvability, universal access (UA), which we sum-
marize below:

Require Universal Access All clients can use IPvN if they so
choose, regardless of whether their ISP deploys IPvN or assists
their clients in accessing IPvN.

Even if a single ISP deploys IPvN, every client has access to it.
Thus, no ISP can block use of IPvN. In this way, universal access
fosters innovation.

Universal access also provides for customer choice; customers
can access IPvN no matter what their ISP does. If access was re-
stricted such that clients could only access IPvN with the assis-
tance of their ISP, then customer choice would be severely limited.
This would, in turn, decrease competition between the ISPs since it
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would require changing ISPs, which is a significant burden, before
a customer could experiment with IPvN.

On a more positive note, universal access creates a positive feed-
back cycle for evolution. As long as a single ISP was willing to
deploy IPvN, application developers could have a large market for
IPvN-aware software, and this in turn would create more demand
for IPvN. A virtuous cycle between application demand (for IPvN-
aware software) and service demand (for IPvN deployment) could
lead to rapid deployment.

The flip side of this scenario was most clearly exemplified in the
attempted deployment of IP Multicast. There are myriad reasons
why multicast, despite being supported by most major router ven-
dors, was never deployed at scale. One was, we believe, the lack
of universal access. Even had a major ISP (say Sprint) deployed
multicast, this new functionality would only have been available to
Sprint’s customers. Application developers on the other hand (e.g.,
content providers such as CNN), were reluctant to develop multi-
cast applications that could only service a fraction of Internet users.
This led to a chicken-and-egg scenario where ISPs were reluctant
to deploy a service for which there was no apparent application
demand, while application developers were reluctant to rely on a
service that was not universally available. If instead, any endhost
had been able to access Sprint’s multicast services, then applica-
tion developers might have been more willing to experiment with
the service. Thus, requiring universal access of a partially deployed
service fosters demand and encourages independent innovation (by
both ISPs and applications).

Given partial deployment, the need for universal access leads to
our second technical requirement – redirection. To tolerate partial
IPvN deployment (A1) and participation (A2), IPvN packets leav-
ing a host must find their way to the virtual IPvN network whether
or not their local ISP supports IPvN (A1) or supports the config-
uration needed to redirect packets to IPvN domains (A2). While
redirection is always a requirement for overlay networks, here we
require that redirection cannot be through application-specific or
manual configuration on the host. Manual configuration is outside
the capabilities of most Internet users, and it would be doubly dif-
ficult to configure if one’s own ISP is not willing to assist in doing
so. Thus, for evolution, the redirection challenge is not how to
intercept packets, which is a significant issue itself (though there
has been recent progress in general techniques to do this [27]), but
knowing where to redirect them to. This problem has not received
much attention, but it turns out to be crucial to our story. Moreover,
incentive issues, rather than technical ones, are the dominant factor.

Note that enabling universal access leads to a balance between
the competing needs of user choice and ISP control. Users are free
to choose whether or not to use IPvN (which drives ISP competi-
tion), but the operation of the IPvN virtual network and the process
of redirecting IPvN packets is left under the control of ISPs. A
further tilt to this balance would be to offer users the choice of
which IPvN service provider their IPvN packets are redirected to.
We do not explore this option in detail but note that the technical
framework we describe in the following sections could, with few
modifications, be adapted to such scenarios.

There are two obvious approaches to redirection: application-
level controlled by third-party brokers and network-level controlled
by ISPs. We discuss each in turn.

2.2 Application-Level Redirection
For application-level redirection, one might have a lookup ser-

vice that tracks the state of IPvN deployment in terms of which ISP
domains and/or routers support IPvN. When queried by an end-

host, the lookup service would return an IP address for a nearby
IPvN router. The client can then tunnel IPvN packets to that router,
which injects them into the IPvN overlay.

The crucial question is: who runs this lookup service? In one
scenario, this would be offered by ISPs themselves; i.e., ISPs could
exchange deployment information with each other and then each
provide such a lookup service. However, in that case, non-offering
ISPs would have little incentive to provide such a lookup service
(assumptions A1 and A2) and hence a customer of a non-offering
ISP would have to use the lookup service of another ISP. This vio-
lates our assumption that customers enter no new contractual agree-
ments. This is also technically difficult because, in the absence
of any additional redirection services, it would require endusers
to know which ISPs offered such lookup services (at any point in
time, they would have to know which ISPs were offering IPvN) and
which offering ISP is best suited to serving the enduser in terms of
network proximity. Thus, relying on ISPs to provide a lookup ser-
vice would likely interfere with universal access.

Another possibility is that the lookup service could be run by
third-party brokers who gather deployment information from each
of the ISPs. At a technical level, this would be consistent with
universal access since any client could reach such brokers. This
option however alters the current market structure and, in terms of
incentives, is riddled with open questions. Chief among these is
that under this arrangement, brokers become a crucial component
of the infrastructure, significantly influencing the routing of IPvN
packets, and hence it isn’t clear whether and why ISPs would be
willing to relinquish control to such brokers. At the same time,
third party-brokers are dependent on ISPs for the deployment in-
formation needed to effect redirection. One (positive) possibility
here is that if some ISPs did enter agreements with brokers, the
rest would have to follow to compete. Yet another question is who
would pay these brokers: they could be paid by ISPs to direct traffic
to them, or by customers to provide good referrals, or both. This in
turn leads to the question of how one would ensure competition at
the broker level. Presumably there would be multiple brokers that
would likely peer with each other, or only provide partial visibility
into the IPvN overlay.

In summary, both the above options for application-level redirec-
tion are less than satisfactory: ISP-based redirection is difficult in
the event of partial participation requiring manual configuration by
endusers, while redirection by third-party brokers upsets the cur-
rent market structure. This leads us to explore an alternate option,
namely that of network-level support for IPvN redirection.

2.3 Network-level Redirection
Network-level redirection involves no lookup to find a nearby

IPvN router. Instead, every router in the network (whether IPvN
or not) is equipped with the knowledge needed to forward an IPvN
packet towards an IPvN router; i.e., the network naturally routes
IPvN packets to an appropriate destination. Ignoring the technical
difficulties for a moment (we discuss them in detail in the follow-
ing section), this has the nice property that it works within the cur-
rent market structure. Such redirection is under the shared control
of ISPs and, as we discuss later, doesn’t involve establishing new
brokers or even making substantial changes in routing. While it
may not have the full flexibility that a lookup service could have,
it would thus be easier to achieve with incremental changes. The
main problem is this: if we allow redirection to be done by ISP
routing, how can a client in a non-offering ISP be guaranteed ac-
cess to IPvN? Can’t the ISP block such access through its routing
algorithms? That is the question we address in the next section.
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3. MECHANISMS FOR EVOLVABILITY
The previous section argued for network-level redirection as a

vital primitive in supporting the evolvability of a multi-provider
network infrastructure. In this section, we propose the use of IP
Anycast as a candidate mechanism by which to effect this network-
level redirection. We show that IP Anycast is both well-suited to
the task and a practical choice as support for anycast routing can be
deployed with little-to-no change in today’s routing infrastructure.
We discuss anycast and its deployment scenarios in Section 3.1.

