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ABSTRACT
Engineering a large IP backbone network without an accu-
rate, network-wide view of the tra�c demands is challeng-
ing. Shifts in user behavior, changes in routing policies, and
failures of network elements can result in signi�cant (and
sudden) 
uctuations in load. In this paper, we present a
model of tra�c demands to support tra�c engineering and
performance debugging of large Internet Service Provider
networks. By de�ning a tra�c demand as a volume of load
originating from an ingress link and destined to a set of
egress links, we can capture and predict how routing a�ects
the tra�c traveling between domains. To infer the tra�c de-
mands, we propose a measurement methodology that com-
bines 
ow-level measurements collected at all ingress links
with reachability information about all egress links. We dis-
cuss how to cope with situations where practical consider-
ations limit the amount and quality of the necessary data.
Speci�cally, we show how to infer interdomain tra�c de-
mands using measurements collected at a smaller number
of edge links | the peering links connecting to neighbor-
ing providers. We report on our experiences in deriving the
tra�c demands in the AT&T IP Backbone, by collecting,
validating, and joining very large and diverse sets of usage,
con�guration, and routing data over extended periods of
time. The paper concludes with a preliminary analysis of
the observed dynamics of the tra�c demands and a discus-
sion of the practical implications for tra�c engineering.

1. INTRODUCTION
The engineering of large, IP backbone networks faces a num-
ber of di�cult challenges. Owing to the astonishing success
of Internet applications and the continuing rollout of faster
access technologies, demand for bandwidth across backbones
is growing explosively. In addition, shifts in user behav-
ior, publishing of new Web content, and deployment of new
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applications result in signi�cant 
uctuations in the volume
of tra�c exchanged between various hosts in the Internet.
Furthermore, changes in routing policies and failures of net-
work elements can cause sudden 
uctuations in how tra�c

ows through the backbone. This leaves network operators
in the di�cult situation of trying to tune the con�guration
of the network to adapt to changes in the tra�c demands.
The task is particularly daunting since the Internet Service
Provider (ISP) responsible for administering the backbone
does not have end-to-end control of the path from the source
to the destination. The majority of tra�c in the Internet
travels across multiple administrative domains.

The networking community has responded with research
and development on increasing link and router capacity and
providing a more easily con�gurable infrastructure. How-
ever, relatively little attention has been given to the sys-
tems needed to guide the operation and management of the
improved infrastructure. In particular, there has been very
little work on models for tra�c demands or on techniques for
populating these models from network measurements. Most
existing measurement techniques provide views of the e�ects
of the tra�c demands | poor end-to-end performance (e.g.,
high delay and low throughput) and heavy load (e.g., high
link utilization and long queues). These e�ects are captured
by active measurements of delay, loss, or throughput on a
path through the network [1], or passive monitoring of indi-
vidual routers and links [2, 3].

However, managing an ISP backbone begs for a network-
wide understanding of the 
ow of tra�c. An accurate view
of the tra�c demands is crucial for a number of important
tasks, such as debugging performance problems, optimizing
the con�guration of the routing protocols, and planning the
rollout of new capacity. In particular, the recently-formed
IETF working group on Internet Tra�c Engineering recog-
nizes that (i) accurate demand models are crucial for e�ec-
tive tra�c engineering of IP networks, but (ii) developing
such models and populating them via appropriate measure-
ments are open problems [4, 5]. These are precisely the
topics we address in this paper. As far as we know, no com-
parable study of the network-wide tra�c demands in an ISP
backbone has been conducted to date.

How should tra�c demands be modeled and inferred from
network measurements? At one extreme, IP tra�c could
be represented at the level of individual source-destination
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Figure 1: An IP tra�c demand is naturally modeled
as a point-to-multipoint volume because the destina-
tion is reachable via multiple egress links.

pairs, possibly aggregating sources and destinations to the
network address or autonomous system level. Such an end-
to-end tra�c matrix would lend insight into the 
uctuations
in load over the Internet across time. However, representing
all hosts or network addresses would result in an extremely
large tra�c matrix. In addition, no single ISP is likely to see
all of the tra�c to and from each network address, making
it virtually impossible to populate such a model.

