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ABSTRACT
TraÆc measurement is a critical component for the control
and engineering of communication networks. We argue that
traÆc measurement should make it possible to obtain the
spatial 
ow of traÆc through the domain, i.e., the paths
followed by packets between any ingress and egress point of
the domain. Most resource allocation and capacity planning
tasks can bene�t from such information. Also, traÆc mea-
surements should be obtained without a routing model and
without knowledge of network state. This allows the traÆc
measurement process to be resilient to network failures and
state uncertainty.

We propose a method that allows the direct inference of
traÆc 
ows through a domain by observing the trajectories
of a subset of all packets traversing the network. The key
advantages of the method are that (i) it does not rely on
routing state, (ii) its implementation cost is small, and (iii)
the measurement reporting traÆc is modest and can be con-
trolled precisely. The key idea of the method is to sample
packets based on a hash function computed over the packet
content. Using the same hash function will yield the same
sample set of packets in the entire domain, and enables us
to reconstruct packet trajectories.

1. Introduction
The eÆciency of resource allocation and the quality of ser-
vice provided by IP networks depends critically on e�ec-
tive traÆc management. TraÆc management consists of
short-term traÆc control and longer-term traÆc engineer-
ing. TraÆc control operates on a time-scale of seconds and
without direct human intervention. Examples of traÆc con-
trol functions include congestion control, automatic recovery
in case of link or router failures, or admission control. TraÆc
engineering operates on time-scales from minutes to weeks
or months, and typically with some degree of human inter-
vention. Its goal is to optimally allocate network resources,
such as link capacity, to di�erent classes of network traÆc
in order to ensure good service quality and high network
eÆciency. Examples of traÆc engineering functions include
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traÆc characterization (e.g., trending), accounting (e.g., for
pricing), and capacity planning and provisioning.

All of these functions represent feedback loops on a wide
range of time-scales and of varying spatial extent, and traf-
�c observation or measurement is therefore an integral com-
ponent of these functions. The importance of traÆc mea-
surement capabilities is compounded by the fact that IP
networks do not maintain per-
ow state. By contrast, in
circuit-switched networks, the traÆc is essentially \observ-
able for free", because per-call state exists along each node
on the call's path. In a sense, the scalability of the stateless
IP networks has been bought at the expense of observability.

Virtually all traÆc engineering functions, such as route op-
timization or planning of failover strategies, rely on an un-
derstanding of the spatial 
ow of traÆc through the do-
main. For example, suppose we observe that some link in
the backbone is overloaded. Appropriate corrective action
requires an understanding of which ingress points the traf-
�c observed on this link originates and where it is headed,
what customers are a�ected by the congestion, and what
the traÆc mix is; without this information, e�ective reme-
dies (e.g., rerouting of part of that traÆc) cannot be taken
[11]. Also, it should be possible to infer what fraction of
traÆc entering the measurement domain at a certain ingress
point traverses each link in the network, for example to fo-
cus on how the traÆc of a speci�c customer 
ows through
the domain, and to diagnose which link might be the reason
for a performance problem experienced by that customer.
Domain-wide spatial traÆc information is also a prerequi-
site for the establishment of label-switched tunnels [3], or
to decide which potential ingress point is best to connect a
new customer to the domain.

We distinguish between direct and indirect measurement
methods. Conceptually, an indirect measurement method
relies on a network model and network status information
to infer the spatial 
ow of traÆc through the domain. For
example, suppose that the traÆc is observed only at net-
work ingress points (e.g., by computing statistics on the
distribution of source-destination pairs). In order to infer
how that traÆc 
ows through the domain, timely and ac-
curate information about the state of the routing protocol
and link states has to be available. If assumptions about
traÆc routing have to be made in order to obtain the traÆc

ow matrix, then the use of an outdated routing table can
lead to erroneous inferences, and suboptimal allocation of
network resources.
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More generally, indirect measurement methods su�er from
the uncertainty associated with the physical and logical state
of a large, heterogeneous network [11]. This uncertainty has
several sources. First, the exact behavior of a network el-
ement, such as a router, is not exactly known to the ser-
vice provider and depends on vendor-speci�c design choices.
For example, the algorithm for traÆc splitting among sev-
eral shortest paths in OSPF is not standardized. Second,
there are deliberate sources of randomness in the network to
avoid accidental synchronization, e.g., through active queue
management disciplines [12] or randomized timers in routing
protocols [13]. Third, some of the behavior of the network
depends on events outside of the control of the domain; for
example, how traÆc is routed within an autonomous system
(AS) depends in part on the dynamics of route advertise-
ment to this AS by neighboring domains [18]. Fourth, the
interaction between adaptive schemes operating at di�erent
time-scales and levels of locality (e.g., QoS routing, end-to-
end congestion control) may simply be too complex to char-
acterize and predict [26]. Finally, with increasing size and
complexity, the likelihood increases for faults and miscon-
�gurations to disrupt the normal operation of the network.
Often, traÆc measurement is one of the potential tools to
detect and diagnose such problems; however, this bene�t
is mitigated if traÆc measurement requires correct network
operation.

A direct method does not rely on a network model and an
estimation of its state and its expected behavior. Rather,
it relies on direct observation of traÆc at multiple points in
the network. As such, it does not su�er from the sources
of uncertainty discussed above. In this paper, we describe
a direct method for traÆc measurement, called trajectory
sampling. The method samples packets that traverse each
link (or a subset of these links) within a measurement do-
main. The subset of sampled packets over a certain period
of time can then be used as a representative of the overall
traÆc.

If packets were simply randomly sampled at each link, then
we would be unable to derive the precise path that a sampled
packet has followed through the domain from the ingress to
the egress point. The key idea in our proposal is therefore
to base the sampling decision on a deterministic hash func-
tion over the packet's content. If the same hash function
is used throughout the domain to sample packets, then we
are ensured that a packet is either sampled on every link it
traverses, or on no link at all. In other words, we e�ectively
are able to collect trajectory samples of a subset of packets.
The choice of an appropriate hash function will obviously be
crucial to ensure that this subset is not statistically biased
in any way. For this, the sampling process, although a de-
terministic function of the packet content, has to resemble
a random sampling process.