The second required component identified in Section 2 is the set
of mechanisms used in the construction and maintenance of multi-
provider virtual networks (vN-Bones). We explore candidate so-
lutions for this in Section 3.3. Finally, Section 3.4 describes how
packet forwarding is implemented through the combination of IP
anycast and vN-Bone tunneling.

We stress that there is remarkably little innovation in the details
of the technical discussion that follows. Rather, our contribution
is one of synthesis – in identifying the necessary components and
piecing them together to construct a plausible scenario of IP evolv-
ability. At the same time, the incremental nature of the individual
pieces lends hope that our proposal for evolvability is practical and
within grasp of real deployment.

3.1 IP Anycast as Network-level Redirector
RFC 1546 [28] defines anycasting as a network service in which

a host transmits a datagram to an anycast address and the network
is responsible for providing best effort delivery of the datagram to
one of possibly multiple servers that accept datagrams for that any-
cast address. Typically, a datagram will be delivered to the server
closest to the client host where “closest” is defined in terms of the
network’s measure of routing distance.

Since its proposal in 1993, IP Anycast has been deployed within
individual domains primarily for service discovery (e.g., to locate
rendezvous points in PIM-SM [29]) and on a global scale for the
robust implementation of root DNS name servers RFC3258 [30].

Here, we propose the use of IP Anycast as the mechanism for
network-level redirection in support of the deployment of succes-
sive generations of IP. As described in Section 2, in a network
where the ubiquitously supported IP service is (say) IPv4, and the
next generation IP being deployed is (say) IPv8, network-level redi-
rection is needed to steer IPv8 packets towards IPv8 routers. Us-
ing anycast, this is easily achieved as follows: a well-known IPv4
anycast address A4 is assigned to the deployment of IPv8 and ev-
ery IPv8 router accepts delivery of packets destined to A4. To use
IPv8, any endhost can simply encapsulate an IPv8 packet in an IPv4
packet with destination A4. Anycast ensures this packet will be de-
livered to the closest IPv8 router, from which point on the packet is
in the hands of IPv8 routers.

Our choice of anycast stems from two key reasons –

1. the abstraction of an anycast address enables the seamless
spread of deployment. By this we mean that the use of an
anycast address allows endhosts and (if desired) ISPs to re-
main ignorant of the state of IPv8 deployment in terms of
which ISP domains/routers currently support IPv8. Were
this not the case, then deployment by one ISP could trigger
widespread reconfiguration at possibly remote endhosts.1

2. because anycast reuses the existing unicast routing infras-
tructure, it inherits the highly decentralized control structure
of IP routing and hence individual ISPs can independently
configure and control the redirection process.

1In fact, it isn’t clear how an ISP might, without global knowledge,
even identify the set of endhosts that need reconfiguration.

C

ISP X

ISP W

ISP Z

ISP Y

`

Figure 1: Anycast enables the seamless spread of deployment:
IPv8 is deployed successively in ISPs X, then Y and finally Z.
Throughout, client C is seamlessly redirected to the closest IPv8
provider.

To see this, consider the deployment of IPv8 in Figure 1. Ini-
tially, provider X is the only ISP to deploy IPv8 and hence IPv8
packets from client C, with local ISP Z, are routed through X’s do-
main. However, once ISP Y deploys IPv8, C’s packets are routed
through Y instead of X and finally, when Z deploys IPv8, C’s IPv8
packets are handled by its own local ISP. Note that throughout this
deployment process, client C’s packets are seamlessly redirected
through the appropriate providers without requiring any form of
reconfiguration or indeed any awareness of the state of IPv8 de-
ployment on the part of endhosts. The same is largely true for ISPs
as well. The natural inter-domain routing protocols (with possible
support for anycast, as described below) ensures that packets are
routed to the appropriate provider without ISPs having to explicitly
monitor, and adapt to, the global state of IPv8 deployment.

Moreover, note that despite its seamless nature, ISPs can, to
some extent, control the process of redirection through policy
choices in their inter-domain routing. For example, in Figure 1, ISP
W might, based on peering policies, choose to route anycast pack-
ets to ISP X before Y. As with regular inter-domain routing, this
control is both partial (i.e., shared across ISPs) and implemented in
a decentralized manner.

Thus, unlike the case of application-level redirection described
in Section 2, here the network, in a completely decentralized man-
ner, “self-manages” redirection without the need for higher-layer,
third party brokers that track and/or control the global state of de-
ployment.

In summary, anycast implements network-level redirection in a
manner that addresses the issues of incentives raised in Section 2.
Specifically:

• universal access is achieved even under partial deployment

• the existing ISP control structure is preserved

• operation is not dependent on all ISPs participating (we dis-
cuss anycast routing with partial ISP participation below)

• through peering policies, ISPs can control but not gate de-
ployment

• as with regular unicast routing, control is decentralized and
shared across ISPs
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The above discussion assumes the existence of a global IP Any-
cast service. Unfortunately, anycast deployment today is typically
limited to individual domains. In what follows, we discuss two
options to deploying a global IP anycast service. In keeping with
our goals, we would rather not assume that all ISPs will participate
either in the deployment of a new generation of IP (IPvN), nor in
our plan for evolvability. Hence while we assume that a participant
ISP (by which we mean an ISP that is willing to deploy IPvN) will
also be willing to deploy mechanisms to support anycast, we are
unwilling to assume that all ISPs shall do so. The question then is
what minimal degree of support for anycast can we require of non-
participant ISPs. The two options we describe below differ slightly
in this respect: our first option requires that a non-participant ISP be
willing to propagate a small number of non-aggregatable (i.e., with
prefix longer than the /22 deemed acceptable for propagation in to-
day’s routing infrastructure) anycast addresses in its inter-domain
routing protocol. Note that this is a change in policy on the part
of an ISP and does not require the deployment of any new mech-
anism. Our second option requires no change (neither policy nor
deployment) by non-participant ISPs but does result in a somewhat
less “pure” form of anycast.

Before proceeding, we note that our discussion here implicitly
promotes a somewhat stripped down anycast service model. In-
stead of the fully dynamic framework assumed in RFC 1546 where
arbitrary hosts can join and leave anycast groups dynamically we
envision a more statically provisioned framework where only con-
figured hosts within the network infrastructure are members of an
anycast group and ISPs explicitly control the allocation and adver-
tisement of anycast addresses.