Alternatively, IP tra�c could be aggregated to point-to-
point demands between edge links or routers in the ISP
backbone, an option suggested in [6] in the context of MPLS-
enabled networks. However, this approach has fundamental
di�culty in dealing with tra�c that traverses multiple do-
mains. A given destination (network address) is typically
reachable from multiple edge routers, as shown in Figure 1.
As a result, IP tra�c demands are naturally modeled as
point-to-multipoint volumes. This is a simple, but crucial
di�erence between IP networks and connection-oriented net-
works (such as Frame Relay), where demands are naturally
modeled as point-to-point volumes. The set of egress links
depends on the ISP's routing policies and the BGP adver-
tisements received from neighboring domains. The selec-
tion of a unique link from this set depends on intradomain
routing information. In the example, suppose the tra�c ex-
its the network via the top egress link. A link failure or
a change in the con�guration of intradomain routing could
cause the tra�c to move to the bottom egress link. A change
in the ISP's interdomain policies or the withdrawal of a route
advertisement from a neighboring domain could also alter
the 
ow of tra�c. Modeling interdomain tra�c as point-to-
point would couple the demand model to the internal rout-
ing con�guration, making it di�cult to predict how such
changes would a�ect network load; the routing change itself
could have a major impact on the point-to-point demands.

In this paper, �rst we propose a simple tra�c demandmodel,
which e�ectively handles interdomain tra�c. As discussed
in Section 2, the model is invariant to changes in the internal
routing con�guration, and as such provides a sound basis for
tra�c engineering. Our demand model allows us to predict
how changing the internal routing con�guration impacts the
distribution of load on internal links. Second, we provide a
methodology for populating the model from usage measure-
ments collected at ingress links and reachability information
collected at egress links. Third, we consider how to apply
the model when practical considerations severely limit the
location of usage measurements to a much smaller number of
edge links. Speci�cally, in Section 3, we propose a method-
ology for populating the interdomain demand model when

usage measurements are limited to the links to neighbor-
ing service providers, coping (in particular) with not having
usage measurements at customer access points.

Next, we describe our experiences applying the methods of
Sections 2 and 3 in a large, operational ISP network | the
AT&T IP Backbone. This is where we must confront practi-
cal limitations in the usage, con�guration, and routing data
available in today's IP networks. In Section 4, we describe
the challenges of processing router con�guration �les, for-
warding tables, 
ow-level measurements, and SNMP data
collected from multiple locations in the network over an ex-
tended period of time. In particular, we highlight how we
addressed several practical constraints that arose in process-
ing the large (and lossy) 
ow-level measurements. In Sec-
tion 5, we present results showing the e�ectiveness of the
techniques in Section 2 and 3. We show that the data sets
collected at multiple times and locations are remarkably co-
herent, and present a detailed explanation of the occasional
inconsistencies that arise from network dynamics.

Our analysis of the measured demands focuses on the time
scale of tens of minutes to hours or days. Tra�c engineer-
ing tasks occur on this time scale [7], where fundamental
shifts in user behavior and changes in network routing in-
troduce tra�c variability beyond statistical 
uctuations. On
a smaller time scale, Internet tra�c 
uctuates in reaction to
bursty user behavior and congestion control mechanisms.
In populating our demand model, we focus on large aggre-
gates of tra�c, rather than the dynamics of individual 
ows.
The distribution of tra�c through the network is sensitive
to the dynamics of interdomain routing, which may change
the set of egress points for a particular destination. Our de-
mand model can be applied to investigate the impact of such
changes in reachability information, due to network failures,
recon�gurations, or policy changes.

2. TRAFFIC DEMANDS
This section presents a brief overview of ISP backbone ar-
chitectures and routing protocols. We also propose a model
for IP tra�c demands, and discuss its application to several
important tra�c-engineering tasks. Then, we describe how
to compute these demands from 
ow-level measurements at
ingress links and reachability information about egress links.

2.1 ISP Backbone Networks
An ISP backbone network consists of a collection of IP
routers and bi-directional layer-three links, as shown in Fig-
ure 2. Backbone links connect routers inside the ISP back-
bone, and edge links connect to downstream customers or
neighboring providers. Edge links are divided into access
links and peering links. For example, an access link could
connect to a modem bank for dial-up users, a web-hosting
complex, or a particular business or university campus. Multi-
homed customers have two or more access links for higher
capacity, load balancing, or fault tolerance. Peering links
connect to neighboring service providers. A peering link
could connect to a public Internet exchange point, or di-
rectly to a private peer or transit provider. An ISP often
has multiple peering links to each neighboring provider, typ-
ically in di�erent geographic locations. Depending on the
contractual relationships, the ISP may or may not allow a
pair of peers to communicate across the backbone.
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Figure 2: Tra�c 
ows in an ISP backbone