A second key ingredient of our proposal is that of packet
labeling. Note that to obtain trajectory samples, we are not
interested in the packet content per se; we simply need to
know that some packet has traversed a set of links. But to
know this, it is suÆcient to obtain a unique packet identi�er,
or label, for each sampled packet within the domain and
within a measurement period. Because the label is unique,
we will know that a packet has traversed the set of links
which have reported that particular label. We propose to use

a second hash function to compute packet labels that are,
with high probability, unique within a measurement period.
While the size of the packet labels obviously depends on the
speci�c situation, note that labels can in practice be quite
small (e.g., 20 bit). As the measurement traÆc that has
to be collected from nodes in the domain only consists of
such labels (plus some auxiliary information), the overhead
to collect trajectory samples is small.

Trajectory sampling has several important advantages. It is
a direct method for traÆc measurement, and as such does
not require any network status information. The spatial 
ow
of traÆc through the domain can be inferred from trajec-
tory samples, i.e., paths taken by a pseudo-random subset of
packets through the domain. Trajectory sampling does not
require router state (e.g., per-
ow cache entries) other than
a small label bu�er. The amount of measurement traÆc
necessary is modest and can be precisely controlled. Mul-
ticast packets require no special treatment - the trajectory
associated with a multicast packet is simply a tree instead
of a path. Finally, trajectory sampling can be implemented
using state-of-the art digital signal processors (DSPs) even
for the highest interface speeds available today.

This paper is structured as follows. We de�ne notation and
formally de�ne trajectory sampling in Section 2. We dis-
cuss the choice of parameters for the hashing functions, and
demonstrate their statistical properties in Section 3. We
give an example of traÆc measurement based on an ex-
tensive packet trace in Section 4. In Section 5, we discuss
implementation issues and possible extensions of trajectory
sampling. Section 6 concludes the paper.

2. Formal Description of Trajectory Sampling
For simplicity, let us describe the scheme assuming that all
packets are of size S bits. We represent the measurement
domain as a directed graph G(V; E), where V is the set of
nodes and E is the set of directed links. Packets enter the
measurement domain at an ingress node. They traverse sev-
eral links to leave the measurement domain at an egress node
(or several egress nodes in the case of a multicast packet1). A
packet can potentially be dropped at an intermediate node.
We let xi(Pk) denote the content of a packet k at link i,
i.e., the sequence of bits making up the IP header and the
IP packet content. When there is no risk of ambiguity, e.g.
when considering a stream of packets at a single link, we re-
fer to a packet P and its content x = x(P ) interchangeably.

Consider all the packets P1; : : : ; PN entering the domain
within a measurement interval of length T . The trajectory
of packet Pk is the set of links traversed by packet Pk. In
the case of a unicast packet, the trajectory is a path from
the ingress node to the egress node or to the node where
the packet is dropped. In the case of a multicast packet, the
trajectory forms a tree rooted at the ingress node.

The invariance function � is a function of the packet content
whose output depends of the invariant packet content, i.e.,
the bits of the packet that are not modi�ed upon forwarding,
as described below. An invariance function does not depend,

1Strictly speaking, several copies of a multicast packet could
enter the measurement domain at multiple ingress nodes; for
our purposes, we can simply consider each copy of the mul-
ticast packet entering the domain as an independent packet.
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Figure 1: Schematic representation of trajectory sam-
pling. A measurement system collects packet labels from all the
links within the domain. Labels are only collected from a pseudo-
random subset of all the packets traversing the domain. Both the
decision whether to sample a packet or not, and the packet label,
are a function of the packet's invariant content.

for example, on the TTL �eld, which is decremented at each
hop. Without loss of generality, we assume here that the
function � simply extracts all the Sc invariant bits from the
packet.

� : f0; 1gS ! f0; 1gSc (1)

The basic idea of trajectory sampling is to decide whether to
sample a packet P based on a deterministic function of the
invariant packet content �(x(P )); we call this deterministic
function the sampling hash function h, de�ned as

h : f0; 1gSc ! f0; 1g: (2)

A packet P is sampled if h(�(x)) = 1. Note that we use
the same sampling hash function h on each link in the mea-
surement domain. In this way, a packet is either sampled
everywhere on its trajectory or not at all, and the sample
data lets us reconstruct the trajectories of the sampled pack-
ets.

In principle, a node could send the entire content of a sam-
pled packet to the measurement collection system. However,
this is very ineÆcient; note that to identify trajectories, we
are not interested in the content of the packet per se; we only
need an identi�er to distinguish a given packet from other
sampled packets, in order to obtain unambiguous samples
of packet trajectories. Therefore, we use an identi�cation
hash function g to compute a compact packet identi�er on
the constant part of the packet.

g : f0; 1gSc ! f0; 1gm (3)

In this way, we only have to send m bits per sampled packet
per link to the collection station.

In its most basic form, trajectory sampling performs the fol-
lowing simple operation at each link in the domain: for each
observed packet of content x, if h(�(x)) = 1 then send the
label g(�(x)) to the measurement collection system. While
this suÆces to identify packet trajectories, additional in-
formation about a sampled packet (such as its length and
its source and destination addresses) are required for many
measurement purposes. It is suÆcient to collect this addi-
tional information once per sampled packet. For example,

ingress nodes could be con�gured to retrieve this informa-
tion along with the labels, while all other nodes only collect
labels (cf. Fig. 1).

2.1 Packet Identity and Invariant Content
The de�nition of the invariance function � is completed by
identi�cation of the invariant packet content. Here we con-
sider only packets in IP version 4. We �rst consider candi-
date parts with the �rst 20 bytes of the packet; this com-
prises the packet header, or the �rst 20 bytes of a packet
with IP options. We exclude TTL (bits 64{71) which is
decremented per hop, and the Service Type �eld (bits 8{
15) since certain of its bits may be changed in transit, e.g.
during Explicit Congestion Noti�cation [20], and by opera-
tion of Di�erentiated Services [4]. The Header Checksum
(bits 80{95) is recalculated on changes of each of these and
must hence also be excluded.