3.2 Anycast Routing

Intra-Domain. Standard intra-domain unicast routing algo-
rithms, whether distance-vector or link-state, are naturally
amenable to routing anycast. As described in [31], for link-state
protocols such as OSPF, the only modification required is that IPvN
routers also advertise a high-cost “link” to the corresponding any-
cast address. This high cost is necessary to prevent routers from
attempting to route through an anycast address. Note that from
these link state advertisements, an IPvN router can easily identify
every other IPvN router within its domain. With distance-vector
protocols such as RIP [32], anycast routing merely requires that an
IPvN router advertise a distance of zero to its anycast address; stan-
dard distance-vector then ensures that every router will discover the
next hop to its closest IPvN router. Note that here, unlike link-state
routing, an IPvN router cannot easily identify other IPvN routers.

An alternate approach to both the above is simply to have an
IPvN router indicate this in its standard unicast route advertise-
ment by, for example, explicitly listing its anycast address. Be-
cause intra-domain routing algorithms build a complete (i.e., non-
aggregated) routing table, this makes anycast routing trivial –
a router merely checks its unicast routing table for the closest
anycast-addressed router. This involves a small modification to ex-
isting intra-domain routing algorithms but makes it trivial for IPvN
routers to discover one another. As described in Section 3.3, this
knowledge enables very simple intra-domain virtual topology con-
struction.2

2While the remainder of this paper will assume that the intra-
domain protocol does allow IPvN routers to discover one another
we stress that this is merely a simplification and in no way a neces-
sary requirement. In its absence (i.e., for domains that use unmod-
ified RIP [32]), the intra-domain virtual topology construction will
merely have to implement some additional discovery mechanisms
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`

`

IPvN traffic to An
after Y and Q peer

Figure 2: Inter-domain anycast routing using ISP-rooted unicast
addresses and “default” routes.

Inter-Domain, option 1: non-aggregatable addresses,
global routes. One approach to supporting inter-domain any-
cast is to designate a portion of the regular unicast address space
to serve as anycast addresses and require that ISPs propagate route
advertisements for anycast addresses in their inter-domain routing
protocols. This approach is certainly implementable even today –
as suggested by [28,31], a designated portion of the unicast address
space could be assigned to anycast and propagating these routes
in BGP would require a change in policy but not mechanism on
the part of ISPs – and yet there is, with one exception [30], lit-
tle deployment of global IP anycast. One reason for this narrow
adoption is concern over the scalability of such an approach, par-
ticularly under RFC1546’s fully general and dynamic IP anycast
service model. Anycast addresses, as described above, are not ag-
gregatable and must hence be advertised individually by routing
protocols and lead to routing state that grows in direct proportion
to the number of anycast groups. However, for our proposed use of
anycast, scalability is unlikely to be a concern. Recall that a single
anycast address is needed to serve each new generation of IP. Given
the cost and effort for an ISP to roll out a new generation of routers,
we imagine that the number of simultaneous attempts to deploy dif-
ferent IP versions is likely to be very small (ideally one) and will
not lead to a problematic growth in routing state. Moreover, unlike
the more commonly advocated uses of anycast (server selection,
etc.), here the consumers of anycast addresses are not arbitrary en-
dusers but rather the ISPs themselves who have an incentive to use
these addresses sparingly. To further ensure this, ISPs might even
charge to route anycast.

Instead, our concern with this approach is that it requires that all
ISPs eventually support the propagation of anycast routes. While
this seems like a not unreasonable hope given that the only change
required is a simple modification to policy, we would rather not rely
on this assumption and hence explore alternate approaches.

Inter-Domain, option 2: aggregatable addresses, de-
fault routes. To address the poor scaling of traditional anycast
architectures, Katabi et al. propose GIA [31]. In GIA, scalabil-
ity is achieved by introducing the notion of a “home” ISP domain
associated with an anycast group. GIA still allocates anycast its

such as those described in Section 3.3.
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own portion of the IP address space – all addresses prefixed by a
well-known “Anycast Indicator” sequence of bits. However the re-
maining address bits are drawn from the unicast address space of
the home domain. This allows for simple “default” routes; a router
with no anycast routing entry for a given address can look up the
home domain’s prefix in its unicast routing table and forward the
packet towards the home domain. GIA requires that the home do-
main include at least one member of the anycast group and hence
this ensures the packet will reach a group member although not
necessarily the closest. For more optimized anycast routes, Katabi
et al. propose an extension to BGP whereby border routers can
initiate searches for nearby members of an anycast group.

While GIA offers an elegant solution to scalable anycast, its de-
ployment requires modifying the border routers at client domains.
Given the current lack of deployment of GIA by ISPs, and to sat-
isfy our stated required assumption of no global participation (Sec-
tion 2), we present here an approach to anycast that requires no
change by non-participant ISPs. We stress however that our pro-
posal is somewhat motivated by expediency and open to eventual
replacement by GIA (or a similar design) and/or the use of a limited
number of non-aggregatable addresses as described above.

Our proposal, along the lines described in [33], is to avoid (at
least for now) introducing a special type of anycast address and in-
stead just reuse a piece of the existing unicast address space. We
borrow the basic insight behind GIA and advocate that anycast ad-
dresses be allocated from the unicast address space of a “default”
ISP (e.g., the first ISP to initiate deployment of IPvN) and IPvN
routers are configured to advertise the anycast address in their IGP
as described earlier. Additional ISPs that adopt IPvN also configure
their IPvN routers to advertise the same anycast address internally.
Standard unicast routing will deliver anycast packets to the closest
IPvN router along the path from the source to the default ISP. For
example, in Figure 2, ISPs Q and D deploy IPvN and D is the de-
fault domain; anycast packets from domains X and Y terminate in
domain D while those from Z reach Q. To widen their reach, non-
default domains can peer with neighboring domains to advertise
their anycast route. For example, in Figure 2, Q can peer with Y to
advertise its path for the anycast address in question; Y’s packets
will then be delivered to Q rather than D.

Thus the final picture in our proposal is not unlike that using
non-aggregatable addresses. The key difference is that our use of a
default ISP allows us to transition to that final picture through the
optional and independent participation of ISPs. Even with no coop-
eration from non-IPvN domains, the above scheme will route any-
cast correctly, although imperfectly in terms of proximity to, IPvN
routers. Here, the use of inter-domain advertising is an optimiza-
tion that leads to more improved anycasting. A potential failing of
our approach is that the default provider owns the anycast address
and receives a larger than normal share of IPvN traffic. Ideally
though, this could incite other ISPs to pursue inter-domain adver-
tising of anycast addresses.

Given its practicality, our discussion from here on will assume
the the use of anycast addresses rooted in default ISPs.

3.3 vN-Bone Formation
Sections 3.1 and 3.2 described how IPvN packets are steered to

IPvN routers. We now describe how these IPvN routers cooper-
ate to form a “virtual” IPvN network, or vN-Bone, overlaid on an
Internet where IPv(N-1) is ubiquitously deployed.