The tra�c enters the backbone on an ingress link and leaves
on an egress link. Figure 2 illustrates the possible scenar-
ios. For example, internal tra�c travels between two ac-
cess links, whereas transit tra�c travels between two peering
links. Inbound tra�c travels from a peering link to an ac-
cess link, and outbound tra�c travels from an access link to
a peering link. Much of the tra�c in the Internet must travel
through multiple domains en route from the source to the
destination. Hence, most of the tra�c in an ISP backbone
enters or leaves the network on a peering link. As such, an
ISP rarely has complete control of the entire path from the
source to the destination. Even for internal tra�c, the cus-
tomer exercises control over how the tra�c enters the ISP
backbone, and how the tra�c travels from the egress link
through the customer's network to the destination host.

The path traveled by an IP packet depends on the interplay
between interdomain and intradomain routing. The ISP
employs an intradomain routing protocol, such as OSPF,
IS-IS, or MPLS, to select paths through the backbone be-
tween ingress and egress links. Under OSPF and IS-IS, the
routers exchange link-state information and forward packets
along shortest paths, based on the sum of link weights cho-
sen by the ISP. Typically, customers and peers do not par-
ticipate directly in these protocols with the ISP. Communi-
cating across domains requires coordination with customers
and peers to exchange reachability information. Interdo-
main routing operates at the level of a network address, or
pre�x, consisting of an IP address and a mask length (e.g.,
135:207:119:0=24 has a 24-bit mask that speci�es a block
of 256 contiguous addresses). An ISP typically uses static
routes to direct tra�c toward customers who have a �xed
set of network addresses and do not participate in an in-
terdomain routing protocol. The Border Gateway Protocol
(BGP) is used to exchange dynamic reachability information
with the remaining customers and neighboring providers.

2.2 Demand Model
The interplay between intradomain and interdomain rout-
ing has important implications for how we de�ne a tra�c
demand. The ISP network lies in the middle of the Inter-
net, and may not have a direct connection to the sender or
the receiver of any particular 
ow of packets. As such, a
particular destination pre�x may be reachable via multiple

egress links from the ISP. A multi-homed customer may re-
ceive tra�c on two or more links that connect to di�erent
points in the ISP backbone. Likewise, an ISP may have mul-
tiple links connecting to a neighboring provider. When the
ISP learns multiple routes to the same destination pre�x,
the ultimate decision of which route to use depends on the
BGP route-selection process. The decision process involves
multiple steps to select from the set of advertised routes.
First, the ISP can apply import policies to prefer one route
over another. For example, the ISP may prefer routes via
one neighbor over another. Then, the ISP considers the
length of the path, in terms of the number of autonomous
systems involved, followed by several other criteria [8].

Later in the tie-breaking process, the selection of a route
(and the corresponding egress link) depends on information
from the intradomain routing protocol. For example, sup-
pose the BGP selection process results in two routes leav-
ing the ISP backbone on the east and west coasts, respec-
tively. The egress link for a particular packet would de-
pend on where this tra�c entered the network. The packet
would travel to the \closest" egress link, where closeness de-
pends on the intradomain routing parameters. Finally, if
both egress links have the same shortest-path cost, the tie
is broken by comparing the identi�ers of the two routers re-
sponsible for advertising these routes. The dependence on
intradomain routing implies that a change in the backbone
topology or routing con�guration could change which egress
link is selected. Similarly, if tra�c enters the backbone in a
di�erent location, the egress link could change.

To be practical, our representation of tra�c demands should
enable experimentation with changes to the network topol-
ogy and routing con�guration. Hence, we associate each
tra�c demand with a set of egress links that could carry the
tra�c. The set represents the outcome of the early stages
of the BGP route-selection process, before the consideration
of the intradomain protocol. This is in contrast to mod-
els that use a multipoint set to capture uncertainty in the
distribution of customer tra�c across a set of di�erent desti-
nations [9]. In our model, the selection of a particular egress
link within the set depends on the con�guration of intrado-
main and interdomain routing. The ISP typically has very
limited control over the selection of the ingress link of the
tra�c. The selection of the ingress link depends on the
routing policies of other autonomous systems and directly-
connected customers. For our initial work on computing and
analyzing the tra�c matrix, we do not attempt to model how
the ingress link is selected. Our model of a tra�c demand
consists of an ingress link, a set of egress links, and a volume
of load.