Ack number

Sequence number

Source port Destination port

IP header

16 32240 8

TCP/UDP

Fragment Offset

Header ChecksumTime to Live Protocol

Source address

Destination address

Flags

Total lengthType of ServiceHLenVersion

Identification

Figure 2: Invariant packet content. The hash functions are
computed over a subset of header �elds and part of the payload.
Included �elds are shaded.

Version (bits 0{3), Header Length (bits 4{7) and Pro-
tocol (bits 72{79) are either constant or take one of a small
number of values; there is little gain in their inclusion in the
invariant packet content.

Source and Destination IP Address (together bits 96{
159) are included in the invariant packet content. We also
include the Identification �eld (bits 32{47). The presence
of tunneling will impact packet identity through encapsula-
tion behind a tunnel header. In some types of tunnel the
original header could be recovered from the tunnel payload
upon through appropriate o�setting; see e.g. IP in IP Tun-
neling [23] and Multiprotocol Label Switching (MPLS) [6].
This approach lets us match up samples inside and outside
the tunnel. If tunnel endpoints are con�ned to the network
edge, then one can simply sample consistently in the net-
work interior.

Flags (bits 48{51) and Fragment Offset (bits 52{63)
are likewise mutable through fragmentation. Indeed, frag-
mentation raises potentially a larger issue, since it provides a
mechanism by which the notion of a single identi�able packet
becomes corrupted. However, we expect fragmentation to by
con�ned to the network edge, with an edge-to-edge notion of
packet identity remaining valid. In this case we can include
Total Length, Flags and Fragment Offset within the
invariant content.
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The remainder of the packet following the �rst 20 bytes com-
pletes the invariant packet content. In certain IP options
packets, such as packets with a record route option, these
following bytes may change hop by hop. However, since such
packets are rare, we believe the e�ect on sampling can be
ignored.

2.2 Ambiguous Trajectories
We discuss how to infer trajectories from the labels col-
lected from the network over a measurement period. The
measurement period T is chosen as an upper bound of the
packet lifetime (e.g., 10 seconds). We assume that all the
packet observations made within the same measurement pe-
riod can only be distinguished by their label, not by their
arrival time within the measurement period. As labels are
allocated pseudo-randomly to sampled packets, their is ob-
viously a chance of label collision, i.e., of two or more packet
trajectories having the same label in the same measurement
period. The question we address in this subsection is under
what circumstances we can disambiguate these trajectories.

It is useful to introduce the concept of a label subgraph asso-
ciated with a label i and a measurement period. The label
subgraph is simply the graph of the network domain, where
each link is annotated with the number of times label i has
been generated by that link in the measurement period; links
with zero are deleted. A label subgraph basically represents
the superposition of all the trajectories in the measurement
period that had this label.

We restrict this discussion to unicast packets and to acyclic
label subgraphs. First, note that in the trivial case where
a label subgraph stems from a single trajectory, that tra-
jectory can always be inferred unambiguously. Intuitively,
this is because a packet is either sampled everywhere in the
domain or nowhere. Thus, if we observe label i on exactly
one inbound and one outbound link of a node, it must be
the same packet2. By induction, the entire trajectory can
be reconstructed without ambiguity.

Second, let us consider the case where the label subgraph is
the superposition of several trajectories. A few examples of
superpositions of two trajectories are given in Figure 3. The
examples (a) through (e) are unambiguous, while examples
(f) through (h) are ambiguous.

The following property holds: a label subgraph is unambigu-
ous if each connected component of the subgraph is either
(a) a source tree, or (b) a sink tree such that for each node
on the sink tree, the degree of the outbound link is the sum
of the degrees of the inbound links. Note that example (e)
is unambiguous because the only connected component is a
source tree; it is also a sink tree, but the degree condition
does not hold.

Also note that ambiguity as de�ned here pertains only to
the trajectories followed by packets. For example, example
(e) is unambiguous because there is no ambiguity about the
two trajectories followed by the packets. However, if we have
collected other attributes of the two packets (at the ingress

2We view packets generated by routers (e.g., routing up-
dates) as coming from a virtual ingress node connected to
that router.

e) f)

d)

g) h)

b)a)

c)

Figure 3: Trajectory disambiguation. Examples of unam-
biguous (a-e) and ambiguous (f-h) label subgraphs. For (e) and
(g), a packet is dropped at an interior node.

node, say), then we have no way of knowing from (e) which
packet was dropped in the middle, and which one made it
to the egress node. In contrast, there are several possible
sets of trajectories that can result in the label subgraphs (f)
to (h).

3. Performance of Trajectory Sampling
In this section, we study the performance of trajectory sam-
pling. Our overall goal is to obtain as many pseudo-random
trajectory samples from the network as possible, without us-
ing too many resources (network bandwidth, collection sys-
tem memory). We �rst describe calculation of the hashes.
We then demonstrate that the hashes appear statistically
independent from the original packet content, thus enabling
unbiased sampling. We then compute the optimal choice of
the total number of samples to be collected from the network
and the number of bits per sample, subject to a constraint
on the network bandwidth available for traÆc measurement.

3.1 Specification of Hash Functions
We regard the ordered bits of a packet x and of its invariant
part �(x) as binary integers. We use the sampling hash

h(�(x)) =

�
1 if �(x) � r mod A
0 otherwise

(4)

for positive integers A and r. The modulus A is chosen in
order to avoid collisions arising from certain structural prop-
erties of the the packet contents. For example, we expect
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to �nd complementary sets of packets in which source and
destination IP addresses are interchanged, arising from the
two way 
ow of traÆc in TCP sessions. The hash function,
and hence the modulus, must be chosen to avoid collisions
in which a pair of packets that di�er little by such an inter-
change are mapped onto the same remainder. Knuth (see
x6.4 in [17]) formulates a condition for avoidance of such col-
lisions, namely that qk � a 6= 0 mod A for small a; k where
q is a radix of the alphabet used to describe the header. In-
cluding qk = 232 in this criterion suppresses collisions of the
type described above. Moduli obeying these conditions can
be selected from tables of primes. r determines the gran-
ularity of sampling; A must be chosen suÆciently large in
order that the smallest available sampling rate, namely 1=A
for r = 1, is suÆciently small.