Before delving into the details of our mechanisms, we make two
observations: the first is that, unlike the case of network redirec-
tion which must be ubiquitously supported (whether explicitly as
in option 1 for inter-domain anycast, or implicitly as in option 2 for

inter-domain anycast, as described in Section 3.2) by both partici-
pant and non-participant providers, vN-Bones are implemented en-
tirely by participant ISPs and hence this design space is much less
constrained. Indeed, many of the techniques from the literature on
overlays and testbeds [18, 20, 21, 21, 23] could likely find use here
and, as such, our proposals are best viewed as one set of candi-
date solutions. The second observation is that virtual networks that
span multiple ISPs are not new. Networks like the MBone [25] and
6Bone were all pioneering efforts in this respect. These networks
relied greatly on manual configuration and, while the solutions we
present do automate much of the topology construction and main-
tenance process, we readily accept that many ISPs might, as in the
past, simply choose to configure their networks by hand.

There are two main components to a virtual network:

1. virtual topology construction, and

2. routing over this virtual network

Note that because we do not assume ubiquitous deployment even
within a participant ISP, each of the above must be addressed at
both the intra and inter-domain level.

3.3.1 Topology Construction
The first component – vN-Bone construction – is fairly straight-

forward as it largely builds off the connectivity information re-
vealed by the underlying IPv(N-1) routing protocols. For example,
the IPv(N-1) intra-domain routing, whether link-state or distance-
vector (and assuming the anycast extensions described in the pre-
vious section), ensures that every IPvN router has complete knowl-
edge of the set of IPvN routers within its domain.3 The intra-
domain vN-Bone topology can then be constructed through simple
rules such as: every IPvN router picks its k closest IPvN routers
as neighbors on the vN-Bone. In the event that such rules leads to
partitions, these can be easily detected and repaired because every
router has complete knowledge of all other IPvN routers.

At the inter-domain level, the most likely scenario is that ISPs
set up inter-domain tunnels based on their peering policies. In the
absence of such configuration, a newly joined ISP could reuse the
anycast mechanism as the initial bootstrap by which to discover at
least one other ISP that currently supports IPvN; having done this,
the new ISP can discover additional neighbors through the inter-
domain vN-Bone routing (described below).4 For preventing parti-
tions of the inter-domain vN-Bone topology, one simple approach
is for every domain to ensure that it is connected (either directly or
indirectly) to the “default” provider of the anycast address.

Finally, as deployment spreads, the vN-Bone topology should
evolve to be congruent with the underlying physical topology. This
is easily achieved using the connectivity information revealed by
the v(N-1) routing protocols at the intra and inter-domain levels.

3.3.2 Routing in vN-Bones

Addressing. The issue of routing is closely tied to that of host
addressing. There are at least three aspects to addressing that to

3Recall our discussion in Section 3.2 about how such global knowl-
edge can be achieved even in distance-vector protocols like RIP
with one minor modification. In the absence of this modification,
intra-domain vN-Bone construction over RIP would have to be im-
plemented along the lines of the inter-domain vN-Bone construc-
tion; i.e., through explicit neighbor discovery leveraging anycast
for the initial bootstrap.
4Note that this use of anycast is only possible for a new ISP that
isn’t yet actively advertising the anycast. Otherwise, the anycast
route would simply loop back to the initiator.
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be considered: (1) the format or structure of addresses, (2) address
allocation and, (3) advertising addresses into the routing fabric.

In today’s Internet, the allocation and advertisement of an end-
host’s IPv4 address is handled by its local access provider. If future
IPvN architectures adopt a similar model then supporting univer-
sal access raises the question of how an endhost might obtain an
IPvN address if its access provider does not yet support IPvN. A
possible solution, along the lines proposed in RFC 3056 [34], is to
have the endhost assign itself a unique IPvN address. This can be
done, for example, by using one address bit to indicate such “self
addressing” and deriving the remaining IPvN address bits from the
endhost’s unique IPv(N-1) address. Note that these self-addresses
are very likely temporary and such endhosts will have to relabel
if and when their access providers do adopt IPvN. This leaves us
then with the question of how such temporary IPvN addresses are
advertised and routed on. We explore this question in detail in the
discussion on routing that follows. Finally, we note that this need
for self-addressing arises in the case where address assignment is
handled by an endhost’s local provider. More generally however,
we place no particular constraints on the addressing structure or
allocation policy a next-generation IPvN may adopt.

Routing. In considering routing on this virtual network, we have
to do so at two levels:

• routing between IPvN routers on the vN-Bone, and

• routing between any two IPvN endhosts

The two issues are closely related – given the ability to route
between IPvN routers, routing between two IPvN endhosts is pri-
marily a question of how we find the appropriate ingress and egress
IPvN routers for a given source and destination IPvN endhosts.

Note that most discussions of routing, whether application layer
as in overlays, or at the IPv4 network layer, need not distinguish be-

tween the two cases above. The current network layer assumes that
an endhost’s ingress or egress router is simply its access router and
hence this distinction in unnecessary. Unfortunately, our need for
universal client access under partial IPvN deployment makes this
assumption invalid (at the IPvN layer). Proposed overlay-based
routing systems [9, 20] on the other hand, assume some form of
higher-layer (e.g., DNS) or out-of-band translation between an end-
host identifier and its “attachment” point in the overlay. This trans-
lation can be invoked prior to communication between two end-
hosts and hence the issues of routing between endhosts is easily
mapped to that of routing between two overlay routers. In our case
however, there are a number of reasons why we might not want to
make a similar assumption. First, endhosts are not assigned explicit
attachment points in the vN-Bone. Moreover, an endhost might
have different attachment points depending on the network loca-
tion of the endhost it is communicating with and these attachment
points will change as deployment spreads. Most importantly, this
option raises issues similar to those with application-level redirec-
tion (Section 2.2) – given our self-imposed reluctance to assume the
introduction of new services, it isn’t clear who can effect this trans-
lation or how, because doing so would require intimate knowledge
of the state of IPvN deployment.

Between routers:. The topology construction in Section 3.3.1
described the global vN-Bone as composed of intra-domain vN-
Bone topologies interconnected by inter-domain tunnels. Given
this topology, establishing routes between IPvN routers is achieved
by IPvN routing protocols and will thus depend on the specifics of
a particular IPvN. The space of possible routing solutions here is
fairly unconstrained as the participant nodes are all IPvN routers.
In the discussion that follows, we assume the existence of sepa-
rate intra and inter-domain IPvN routing protocols but assume no
specific routing algorithm. For simplicity, we use the notation BG-
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PvN to denote the IPvN inter-domain routing protocol even though
BGPvN need not strictly resemble today’s BGP.

Between endhosts:. We consider the problem of routing be-
tween endhosts in the face of partial IPvN deployment at the inter-
domain level; the intra-domain case follows along similar lines.