2.3 Traffic-Engineering Applications
The volume of load represents the quantity of tra�c dis-
tributed from the ingress link to the set of possible egress
links, averaged over some time scale. This introduces is-
sues of both spatial and temporal aggregation. On the one
extreme, it is possible to compute a separate demand for
each source-destination pair that exchanges tra�c across
the backbone. On the other extreme, there could be a sin-
gle demand for all tra�c with the same ingress link and
set of egress links. The appropriate choice depends on the
application. For example, consider the task of optimizing
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the con�guration of intradomain routing to balance network
load [10]. This application could combine all tra�c with the
same ingress link and set of egress links into a single demand.
Changes in intradomain routing could a�ect the selection of
the egress link for each demand. The details of which pack-
ets or 
ows contribute to the demand are not important.
Minor extensions to this approach could de�ne a separate
demand for each tra�c class under di�erentiated services.
This would enable the route optimization to consider the
load imparted on each link by each tra�c class.

As another application, suppose an ISP is considering a
change in its BGP import policies for routes to a particular
destination pre�x belonging to another provider. A destina-
tion pre�x that receives a large amount of tra�c could result
in heavy congestion on one or more peering links. Redirect-
ing this load to a di�erent set of egress links could alleviate
the congestion. BGP route advertisements, or entries in the
BGP tables, could be used to determine the egress links for
a destination pre�x. A change in BGP import policies, such
as �ltering a route advertisement or assigning di�erent lo-
cal preference values, would change the set of egress links
associated with this destination pre�x. Similarly, network
failures, policy changes in other domains, and even network
congestion could result in 
uctuations in the BGP reacha-
bility information [11, 12]. These intentional and uninten-
tional changes would result in a new tra�c demand. To
experiment with di�erent sets of egress links, the ISP would
need to know which tra�c is associated with this particular
pre�x. For this application, tra�c destined to this pre�x
should not be aggregated with other tra�c with the same
ingress link and set of egress links.

An ISP may also need to predict the e�ects of adding or
moving an access link. For example, the ISP could rehome
an existing customer to a di�erent edge router. In this situ-
ation, all outbound demands associated with this customer
should originate from the new location, and all inbound de-
mands would have a new set of egress links to re
ect the
rehomed access link. This would enable the ISP to pre-
dict how rehoming the customer would a�ect the load on
the backbone. Similarly, an existing customer may request
a new access link for higher bandwidth or fault tolerance.
The new link could be added to the set of egress links for in-
bound demands. The ISP may also have information about
how the customer would direct outbound tra�c to its access
links. This would enable the ISP to predict what portion of
the existing outbound tra�c from this customer is likely to
enter the network on the new access link. Finally, the ISP
may need to estimate the e�ects of adding a new customer.
In some situations, the ISP may have information that can
aid in predicting the demands. For example, a customer
that hosts Web content may have server logs. The tra�c
statistics could be aggregated to the client pre�x level [13]
to predict the outbound demands for the new access link.

Ultimately the spatial aggregation of the tra�c demands
depends on the particular application, ranging from perfor-
mance debugging and backbone tra�c engineering to BGP
policy changes and capacity planning. Likewise, the tem-
poral aggregation depends on the application. Long-term
capacity planning could consider the tra�c on a relatively
coarse time scale, whereas debugging short-term performance

problems would require a more careful consideration of how
load 
uctuates across time. In our initial study of tra�c
demands, we focus on backbone tra�c engineering [7]. As
such, we aggregate tra�c with the same ingress link and set
of egress links into a single demand. In a large, operational
ISP network, this results in fairly large number of tra�c de-
mands. The volume of load associated with each demand
is identi�ed by 
ow-level measurements at the ingress links.
The set of egress links is identi�ed based on snapshots of
the forwarding tables from the routers in the operational
network. Then, we compute the current set of demands
over a variety of time scales and study the tra�c dynamics.

2.4 Measurement Methodology
To compute the tra�c demands, �ne-grain tra�c measure-
ments should be collected at all ingress links. This en-
ables us to identify the tra�c as it enters the ISP backbone.
However, collecting packet-level traces at each ingress link
would be prohibitively expensive. In addition, tra�c engi-
neering does not necessarily need to operate at the small
time scale of individual packets. Instead, we propose that

ow-level statistics should be collected at each ingress link.
These measurements can be collected directly by the inci-
dent router [14, 15]. A 
ow is de�ned as a set of packets that
match in the key IP and TCP/UDP header �elds (such as
the source and destination addresses, and port numbers) and
arrive on the same ingress link. The router should generate
a record summarizing the tra�c statistics on a regular basis,
either after the 
ow has become inactive or after an extended
period of activity. The 
ow record should include su�cient
information for computing the tra�c demands: the input

link and the dest IP address to identify the end-points of the
demand, the start and finish times of the 
ow, and the
total number of bytes in the 
ow. (Any additional informa-
tion in the measurement records, such as TCP/UDP port
numbers or type-of-service bits, could be used to compute
separate tra�c demands for each quality-of-service class or
application.) Sampling of the measurements may be per-
formed to reduce the total amount of data.