Sampled packets are encoded using a similar hash function

g(�(x)) = �(x) mod B; (5)

with the modulus B 6= A in order that the identi�cation
hash is uncorrelated with packet sampling.

3.2 Identical Packets
As hashing is a deterministic function, if two packets are
exactly identical, then the sampling decision and their label
will be identical as well. Therefore, identical packets are
not sampled pseudo-randomly by our method, which can
lead to biased estimators. We therefore have to convince
ourselves that identical packets are rare in practice. We call
the occurrence of identical packets in a trace collisions.

More generally, we are interested in the frequency with which
a pre�x of a certain length l (i.e., the �rst l invariant bytes)
of a packet is not unique within a large set of packets. If
we can identify a packet pre�x length for which collisions
are rare, then it is suÆcient to compute the sampling and
the identi�cation hash over this pre�x. In a sense, the pre-
�x generates suÆcient \entropy" to make the sampling and
labeling processes look random.

We have computed the number of collisions in a trace of one
million packets, as a function of the packet pre�x length; see
Fig. 4. It is clear that relying only on the packet header is
not suÆcient for trajectory sampling to work well, as identi-
cal headers appear too frequently (l = 20 bytes). However,
increasing the packet pre�x length to take into account a few
bytes of the payload quickly decreases the collision proba-
bility to below 10�3. Increasing the packet pre�x length
beyond about 40 bytes does not reduce collisions any fur-
ther; the remaining collisions are due to packets that are
indeed exact copies of at least one other packet3. However,
collisions are suÆciently rare to be inconsequential.

3.3 Evaluation of Hash Functions
We explored the statistical properties of hashing algorithms
on packet traces. The traces were gathered using the tcpdump
utility [16] on a host attached to a local area network seg-
ment close to the border of a campus network. Analysis was
performed on four traces each comprising 1 million IP pack-
ets. Except in one case, the traces involved traÆc between

3We note that the majority of these residual collisions are
due to TCP duplicate acknowledgment packets, which are
indeed exact copies of each other.
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Figure 4: Packet collisions. The fraction of packets whose
pre�x is not unique, as a function of the pre�x length l. The
smallest value for the pre�x length (20 bytes) corresponds to using
only the packet header.

about 500 distinct campus hosts and about 3000 distinct
external hosts. The exception was a trace of a single ftp
session set up between two campus hosts.

The hash functions were implemented in 32 bit integer arith-
metic by long division over 16 bit words. Thus, a given num-
ber z = (zk; zk�1; : : : ; z1) =

Pk
i=0 zi2

16i has its modulus z
mod A calculated through iteration of

(zk; zk�1; : : : ; z0) mod A =

(zk�1 + 216(zk mod A); : : : ; z0) mod A: (6)

Since the word size is 16 bits, zk�1 + 216(zk mod A) �ts
within a 32 bit unsigned integer.

A desirable property of sampling hash function is that packet
sampling should appear independent of a proper subset of
the packet content. Consequently, the distribution of any
variable attribute of the packet (such as source or destina-
tion IP address) should be the same for sampled packets
as for the original population. We now perform tests of
the independence hypothesis, based on chi-squared statis-
tics calculated from the samples and the original traces.

Consider a given attribute of the packet (or set of packets),
e.g. destination IP address. Partition the range of attribute
values seen in the full trace into a number I of bins, with
ni values falling in bin i, there being n =

PI
i=1 ni packets

in total. Suppose that m1i of the samples have attribute in
bin i, there being m1 =

P
im1i samples in total. Likewise,

there are m0i = ni �m1i unsampled packets in bin i, with
m0 = n �m1 unsampled packets in total. We form the 2-
by-I contingency table of bin occupancies shown in Table 1.

The chi-squared statistic for Table 1 is

T =
1X

i=0

IX
j=1

(mij �mij)
2

mij
(7)
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m01 m02 : : : m0I m0

m11 m12 : : : m1I m1

n1 n2 : : : nI n

Table 1: 2-by-I table of bin occupancies.

where mij = minj=n is the expected values of mij under
the null hypothesis that the bin occupied by a given packet
is independent of whether or not it is sampled. For a given
con�dence level c (say c = 95%), we accept this hypothesis if
T < Tc, the c

th quantile of the chi-squared distribution with
I � 1 degrees of freedom. Equivalently, we accept if C(T ) <
c, where the C is the cumulative distribution function of the
chi-squared distribution with I� 1 degrees of freedom4. We
applied three variants of this procedure in order to test the
independence hypothesis.
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Figure 5: Hash-sampled address distributions. Con�dence
levels C(T ) from chi-squared statistics of sampled address distri-
butions as a function of thinning factor. In all cases, the sample
distribution is consistent with that of full trace down to a 80%
con�dence level. Sampling hash is calculated on a 40 byte packet
pre�x.

Address Pre�x Distributions. Packets were binned
on address pre�x. The sampling hash was calculated using
a 40 byte packet pre�x. Increasing the packet pre�x for
the sampling hash beyond this point does not decrease the
frequency of collisions (see Figure 4), so we expect no further
reduction in dependence between sampling hash and packet
address.

The experiments reported here used a �xed length 8-bit pre-
�x, yielding I = 28. We amalgamated bins i with expected
occupations m1i < 1 in order to avoid under-emphasizing
contributions to T , which could otherwise lead to optimistic
acceptance of the null hypothesis5. Of 80 bins occupied in
the full trace, nearly half remained occupied at a thinning

4Chi-squared and related statistics are evaluated as discrep-
ancy metrics for sampled network traÆc in [8, 19]; the lat-
ter paper discusses optimization of bin sizes for ordinal data
such as inter-event times.
5See x4.3 in [22] for treatment of small expected occupations

factor of 10�3. Figure 5 shows C(T ) as a function of the
thinning factor r=A using modulus A = 16979. In all cases,
C(T ) was less than 0.8; thus the sampled and full trace ad-
dress distributions cannot be distinguished at 80% or higher
con�dence level.