The question of finding an appropriate ingress router is easily
resolved by our use of anycast for redirection. An IPvN packet
injected by a source host will, through anycast, find its way to an
ingress IPvN router without special support or configuration by the
endhost. Hence the main question is that of finding an appropriate
egress IPvN router. If the destination is in an IPvN domain, this is
simple. In this case, the destination has a routable IPvN address,
its home domain advertises this address into the IPvN-Bone rout-
ing topology and hence all IPvN routers know how to forward the
packet through to that address. In other words, in this case, routing
is based entirely on the IPvN destination address, using the IPvN
routing protocols.

The case where the destination IPvN client is not in an IPvN
enabled domain is less obvious. Recall that such a client has an un-
advertised, temporary IPvN address. One apparently simple option
would be to have the IPvN client use anycast to locate a closeby
IPvN router and have that router advertise the client’s temporary
IPvN address. An endhost would periodically repeat this process
in order to adapt to spread in deployment as also to router and net-
work dynamics. While simple, this is somewhat of a departure from
existing norms for route advertisement. Endhosts today are not in-
dividually responsible for route advertisement nor do routers typi-
cally accept direct route advertisements from remote endhosts (or
even remote routers); the security and policy implications of such
a change are an open question. Moreover, this introduces a form of
fate-sharing between an endhost and its route advertisement that,
again, isn’t common today. Finally, such routes for temporary IPvN
addresses would be injected into the IPvN routing protocol and it
isn’t clear how this would constrain the design space for routing
and addressing at the IPvN layer. For these reasons, in the remain-
der of this paper we do not adopt the above solution. Instead, we
look for solutions that place the burden of locating an appropriate
egress IPvN router on the IPvN routers themselves rather than on
endhosts. Nonetheless, the simplicity of this anycast-based scheme
is appealing and should be considered in the case of IPvNs where
the above issues turn out to not be problematic.

A different option is to leverage the destination’s IPv(N-1) ad-
dress and IPv(N-1) routing information. The destination’s IPv(N-1)
address could either be inferred from its temporary IPvN address or
might be carried in a separate option field in the IPvN header. Here
again, there are multiple possible options.

The simplest option is to simply exit the vN-Bone and forward
the packet directly to the destination’s IPv(N-1) address. This how-
ever fails to fully exploit IPvN deployment. Consider for example,
the scenario in Figure 3. Here, the IPvN border router X in ISP do-
main M does not contain an IPvN-level route to client C and hence
would just deliver the packet directly to C over IPv(N-1) effectively
“exiting” the vN-Bone at X. Ideally however, X could have for-
warded the packet over the vN-Bone to Z in ISP-O and from there
to Y at which point the packet would exit the vN-Bone and be tun-
neled to C. This would be possible were M’s IPvN border routers
aware of the IPv(N-1) domain-level path between ISP M and C’s
domain. This is easily achieved by having an IPvN border router
acquire BGPv(N-1) routing tables from its domain’s IPv(N-1) bor-
der router. In addition, the IPvN router must know the IPv(N-1)
domain associated with the different IPvN border routers (in this
case Z). This too can be easily achieved by having IPvN border

Domain BGPv(N-1) path IPvN? w/ adv-by-proxy

C C:Z yes C:Z
N N:Z no –
B B:N:Z yes B:C:Z
M M:B:N:Z no –
A A:M:B:N:Z yes A:B:C:Z

Table 1: BGPv(N-1) and BGPvN routing entries corresponding to Fig-
ure 4 advertising by proxy leads A and B to route to Z through IPvN do-
main C

routers add this information in their IPvN route advertisements.
The above is an improvement but does not ensure that all possi-

ble IPvN paths to the destination have been considered. For exam-
ple, consider the scenario in Figure 4. For simplicity, we assume
here that the BGPvN protocol uses a path-vector protocol similar
to the current BGP. Here, Z is the non-IPvN destination domain, A,
B and C are IPvN domains and M and O are non-IPvN domains.
Each domain’s BGPv(N-1) entries to Z and their BGPvN entries
are shown in Table 1. With the routing we’ve developed this far,
domain A is ignorant of the path from C to Z (because C does not
lie on A’s BGPv(N-1) path to Z) and hence will not route through C
to Z. To rectify this we propose the following “advertise-by-proxy”
BGPvN rule: an IPvN border router advertises an IPv(N-1) destina-
tion prefix if it is the only IPvN domain along the BGPv(N-1) path
from itself to the destination domain. This can be done by having
an IPvN router include a list of “on-behalf-of” IPv(N-1) domains
in its IPvN inter-domain route advertisements. Note that this is ac-
tually a minor change to the above proposal – in addition to its own
IPv(N-1) domain, an IPvN router merely adds a list of additional
IPv(N-1) domains for which it serves as proxy. In making routing
decisions, an IPvN router can now combine this IPv(N-1) level in-
formation with its IPvN information. In our example, one could
simply add the number of (domain-level) hops. Hence, both B and
C would inject route advertisements for Z with distances of 2 and
1 respectively and regular BGPvN inter-domain routing can then
compute routes to Z as normal. Note that effectively, the routing
“distance” in this case is the sum of the (1) BGPvN routing dis-
tance on the vN-Bone and, (2) the domain-level hops between the
IPvN egress and the destination on the IPv(N-1) topology with ties
broken (as in our example) to favor IPvN paths. While this met-
ric is certainly open to adjustment, this would seem to achieve a
good tradeoff between maximizing routing through IPvN domains,
while avoiding excessively long routes in order to do so. Note that
our example here was an easy case because the notion of routing
distance at the BGPvN and BGPv(N-1) level were easily compat-
ible. In general, the appropriate manner in which the two routing
metrics might be combined would have to be determined based on
the specific BGPvN and BGPv(N-1).

In summary, for a destination in an IPvN domain, routing is ef-
fected using its IPvN address and IPvN routing information. For an
IPvN destination in an IPv(N-1) domain, routing is on the destina-
tion’s IPv(N-1) address using a combination of IPvN and IPv(N-1)
routing information. Thus (under this design!) the requirement on
IPvN that allow smooth transitioning are: (1) hosts must be able to
create temporary and unique IPvN addresses, (2) a temporary ad-
dress should reveal the host’s IPv(N-1) address or the IPvN header
should allow that information to be carried, and (3) IPvN routers
should be able to annotate their route advertisements with IPv(N-
1) topology information.

Note that, unlike in typical overlays, our routing does not guar-
antee a unique egress point to a destination and nor should it. For
example, routes from domain C to Z should exit the vN-Bone at C
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while those in B should exit at N. This can lead to route asymme-
try because routes from C will always select the same ingress point
(because the anycast mechanism will always select the closest IPvN
router independent of the destination). Thus, while asymmetry is
not unusual even today, our proposal is likely to exacerbate asym-
metric routing in the early stages of deployment.