Computing the tra�c demands requires information about
the destination pre�xes associated with each egress link.
The aggregation process draws on a list, dest prefix set,
of network addresses, each consisting of an IP address and
mask length. Each pre�x, dest prefix, can be associated
with a set of egress links, reachability(dest prefix). In
an operational network, these pre�xes could be determined
from the forwarding tables of the routers that terminate
egress links. In particular, each forwarding-table entry iden-
ti�es the next-hop link(s) for a particular pre�x. This en-
ables identi�cation of the pre�xes associated with each egress
link. (The router connected to the egress links has the most
detailed view of the destination pre�x. Suppose a router has
egress links that connect to customers that were assigned
contiguous blocks of IP addresses. This egress router's for-
warding table would have an entry for each pre�x to direct
tra�c to the appropriate access link. However, the other
routers in the ISP backbone, and the rest of the Internet,
do not need such detailed information. As such, the edge
router may advertise an aggregated network address to the
rest of the backbone. In this case, information available
at the ingress router would not be su�cient to identify the
customer pre�x and the associated set of egress links.)
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For each 
ow: (input, dest, start, �nish, bytes)
dest pre�x = longest pre�x match(dest, dest pre�x set);
egress set = reachability(dest pre�x);
start bin = bstart/widthc * width;
�nish bin = b�nish/widthc * width;
if (start bin == �nish bin)

volume[input, egress set, start bin] += bytes;
else /* Compute volume of tra�c for each time bin */

byte rate = bytes/(�nish - start);
volume[input, egress set, start bin] += byte rate * (start bin + width - start);
for (time bin = start bin + width; time bin < �nish bin; time bin += width)

volume[input, egress set, time bin] += byte rate * width;
volume[input, egress set, �nish bin] += byte rate * (�nish - �nish bin);

Output for each aggregate: (input, egress set, time bin, volume)

Figure 3: Computing tra�c demands based on measurements at ingress links

Each 
ow spans some time interval (from start to finish)
and contributes some volume of tra�c (bytes). Comput-
ing tra�c demands across a collection of 
ows at di�erent
routers introduces a number of timing challenges. The 
ow
records do not capture the timing of the individual pack-
ets within a 
ow. Since tra�c engineering occurs on a time
scale larger than most 
ow durations, we compute demands
on a time scale of tens of minutes to multiple hours. Conse-
quently, we are not concerned with small variations in timing
on the scale of less than a few minutes. We divide time into
consecutive width-second bins. Most 
ows start and �nish
in a single bin. When a 
ow spans multiple bins, we subdi-
vide the tra�c in proportion to the fraction of time spent
in each time period. For example, suppose a 10-kbyte 
ow
spent one second in the �rst bin and nine seconds in the sec-
ond bin. Then, we associate 1 kbyte with the �rst bin and
9 kbytes with the second bin. The algorithm for computing
the tra�c demands in summarized in Figure 3.

3. MEASUREMENT AT PEERING LINKS
Collecting 
ow-level measurements at each ingress link would
be the ideal way to determine the tra�c demands. In this
section, we extend our methodology to measurements col-
lected at a much smaller number of edge links | the links
connecting the ISP to neighboring providers. We describe
how to infer where outbound tra�c enters the backbone,
based on customer address information and a model of how
tra�c from each of the customer's access links would be
routed across the ISP backbone.

3.1 Adapted Measurement Methodology
Collecting �ne-grained measurements at every ingress link
would introduce substantial overhead in a large network.
ISP backbones typically include a large number of access
links that connect to customers at various speeds. The
routers that terminate these links often vary in functional-
ity and must perform computationally-intensive access con-
trol functions to �lter tra�c to/from customers. Collecting

ow-level statistics at every access link would introduce ad-
ditional overhead on these routers; in fact, some of these
routers may not be capable of collecting �ne-grain measure-
ments. In contrast, a small number of high-end routers are
used to connect to neighboring providers. These routers typ-
ically have much fewer links with substantial functionality
(including measurement functions) implemented directly on

the interface cards. Collecting 
ow-level measurements on
these links is much less di�cult. In addition, throughout the
Internet, the links between major service providers carry a
large amount of tra�c and are vulnerable to 
uctuations
in interdomain routing, making it very important to have
detailed usage statistics from these locations.