We repeated the experiments for two other binning schemes
(i) �xed length 16 bit address pre�xing; and (ii) BGP ad-
dress pre�xing in which addresses are allocated to bins ac-
cording to their longest pre�x match on a snapshot of the
BGP routing table. In both these cases there were roughly
1000 bins occupied by the full trace. The con�dence levels
C(T ) were lower than those reported above, i.e., the inde-
pendence hypothesis would be more readily accepted.
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Figure 6: Hash-sampled address bits distributions.

Quantile-quantile plot of address bit chi-square values vs. chi-
squared distribution with 1 degree of freedom; for various traces,
primes A, thinning factors r=A; see text. Close agreement for
40 byte packet pre�xes; marked disagreement for 20 byte packet
pre�xes (i.e. no payload included for sampling hash)

Bitwise Address Distributions. Let xk denote the
kth packet in a stream, and xk(`) its `th bit. For each
bit position ` we construct the 2-by-2 contingency table in
which mij is the number of packets k for which the sample
hash h(�(xk)) = i and the `th bit is xk(`) = j. We cal-
culated the corresponding chi-squared statistic T for each
address bit, using each of two traces, three distinct primes
A = 1013,10037 and 16979 and thinning factors r=A between

approximately 10�1=2 and 10�4, all hashing on a 40 byte
packet pre�x. According to the null hypothesis, each such
T should follow a chi-square distribution with 1 degree of
freedom. We summarize these statistics in Figure 6 through
a quantile-quantile plot of the T values against a this chi-
square distribution. This shows close agreement; the plot
is similar to that obtained using randomly generated statis-
tics from the expected distribution. For comparison we also
show quantiles obtained with a 20 byte packet pre�x, i.e.,
using only the invariant header for sample hashing. In this
case there is poor agreement, with many high T values, pre-
sumably due to the increased frequency of collisions.

Temporal Sampling Distributions. For a trace of a sin-
gle ftp session between two hosts, we check that the packet
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sample process is consistent with that of independent sam-
pling at the average sampling rate. We allocate packets into
one of two bins, according to whether the succeeding packet
in the session is sampled or not. This results in a 2-by-2
contingency table in which mij is the number of packets k
for which the sample hash h(�(xk)) = i while that of its
successor is h(�(xk+1)) = j. According to the null hypothe-
sis, the statistic T follows a chi-squared distribution with 1
degree of freedom. We performed a number of experiments
using A = 2377, thinning factors between 10�1=2 and 10�4,
and packet pre�xes of 50 bytes or larger. In each experiment
we were able to accept the hypothesis at the 95% con�dence
level.

3.4 Optimal Sampling
We next discuss the choice of the number of samples n and
the number of bits m per sample. For convenience, we let
M = 2m denote the alphabet size of the identi�cation hash.

Based on the discussion in Section 2.2, if two di�erent tra-
jectories happen to use the same label, then they may or
may not be ambiguous. The probability that we get an un-
ambiguous sample of a trajectory depends on the statistical
properties of all the other trajectories that might interfere.
This is diÆcult to analyze. However, we are able to obtain
a lower bound on the number of unambiguous labels. For
this purpose we assume that the label subgraph is ambigu-
ous whenever there is a label collision. In other words, we
disregard the cases discussed in Section 2.2, where several
trajectories with the same label can be ambiguous.

We obviously face two con
icting goals for the choice of
n and m. On the one hand, the reliability of traÆc esti-
mates increases with the number of unambiguous samples
we can collect. On the other hand, we have to limit the
total amount of measurement traÆc between the routers in
the domain and the collection system. Note that the amount
of traÆc incurred over a measurement period is given by nm
bits, because an m-bit label is transmitted to the collection
system for each of the n samples (ignoring packet headers
for the measurement packets and other overhead).

We therefore formulate the following simple optimization
problem: we want to maximize the expected number of
unique (unambiguous) samples, subject to the constraint
that the total measurement traÆc nm must not exceed a
prede�ned constant c. We assume that each sample indepen-
dently takes one of the M label values with uniform proba-
bility p = 1=M . The marginal distribution of the number of
samples taking a given label is binomial B(n; p). Hence the
probability that the label is generated exactly once in the
domain with the measurement period is

pu = np(1� p)n�1: (8)

Let Zi be the random variable that takes the value 1 if label
i is taken by exactly 1 sample, and 0 otherwise. The mean
number of unique samples is then

A(n;m) = E[

MX
i=1

Zi] =

MX
i=1

E[Zi] =Mpu = n(1� p)n�1 (9)

where E denotes the expected value under the assumed uni-
form label distribution. For �xed n, A(n;m) is obviously

maximized for m = c=n, and we therefore maximize

A(n) = n(1� 2�c=n)n�1 (10)

Solving A0(n) = 0 yields the maximizing n�, where A0(n) is
the derivative of A(n),

A0(n) = (1� 2�c=n)

�
1� 2�c=n

�
1 +

n� 1

n
c log(2)

��
= 0:

We �nd 6

n� =
M�

log(M�)
; M� = c log(2) (11)

Finally, we compute the sample collision probability at the
optimal operating point.

pcoll = 1�
A(n�)

n�
= 1� (1� 2�c=n

�

)n
�
�1 � 1� e

�
1

m
� log(2)

(12)

Figure 7 illustrates how n = n� maximizes A(n): for n < n�,
collisions are very rare - we waste label bits for too few sam-
ples; for n > n�, collisions are too frequent - we waste sam-
ples through collisions because label identi�ers are too short.
Note that the optimal M� can obviously not be achieved
exactly. In practice, we choose the largest integer B � M�

satisfying the conditions put forth in Section 3.1.
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Figure 7: The expected number of unique samples A(n) as
a function of n, for c = 106 bit. The optimal number of
samples n� is approximately 5:15 � 104, with m�=19.4 bit per
label. The collision probability pcoll is approximately 0.072, i.e.,
7.2% of the samples transmitted to the collection system have to
be discarded.

Let us look at a speci�c example that illustrates how m and
n would be chosen in practice. Assume that the measure-
ment domain consists of 100 OC-192 links (10 Gbps each).
Suppose the measurement system can handle 10Mbps of in-

6For the trivial solution n = c, A(n) < 0.
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coming label traÆc for the entire domain7. Furthermore,
we choose a measurement epoch to be T = 10 seconds; this
is a conservative upper bound on the lifetime of a packet
traversing the domain. For simplicity, we assume that all
packets are 1500 bytes long.