3.4 Forwarding
We now briefly review the end-to-end data path taken by a

packet. Assume IPv(N-1) is the current ubiquitously deployed
version of IP, IPvN is the next generation IP and all IPvN routers
form a virtual vN-Bone. We use An−1 to denote the IPv(N-1)
anycast address assigned to the deployment of IPvN. Then,
end-to-end forwarding of an IPvN packet works as follows:

• the source S encapsulates the IPvN packet in an IPv(N-1)
header with destination An−1.

• using anycast, the packet is forwarded over legacy IPv(N-1)
routers to the closest IPvN router, R1.

• R1 strips off the IPv(N-1) header, processes the packet as
needed, looks up the next hop (R2) to the destination us-
ing the vN-Bone forwarding tables, and forwards the packet
to R2, once again encapsulating the packet in an IPv(N-1)
header if required.

• this is repeated until the packet reaches the egress IPvN
router which tunnels the packet through to the destination.

In addition, the source, either through configuration or an ARP-
like protocol, discovers whether its first hop router supports IPvN
and, if so, does not encapsulate the packet. Similarly, every inter-
mediate router will only invoke encapsulation if its next hop IPvN
router is not an immediate (i.e., physical layer) neighbor. Thus,
as deployment spreads, the use of IPv(N-1) is gradually phased out.

3.5 Discussion
This section described a series of mechanisms that, taken to-

gether, provide a framework for transitioning between successive
generations of IP. Supporting these mechanisms places additional
demands on future generations of routers. Specifically, an IPvN
router must: (1) participate in the IPv(N-1) unicast and anycast
routing algorithms, (2) perform IPv(N-1) forwarding, (3) partici-
pate in the construction of the virtual vN-Bone network, (4) partic-
ipate in IPvN unicast and anycast routing and finally, (5) perform
IPvN forwarding.

Participation in IPv(N-1) and IPvN routing and forwarding
seems unavoidable for any transition path and hence the specific
additions here involve support for anycast routing and the construc-
tion of the virtual IPvN network which, as described here, do not
seem unduly complex.

We stress two crucial features of our framework: the first is
that we do not require that all routers support the above mecha-
nisms; rather, to evolve from IPv(N-1) to IPvN, only IPvN routers
need support the entire suite of mechanisms. This means that our
framework for evolvability is not itself gated by issues of non-
cooperation from ISPs with no interest in deploying IPvN. Second,
we point out that our framework adheres to the general design style
of the existing Internet with no per-client state within the network,
no significant complexity on the packet forwarding path, decentral-
ized control and so forth.

Unfortunately, our approach does not assist in the deployment of
architectures that, by definition, require support from every router

along the path. This includes certain QoS proposals though re-
cent work on supporting such features in overlays might assist in
this regard [19]. Also unclear, is whether the potential routing in-
efficiencies due to anycast (at least in the early stages of deploy-
ment), might diminish the usefulness of certain IPvN architectures.
Of particular concern here would be architectures with the primary
goal of improving performance properties such as path loss or de-
lay. However, this is likely to be less of an issue for the (many)
proposals that seek to add IP-level support for security, mobility,
addressing, robustness, and so forth [2, 3, 7, 12, 13, 16, 17, 35–37].

Our discussion in this paper addresses how IPvN packets are
delivered between two IPvN endhosts across networks with lim-
ited support for IPvN. A related open question is whether general
guidelines exist for how an IPvN endhost may inter-operate with an
IPv(N-1) endhost over IPvN. This requires support from the end-
points and, depending on the specifics of an IPvN, may range in
complexity from simple header translation to more complex trans-
lations of even higher-layer protocols. Depending on their com-
plexity, such translations might be effected by simple NAT-like
functionality in IPvN routers, client-side proxies or special IPvN
transition boxes. A detailed discussion on endhost interoperability
is beyond the scope of this paper; for a relevant discussion, we refer
the interested reader to the work on OCALA [27], a proxy-based
solution for supporting legacy applications over overlay networks.

Finally, it is worth pondering what, in the larger network archi-
tecture, must remain “invariant” in the sense of functionality that
must be retained through successive architectural generations to en-
sure continued evolvability. Examination of our mechanisms would
suggest just two: support for global unicast and anycast routing.

4. DEPLOYING SOURCE-SPECIFIC
MULTICAST

The previous section presented an overall framework for evolv-
ability based on the use of IP Anycast. In this section, we take IP
Multicast as an example of a new IP service and work through its
deployment under this framework. In so doing, we quite deliber-
ately do not attempt to innovate on the details of the multicast pro-
tocols themselves; instead we take existing standards and describe
how our framework might support their deployment.

We focus our discussion on the deployment of source-specific
multicast. A detailed description of deploying any-source multicast
which uses a somewhat larger suite of protocols (IGMP, MSDP,
MBGP, PIM-SM and PIM-DM), while we believe would follow
along similar lines, is beyond the most masochistic tendencies of
the authors.

Source Specific Multicast. Source Specific Multicast (SSM),
a restricted form of the more general IP Multicast service [38],
provides one-to-many packet delivery between a designated source
node and zero or more receivers [39]. As defined by RFC 3569 [40]
and Holbrook [29, 41], source-specific multicast is implemented
through the combined use of the Internet Gateway Multicast Proto-
col (IGMP) [42] and a reduced form of Sparse Mode PIM (Protocol
Independent Multicast), denoted PIM-SSM. Through IGMP, a Des-
ignated Router (DR) on a local network tracks group membership
on each of its network interfaces and participates in the wide-area
multicast routing on behalf of the endhosts on its network. PIM-
SSM is then used to construct a tree rooted at the source DR to all
receivers’ DRs. For simplicity, we use endhosts to mean their DRs
and focus only on the mechanics of the wide-area routing.

In SSM, a multicast group, called a channel, is defined by
the combination (S,G) of a multicast group address (G) and the

321



vers
IPv4

srcC
dst
A

m

vers
IPvM

proto
PIM

srcC
dst
G

vers
PIM

v2
type
JO

IN
srcS

dst
G

IPv4 header
IPvM

 header
PIM

 header
P1:vers

IPv4
src
R

1
dst
R

2
vers
IPvM

proto
PIM

src
R

1
dst
G

vers
PIM

v2
type
JO

IN
srcS

dst
G

P2:

vers
IPv4

src
R

n
dst
S

vers
IPvM

proto
PIM

src
R

n
dst
G

vers
PIM

v2
type
JO

IN
srcS

dst
G

P3:

F
igure

5:
D

eploying
Source-Specific

M
ulticastusing

IP
A

nycast
encapsulation.O

nly
relevantheader

fields
are

show
n.

unicast
address

(S)
of

the
source.