The bound on the total amount of measurement traÆc is
c = T�10 = 1e8 bits. The number of samples we should col-
lect over the measurement period is n� = 3:84e6, or about
3840 samples per link per second. A fully loaded OC-192
link can carry about 833k 1500-byte packets per second.
Therefore, we would con�gure the sampling hash in this do-
main so that the sampling probability for a packet would
be approximately 3840=8:33e5 � 1=217. The labels would
be m� = log2(M

�) � 26 bit long. The actual number of
samples n will obviously depend on how heavily each link is
loaded. The main point of the above analysis is to allocate
enough bits m to labels such that under peak load, the col-
lision probability does not become too frequent. Note that
if the average packet size is less than 1500 bytes, we simply
have to reduce the sampling probability accordingly (e.g.,
by reducing r). However, the number of samples n� and the
label size m� are not a�ected, as they depend only on c.

4. Traffic Measurement
In this section, we use trajectory sampling for a simple mea-
surement task. The goal of this experiment is to illustrate
how estimators can be constructed based on the sampled la-
bels received from the measurement domain. We study the
following simple scenario. Assume that a service provider
wants to determine what fraction of packets on a certain
backbone link belongs to a certain customer. To estimate
this fraction, the service provider can use the labels col-
lected from the backbone link under study and from the
access link(s) where the customer connects to the network.

For the purposes of experimentation, we adapt the packet
trace used in the previous section to the present context as
follows. All packets with a certain source pre�x are desig-
nated as originating from the customer, while the remaining
packets form the other traÆc on the backbone link; see Fig-
ure 8.

samples

other traffic

customer traffic

backbone link

Figure 8: Measurement experiment. A simple experiment
where labels from two links are compared to estimate what frac-
tion of traÆc on the backbone link comes from the customer
access link.

7We do not discuss distributed implementations of the mea-
surement collection system in this paper, but the potential of
distributed measurement processing to increase the amount
of measurement traÆc is obvious.

For the sake of exposition, assume that we sample packets
and collect labels only from the customer access point, and
from the backbone link. We then proceed as follows: any
label that appears more than once on the backbone link
is discarded, because this can only be due to a collision.
Among the remaining unique labels, we determine which
labels are only observed on the backbone link, and which
labels are observed on both links. This allows us to obtain an
estimate for the fraction of customer traÆc on the backbone
link, given by

�̂ =
nc;b
nb

; (13)

where nc;b is the number of unique labels observed on both
the customer access link and on the backbone link, while nb
is the total number of unique labels observed on the back-
bone link8.
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Figure 9: Real and estimated fraction of customer traf-
fic. For c = 1000 bit for this link (M� = 693:1, B = 691,
n� = 106).

Figures 9 and 10 compare the estimated and the actual frac-
tion of traÆc on the backbone link, for ten consecutive mea-
surement periods. For simplicity, we have de�ned a measure-
ment period as a sequence of 105 consecutive packets in the
trace, rather than as a time interval. The graph also shows
con�dence intervals around the estimated values. The con-
�dence intervals are obtained as follows. We compute the
standard deviation of the estimator �̂ assuming that each
packet gets sampled independently and with equal proba-
bility. If this were true, then the probability that a sampled
packet belongs to the customer is �. The standard deviation
of the estimator �̂ is then9

� =

r
�(1� �)

nb
(14)

The con�dence interval we plot is [�̂ � �; �̂ + �], i.e., one
standard deviation around the estimated value.

8Note that nb < n because of collisions; E[nb] = A(n), de-
�ned in Section 3.4.
9The variance of a Bernoulli random variable with mean p
is p(1� p).
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Note that the amount of measurement traÆc per measure-
ment period from the backbone link (c = nm) is quite small
(1000 bits in Fig. 9 and 10kb in Fig. 10). The con�dence
interval is reduced as the amount of measurement traÆc
increases.

A statistical estimator such as the one considered here re-
lies on an underlying random sampling process. The size of
the con�dence interval is then a consequence of the central
limit theorem for independent random variables. However,
trajectory sampling is based on a deterministic sampling
process, and the sampling decision for a packet is a function
of this packet's content. Nevertheless, we observe in this ex-
periment that the true value of the estimated quantity lies
within or very close to the con�dence interval without excep-
tion. This is despite the fact that there is strong correlation
between the packet content (because the customer packets
all have the same source pre�x) and the events we are count-
ing (packet belongs to customer). This correlation does not
translate into a biased sampling process here. This demon-
strates that good hash functions can suÆciently \random-
ize" sampling decisions such that the set of sampled packets
(and their labels) are representative of the entire traÆc for
the purpose of statistical estimation.
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Figure 10: Real and estimated fraction of customer traf-

fic. For c = 10 kbit for this link (M� = 6931:5, B = 6917,
n� = 782).

5. Discussion
5.1 Implementation Issues
We argue that the implementation cost for trajectory sam-
pling is quite acceptable even for the highest interface speeds
available today. Trajectory sampling requires a device for
each interface capable of (a) computing the sampling hash
and making a sampling decision, and (b) computing the
identi�cation hash for the sampled packets.

The computational cost is obviously dominated by the op-
erations that have to be executed for each packet that goes
through this interface (as opposed to operations only on
sampled packets). In our conceptual description of the sam-

pling process, we have viewed computation of the sampling
and the identi�cation hash as sequential. The identi�ca-
tion hash would only be computed if the packet is to be
sampled, otherwise the packet is discarded. However, from
an implementation point of view, this is undesirable, as it
would require bu�ering each packet until the sampling hash
is computed.

An alternative implementation illustrated in Figure 11 com-
putes both the sampling hash and the identi�cation hash for
both packets concurrently and on the 
y as the bits come
in. The hash functions discussed in Section 3.1 allow such
an implementation. This removes the burden of having to
make a separate copy of the packet for the purpose of com-
puting the identi�cation hash. The processor computes both
hashes, and simply writes the identi�cation hash g into the
label store if the sampling hash h is equal to one. The label
store accumulates packet labels until it reaches a prede�ned
size, then sends the labels to the measurement system as a
single IP packet10.

As an example, a state-of-the-art o�-the-shelf digital signal
processor can process up to about 600M 32-bit multiply-
and-accumulate (MAC) operations per second. This corre-
sponds to a raw data rate of 20 Gbps. Also, raw memory I/O
bandwidth can be up to 256 bit per memory cycle, which
corresponds to 77 Gbps at 300MHz clock speed. In compari-
son, an OC-192 interface (the fastest commercially available
SONET interface) carries 10Gbps.

While these arguments are based on peak processor perfor-
mance, which typically cannot be sustained for various rea-
sons (such as pipeline stalls in the processor), these numbers
do illustrate that the computational requirements necessary
for trajectory sampling are within reach of current commod-
ity processors. It is also interesting to note that the price of
such a processor is roughly two orders of magnitude lower
than that of an OC-192 interface card. Adding logic for tra-
jectory sampling to high-speed interfaces would therefore be
comparatively cheap. Also note that to add measurement
support to interface cards is in line with the trend over the
last few years to move processing power and functionality
from the router core to the interfaces.

We expect the relative cost of the sampling logic with respect
to the interface hardware per se to evolve in our favor. In
fact, it appears that processor performance increases slightly
faster (doubling every 18 months according to Moore's law)
than maximum trunk speed (doubling every 21 months) [21].
If these trends persist, then the cost of incorporating trajec-
tory sampling into the next generations of high-speed inter-
faces can be expected to be negligible.

The link sampling device also requires a simple management
interface to enable/disable packet sampling, to tell the de-
vice where to send measurement traÆc, and to set the pa-
rameters of the hash functions. A simple SNMP MIB, in-
dexed by the IP address of the interface, could ful�ll this
function.

5.2 Comparison with other Approaches
10This should be done reliably (e.g., using TCP) in order
to avoid loss of samples during congestion, and therefore
possible bias in traÆc estimators.
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Figure 11: Implementation. A possible implementation of tra-
jectory sampling computes both the sampling and the identi�ca-
tion hash concurrently and on the 
y. This removes the need to
make a separate copy of each packet. The computation of the two
hashes, de�ned in (6), can be implemented with the elementary
multiply-and-add (resp. divide-and-add) function supported in
o�-the-shelf DSPs. A small bu�er stores labels before they are
copied into an IP packet and sent to the collection system. Some
additional logic would be necessary on some nodes (probably on
slower ingress nodes) to extract other �elds of interest from a
packet, e.g., length, and source and destination addresses.

We next discuss several common measurement approaches
for IP networks and put them into perspective in light of
the points we made in the introduction. There are two gen-
eral classes of measurement approaches. Aggregation-based
approaches are deterministic functions of the observed data.
They usually compute the sum or the maximum of some
metric over the dataset (e.g., the sum of packets traversing
a link during an interval, or the maximum end-to-end round-
trip delay for a set of packets). Sampling-based approaches
extract a random subset of all of the possible observations.
This sample subset is supposed to be representative of the
whole. The law of large numbers asserts that reliable es-
timators of desired metrics can be constructed from these
samples. The �rst two methods we discuss, links measure-
ments and 
ow aggregation, are aggregation-based. The
third method, end-to-end probing, are sampling-based.

Link measurements (aggregation-based, direct). In
this approach, aggregate traÆc statistics are measured on
a per-link basis, and are reported periodically (e.g., ev-
ery �ve minutes). Metrics typically include the number of
bytes and packets transferred and dropped within a report-
ing period. Some of these statistics are de�ned as part of
the SNMP (Simple Network Management Protocol) MIBs
(Management Information Base) [24].

The limitation of this approach is that some information is
lost in the aggregation; therefore, it does not allow to clas-
sify the traÆc (e.g., by protocol type, source or destination
address etc.). More importantly, it is not possible in gen-
eral to infer spatial traÆc 
ow, i.e., to infer what path(s)
the traÆc follows between an ingress and an egress point.
As such, this approach is better suited to detect potential
problems, manifesting itself through link congestion, than
to actually analyze the problem and modify routing infor-
mation to remedy it.

Flow aggregation (aggregation-based, indirect). In
this approach, one or several routers within the domain col-
lect per-
ow measurements. A 
ow comprises a sequence of
packets with some common �elds in their packet header and
which are grouped in time [9]. The router has to maintain
a cache of active 
ows11. A 
ow record may include spec-
i�cation of the source and destination IP address and port
number, 
ow start-time, duration, the number of bytes and
packets, amongst others.

One disadvantage of 
ow aggregation is that the amount
of measurement data can be considerable; the traÆc gener-
ated can impose a signi�cant additional load on the network.
This is especially true in the presence of large numbers of
short 
ows, such as http-get requests. Also, the measure-
ment traÆc is hard to predict. It depends heavily on the
way the router identi�es individual 
ows, which in turn de-
pends on various control parameters (such as the degree of
aggregation of source and destination addresses), the traÆc
mix (protocols), and the cache size. A further complication
may arise if traÆc measurements are to be used for real-time
control functions. Since a 
ow record is usually generated
only upon a 
ow's completion, this implies that an on-line
statistic may miss a long-lived 
ow that has not yet termi-
nated.

A full path matrix over the domain can be obtained if 
ow
aggregation measurements are available at each ingress point
and if we know how the traÆc is routed through the domain.
While this is currently the only approach we are aware of
to obtain a full traÆc matrix in IP networks, it has several
drawbacks:

� emulation of routing protocols: even for non-adaptive
routing, we have to rely on emulation of the routing
protocol to correctly map the ingress traÆc measure-
ments onto the network topology; this requires full
knowledge of the details of the routing protocol as well
as its con�guration.

� no veri�cation: as mentioned before, one important
role of traÆc measurement is in the veri�cation and
troubleshooting of routing protocols and policies; obvi-
ously, routing emulation precludes detecting problems
in the actual routing, e.g., due to protocol bugs.

� dynamic and adaptive routing: dynamic routing (rout-
ing around failed links) or adaptive routing (load bal-
ancing across multiple links/paths) further complicates
emulation, because precise link state information would
have to be available at each time (note that widely
used routing protocols such as OSPF have some provi-
sions to balance load among several shortest paths in
a pseudo-random fashion; this would be impossible to
emulate exactly).