T
he

SSM
receiver

inter-
face

supports
joining

and
leaving

a
channel

(s
u
b
s
c
r
i
b
e
(
S
,
G
)

,
u
n
s
u
b
s
c
r
i
b
e
(
S
,
G
)

).
A
s
u
b
s
c
r
i
b
e

results
in

a
JO

IN
m

es-
sage

being
routed

tow
ard

S,
setting

up
routing

state
for

the
new

receiver
atevery

pointalong
the

path
untilthe

JO
IN

m
essages

hits
a

router
on

the
distribution

tree.
u
n
s
u
b
s
c
r
i
b
e

operations
trigger

PR
U

N
E

m
essages

that
tear

dow
n

routing
state

in
a

sim
ilar

m
anner.

To
m

ulticast
to

the
group,

packets
from

the
source

are
forw

arded
dow

n
the

distribution
tree

using
reverse-path

forw
arding.

W
e

now
detail

how
SSM

w
ould

operate
using

our
fram

ew
ork

from
the

previous
section.

W
e

assum
e

IPv4
is

the
ubiquitously

de-
ployed

IP
and

use
IPvM

to
denote

a
nextgeneration

IP
thatsupports

PIM
-SSM

.A
m

denotes
the

anycastaddress
allocated

forthe
deploy-

m
ent

of
IPvM

and
vM

-B
one

the
IPvM

virtual
topology.

N
ote

that
a

single
vM

-B
one

is
reused

by
allm

ulticastgroups.

•
To

use
IPvM

,
a

client
C

first
checks

w
hether

its
local

ISP
supports

IPvM
.If

not,then
all

IPvM
packets

w
ill

be
encap-

sulated
in

IPv4
packets

as
described

below
.O

therw
ise,IPvM

packets
are

transm
itted

natively.
In

this
exam

ple,w
e

assum
e

C
’s

access
provider

does
notsupportIPvM

.

•
To

join
channel

(S,G
)

client
C

transm
its

a
JO

IN
m

essage
show

n
as

packet
(P1)

in
Figure

5.
N

ote
that

in
practice,

the
source

address
denoted

as
C

w
ould

be
the

IP
address

of
C

’s
D

esignated
R

outer
rather

than
C

itself.
A

nycast
routing

de-
livers

this
PIM

JO
IN

m
essage

to
R

1,
the

IPvM
closest

to
C

.

•
R

1
strips

off
the

outer
IPv4

header,
and

adds
(G

,S,C
)

to
its

m
ulticastforw

arding
table.If

this
is

R
1’s

firstm
ulticastrout-

ing
entry

for
(G

,S)
then

R
1

looks
up

the
next

hop,
say

R
2,

to
destination

S
on

the
vM

-B
one,

encapsulates
the

packet
as

(P2)
in

Figure
5

and
unicasts

P2
to

R
2.

O
therw

ise,
the

JO
IN

operation
is

term
inated

since
R

1
is

already
on

the
de-

livery
tree

for
(G

,S).O
nce

again,ifR
1

and
R

2
are

im
m

ediate
neighbors

then
encapsulation

is
bypassed.

•
T

he
above

is
repeated

until
the

packet
hits

an
IPvM

router
already

on
the

distribution
tree

for
(G

,S)
or

the
egress

IPvM
router

R
n

in
w

hich
case

R
n

unicasts
the

packetP3
from

Fig-
ure

5
to

S
w

hich
sets

up
state

(G
,S,R

n).
A

gain,
in

practice
this

state
is

stored
atS’s

D
R

and
notS

itself.In
fact,S

w
ould

have
no

know
ledge

ofthe
m

em
bership

ofG
.N

ote
thatS’s

D
R

m
ust

know
to

decapsulate
the

packet.
H

ow
ever

as
described

in
[R

FC
2326],supportfor

encapsulation
is

already
required

of
D

R
s

to
handle

packets
tunneled

to
and

from
R

endezvous
Points.

•
Finally,to

m
ulticastto

group
G

,S
transm

its
a

data
packet

to
group

G
.T

he
packet

is
picked

up
by

S’s
D

esignated
R

outer
and

forw
arded

through
the

(S,G
)

tree
constructed

as
above.

T
he

pointto
note

in
the

above
exercise

is
the

m
annerin

w
hich

our
general

fram
ew

ork
enables

SSM
to

be
universally

accessible
(i.e.,

to
all

endhosts)
despite

partial
deploym

ent
of

IPvM
and

support
for

PIM
-SSM

.A
tevery

step
in

the
tree

construction
and

m
ulticast

forw
arding,IPvM

and
PIM

-SSM
can

run
“natively”

ifpossible
and,

if
not,the

general
techniques

of
tunneling

and
anycast

forw
arding

bridge
the

gap
to

the
nextisland

of
IPvM

support.

5.
R

E
L

A
T

E
D

W
O

R
K

T
he

literature
abounds

w
ith

proposals
for

architectural
fixes

and/or
altogether

new
architectures.T

hese
identify,and

offer
solu-

tions
to,a

num
ber

of
problem

s
thatplague

the
current

architecture
–

security
[2,3,17],routing

[43],m
obility

[7,35],interm
ittentcon-

nectivity
[16],quality-of-service

[6],congestion
control[8,44,45],

nam
ing

[36,46,47],addressing
[13,37],robustness

[12]
–

to
nam

e
a

few
.

L
ike

us,all
the

above
proposals

choose
to

w
ork

w
ithin

the
fram

ew
ork

of
im

proving
current

ISP
infrastructure.

H
ow

ever,
the

question
of

evolvability,in
the

sense
of

repeated
architecturaltran-

sitions
and

the
econom

ic
and

technicalissues
itraises,has

typically
not

been
the

focus
of

these
proposals.

W
hile

m
any

discuss
the

in-
crem

entaldeploym
entof

their
solutions,they

address
the

technical
but

not
econom

ic
issues

of
partial

deploym
ent.

M
oreover,they

do
notaddress

how
one

m
ighteventually

(and
generally)m

ove
beyond

itto
the

nextarchitecture.T
his

paper,by
contrast,does

notaddress
the

larger
question

of
w

hat
an

ideal
next

generation
architecture

m
ightlook

like,focusing
instead

only
on

how
one

m
ighttransition

betw
een

architectures.A
tthe

sam
e

tim
e,our

exploration
is

needed
because

the
lack

of
evolvability

is
precisely

w
hat

has
traditionally

ham
pered

the
adoption

of
proposals

such
as

the
above.

A
s

m
entioned

in
Section

1,
m

any
have

used
overlays

to
tackle

com
m

on
architectural

problem
s

[18–20,22,48–51].
T

hese
offer

tractable
application-layer

solutions
to

pressing
problem

s
but

are
lim

ited
to

effecting
change

atthe
endpoints

of
an

Internetpath
and

cannot
evolve

IP
itself.

W
e

note
that

one
m

ight
debate

w
hat

func-
tions

m
erit

IP-level
support

and
the

extent
to

w
hich

these
can

be
approxim

ated
by

application-level
solutions.

T
his

is
a

useful
and

necessary
debate

but,to
extrapolate

from
this

debate
to

the
conclu-

sion
thatone

should
abandon,foralltim

e,any
attem

ptatinnovation
in

the
IP

infrastructure
seem

s
prem

ature.
Such

innovation
is

w
hat

this
paper

seeks
to

enable.
Peterson

et
al.

[1],
in

recent
w

ork,
are

probably
the

first
to

ex-
plicitly

call
out

evolvability
as

a
m

ajor
architectural

challenge
and

put
forth

a
concrete

proposal
(based

on
netw

ork
virtualization)

to
address

this
challenge.

A
s

described
in

Section
1,

our
proposals

differ
on

the
fundam

entals
of

how
w

e
envision

evolution
w

ill
oc-

cur.
W

hile
they

view
evolution

as
occurring

through
a

succession
of

“revolutions”
in

w
hich

a
new

generation
of

service
providers

underm
ine,

and
eventually

replace,
incum

bent
providers,

w
e

see
evolution

as
a

gradual
process

led
by

incum
bent

ISPs
incented

to
evolve.W

e
believe

both
approaches

m
eritexploration.Finally,this

paper
w

orks
through

m
any

of
the

low
er-level

details
(e.g.,

topol-
ogy

construction
and

routing
on

a
virtualnetw

ork,w
ho

im
plem

ents
redirection

and
how

,etc.)
notaddressed

in
[1].

M
any

of
the

architecturalthem
es

thatrun
through

this
paper

can
be

traced
back

to
the

general
discussions

on
Internet

architecture
by

C
lark

et
al..

For
exam

ple,
our

discussion
in

Section
2

on
the

conflictbetw
een

user
choice

and
ISP

control,is
rem

iniscent
of

the
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discussion of “tussles” in cyberspace [52], while [53] articulates
the need to “take explicit, architected action to preserve the ability
to change, evolve and advance (network) technology”. Of course,
whether our proposal represents the right embodiment of the dis-
cussions in [11, 52, 53] is entirely debatable! We look forward to
such debates in future work and instead present this paper as, at the
very least, offering a concrete on-the-table proposal as a starting
point for future discussions.

The technical framework for evolvability described in Sec-
tion 3.1 has two main components, the use of anycast-based redi-
rection and the construction of, and routing over, multi-provider
virtual networks. RFC 1546 [28] first proposed the concept of an
anycast service but does not address its implementation. As men-
tioned, some of our proposals for anycast routing are inspired by,
but somewhat different from, GIA [31], a proposal for scalable IP
anycast by Katabi et al. In recent work, Ballani et al. [54] propose
PIAS, a proxy-based approach to deploying a global anycast ser-
vice. PIAS proposes using a hybrid of native IP anycast (to reach
the proxy service) and overlay routing (to implement anycast be-
tween proxies). While using a service such as PIAS is certainly a
possibility that we intend to explore in the future, we chose not to
for the immediate future due to the current lack of deployment of
a PIAS service and also as it isn’t readily apparent how ISPs might
control the operation of an infrastructure such as PIAS.

Most relevant to our discussion on vN-Bones, is the work on
testbeds such as the MBone and XBone [25, 26, 55]. Our proposal
for vN-Bones, is identical in spirit and differs only in some of our
proposals to automate much of the topology and route construc-
tion. Also relevant here is the large body of work on overlay net-
works [18, 20, 21, 56, 57]. While we could (and do) leverage many
of their ideas, vN-Bones differ from the majority of overlays in
two important aspects: (1) vN-Bones are deployed and operated
by multiple ISPs acting in concert and (2) vN-Bones operate at the
router-level path between two endhosts in a manner that is com-
pletely transparent to the endhosts. These two differences lead to
somewhat different needs and solutions to the problem of routing
on the virtual network.

Not surprisingly, mechanisms similar to some discussed in this
paper can be found in the vast body of work on assisting the de-
ployment of IPv6 [34,58–60]. Our contribution lies in relating such
mechanisms to the question of incentives (specifically universal ac-
cess) and unifying them into a cohesive and general plan for the
deployment of future IPvN.

Finally, this section would be incomplete without paying tribute
to the vision of active networks [15] whose authors were probably
the first to tackle the need to enable innovation within the network
infrastructure. However, as should be clear, our approaches are
diametrically opposite. Active networks advocates new services
being loaded into the infrastructure on demand and allows endhosts
to define these new services. Instead, we rely on ISPs to deploy
new IP functionality and limit endhosts to choosing between ISP
offerings – a much more limited and hence more tractable approach
to supporting innovation in the network infrastructure.

6. DISCUSSION
The inability to evolve IP, which lies at the very core of the Inter-

net architecture, has long vexed the research community. Overlays,
by either circumventing or undermining the control of ISPs, offer
one solution to evolving today’s architecture. This paper explored
an alternate approach. Rather than achieve evolution by overhaul-
ing the administrative and operational structure of today’s Internet,
we look for what is missing from today’s architecture that would
make evolution by its incumbent operators economically desirable

and technically feasible. A difference, in some sense, between
evolving a network and architecting a network for evolvability.

We set out on our exploration fully expecting to discover that
achieving evolvability would require a dramatic re-architecting
of today’s network, rendering our study into a mostly academic
thought exercise. Instead, we found that our current architecture is
largely evolvable as is. (A testament to the wisdom of the current
architecture!). The one missing piece in the puzzle is widespread
support for a global IP anycast service. This is good news because
global support for anycast need not be a pipe dream; on the contrary
deployment of anycast is well within reach even today.

Thus, we leave this paper with one concrete proposal for action –
that it is worth resurrecting the case for a global IP anycast service.

While our proposed plan for evolvability does not strictly require
global deployment of anycast, it would certainly be assisted by such
deployment. Anycast has been proposed and discussed in the past
but has never achieved significant momentum in terms of global
deployment or wide-area evaluation. This was in part because its
target usage was fairly narrow (DNS configuration, server selec-
tion, RP location) and partly because, often, similar functionality
could be achieved through equivalent application-layer solutions
(e.g., Akamai redirection for server selection). This paper has ar-
gued that instead, IP anycast could be just the mechanism needed
to evolve the Internet.

Finally, we point out that even though our discussion in this
paper caters to ISPs and their retaining control over the Internet,
it also lays the seeds for new entrants to enter the field as pro-
posed in [1]. In particular, ISPs might choose to sell their will-
ingness to route anycast to the third-party Next Generation Service
Providers (NGSPs) proposed in [1]. NGSPs can then deploy their
boxes in various ISP domains and use our framework for evolv-
ability to stitch these together into a single global provider of a
next-generation service. In fact, such an architecture would free
NGSPs from having to deploy the client-side proxies that are oth-
erwise needed to connect endhosts to the NGSP network.
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