Active end-to-end probes (sampling-based, indirect).
In this approach, hosts (endpoints) connected to the network
send probe packets to one or several other hosts to estimate
path metrics, such as the packet loss rate and the round-
trip delay [5, 1, 2]. In a variation of this approach, hosts

11For some router models, 
ow caches already exist to speed
up route and access control list (ACL) lookup.
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do not actually generate probe packets, but they collect and
exchange measurements of the traÆc of a multicast session
(e.g., RTCP [15]).

This approach gives direct measurements of end-to-end path
characteristics, such as round-trip delay and packet loss rate;
per-link characteristics have to be inferred. This approach
can be viewed as an alternative way to obtain per-link aggre-
gate measurements. Its advantage is that it does not require
any measurement support from the network. It has the same
disadvantages as the \link measurement" approach.

5.3 Related Work
Sampling has been proposed as a method to measure the
end-to-end performance of individual 
ows in connection-
oriented networks [10, 27]. ATM cells are sampled at the
ingress and egress points of a virtual circuit in order to mea-
sure QoS metrics such as the end-to-end delay and the loss
rate. To compute these metrics, cells at the ingress and
egress points have to be matched. The authors propose to
label cells using a hash function over the header and pay-
load.

While this use of identi�cation hashing is similar to ours,
there are some fundamental di�erences between this method
and trajectory sampling. The focus of end-to-end hash-
based sampling is on determining the QoS of a single con-
nection, rather than obtaining a statistically representative
sample of the entire path matrix over a domain. Therefore,
these methods do not require a pseudo-random sampling
hash function to determine which packets to sample. The
goal is simply to select a subset of cells for which the end-to-
end performance is measured. In fact, in [10], it is suggested
to use simple bit pattern matching in the cell content to sam-
ple packets; this would not be an acceptable sampling hash
function.

In contrast, trajectory sampling critically relies on a sam-
pling hash function to select a statistically representative
subset of packets over all the 
ows traversing the network.
This is because there is a strong correlation between some
�elds in the packet (e.g., the destination address) and the
path taken by the packet. The focus of trajectory sampling
is to directly observe the entire traÆc 
owing through a do-
main, rather than a single 
ow at its endpoints, and to infer
statistics on the spatial 
ow of this traÆc.

5.4 Extensions and Other Applications
Distributed Denial-of-Service Attacks (DDoS). This
type of attack 
oods a network or a host with bogus traf-
�c with the intent of breaking down service to legitimate
clients [7]. Attackers often use packet spoo�ng, i.e., using
false source addresses, to evade detection and exacerbate the
impact of the 
ood. Because of this, it is diÆcult to identify
the real source(s) of the attacking traÆc, because there is no
a-posteriori information available to deduce where a packet
entered the network and what path it followed. The method
presented in this paper may help in the detection of such an
attack, as sample trajectories provide the actual paths pack-
ets are taking to reach the targeted system despite the fake
source address.

Filtering. There may be situations where it is desirable to
apply trajectory sampling only to a subset of the traÆc in

a domain. For example, a network operator might want to
examine only the traÆc destined for a particular customer,
or only the traÆc of a certain service class. The amount
of measurement traÆc can be reduced in such a situation
if only the traÆc matching the desired criterion is sampled.
This can be achieved by preceding the sampling device de-
scribed in Section 5.1 with a con�gurable packet �lter. The
network operator could then con�gure the �lters of all the
interfaces in the network to sample only the desired subset of
traÆc. This could again be achieved through the sampling
device's SNMP MIB.

Probe Packets. In a network domain which supports tra-
jectory sampling, it is possible to probe end-to-end routes in
a novel way. Assuming that the sampling and identi�cation
hash functions in the domain are known, it is possible to
construct packets that will be sampled as they traverse the
network. Suppose we wish to check the path of a packet
with a given header between a speci�c ingress and egress
node. We can then append a payload to this header that
forces the sampling of this packet, by selecting the payload
such that h(�(x)) = 1. The label for this packet can also
be determined. This method could be used to verify speci�c
routes for debugging or for monitoring purposes.

6. Conclusions and Further Work
In this paper we have proposed a method for the consistent
sampling of packet trajectories in a network. Only a sub-
set of packets are sampled, but if a packet is sampled at
one link, it will be sampled on every other link it traverses.
On traversing the network, each packets implicitly indicates
whether or not it should be sampled through its invariant
part, i.e. those bits that do not change from link to link. A
hash of these bits it calculated at each router, and only those
packets whose sampling hashes fall within a given range of
values are selected. For selected packets, a di�erent hash,
the identi�cation hash, is used to stamp an identity on the
packet. This is communicated by the sampling router to the
measurement systems. This enables post sampling analysis
of distinct trajectories once the samples are reported. The
method has a number of desirable properties:

� Simple Processing: the only per packet operations re-
quired are the division arithmetic on a small number
of bytes in the packet header. No packet classi�cation
or memory lookups are used.

� No Router State is required in the per packet process-
ing of the router: packets being processed individually.
No caching is required in the measurement subsystem
of the router, thus avoiding cache delay and possible
biasing through the requirement of cache expiry poli-
cies. This does not exclude the possibility of having
state in the reporting system in the router; it may be
desirable to aggregate discrete reports to the measure-
ment system rather than sending them individually.

� Packets are directly observed: the course of the packets
through the network can be determined without a net-
work model that speci�es how they ought to be routed.
This is important for debugging since routing may not
easily specify current routing state of the system [14].
Moreover, con�guration or other errors may cause ac-
tual routing behavior to deviate from that speci�ed by
the model.
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In the future, we plan to investigate hash functions that sat-
isfy stronger randomization properties [25]. We also propose
to evaluate trajectory sampling in a network context. The
aims are to understand trajectory reporting over a wide net-
work, and to develop technique for systematic trajectory re-
construction, including resolution of ambiguities of the type
discussed in Section 2.2. The approach combines routing
information and traÆc traces to make a network simulation
that captures the topology and traÆc patterns of real net-
works.
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