By monitoring both the ingress and egress links at these lo-
cations, we capture a large fraction of the tra�c in the ISP
backbone. However, this introduces new complications for
measuring internal, outbound, and transit tra�c, as sum-
marized in Table 1. First, monitoring the peering links does
not capture the internal tra�c sent from one access link to
another. (Some customer tra�c may travel over particularly
important access links to and from the ISP's e-mail, Web,
and DNS services. Flow-level measurements should be en-
abled on these access links | e�ectively treating these con-
nections as peering links.) Second, computing the outbound
demands that travel from access links to peering links be-
comes more di�cult, since 
ow-level measurements are not
available at the ingress points. Inferring how these 
ows
entered the network is the main focus of the rest of this
section. Third, measuring both ingress and egress tra�c at
the peering links may result in duplicate measurements of
transit tra�c. These 
ows should not be counted twice.

The �rst step in computing the tra�c demands is to clas-
sify a 
ow as inbound, transit, or outbound, as illustrated
in Figure 2. The classi�cation depends on the input and
output links at the router that measured the 
ow, as sum-
marized in Table 2. We initially focus our discussion on
inbound and outbound 
ows, and discuss transit tra�c in
greater depth at the end of the subsection. For inbound

ows, traveling from a peering link to a backbone link, we
can directly apply our methodology from Section 2, since

ow-level measurements are available from the ingress link.
The process for aggregating the 
ow records is summarized
in Figure 4, skipping the details from Figure 3 of dividing
the bytes of the 
ow across multiple time bins.

Outbound 
ows require more careful handling. The 
ow
measurements provide two pieces of information that help
us infer the ingress link responsible for outbound tra�c |
the source IP address and the input/output links that ob-
served the 
ow at the egress router. The source address in-

261



Ideal Measuring at Peering Links
Inbound Transit Outbound Internal

Ingress measurement measurement measurement � �
Egress reachability reachability reachability reachability reachability

measurement measurement

Table 1: Measurement and reachability information available at ingress and egress links

Input Output Classi�cation Action
Peer Backbone Inbound or multi-hop transit Point-to-multipoint demand
Peer Peer Single-hop transit Point-to-multipoint demand
Backbone Backbone Backbone tra�c Omit 
ow
Backbone Peer Outbound or multi-hop transit Identify possible ingress link(s)

Omit 
ow or compute demand

Table 2: Flow classi�cation based on input and output links

dicates which customer generated the tra�c. We can match
the source address with a customer pre�x and, in turn,
match this pre�x with a set of possible access links that
could have generated the tra�c. (Note that we must as-
sume that the source address correctly identi�es the sender
of the tra�c. Although this is typically the case, a small
fraction of the packets may have spoofed source addresses;
that is, the sender may put a bogus source address in the IP
packet header to evade detection while attacking the desti-
nation host.) The pseudocode in Figure 4 draws on a list,
src access prefix set, of the network addresses introduc-
ing tra�c at access links. Each source pre�x, src prefix,
can be associated with a set of ingress links based on the
map sendability(). We also retain information about the
input and output links that measured the 
ow. This in-
formation helps us infer which of these access link(s) could
have originated the tra�c, as discussed in Section 3.3.

Next, we discuss how our methodology applies to transit
tra�c that travels from one neighboring provider to an-
other. Transit tra�c falls into two categories | single-hop
and multiple-hop, as shown in Figure 2. A single-hop tran-
sit 
ow enters and exits the ISP backbone at the same edge
router, without traversing any backbone links; in this case,
the 
ow is measured once, at this router. A multi-hop tran-
sit 
ow enters at one router, traverses one or more backbone
links, and exits at another router; in this case, the 
ow is
measured twice | at the ingress and egress points. The best
place to capture a transit 
ow is at its ingress link, where we
can apply the methodology of Section 2. To avoid double-
counting the 
ow, we need to discard the 
ow records gen-
erated by multi-hop transit 
ows as they leave the network.
This requires distinguishing outbound 
ows (introduced by
an access link) from transit 
ows (introduced by a peering
link). For a 
ow leaving the network, the algorithm in Fig-
ure 4 attempts to match the source IP address with customer
pre�x. For transit 
ows, this matching process would fail,
and the associated 
ow record would be excluded.

3.2 Identifying Candidate Ingress Links
To associate each outbound 
ow with a set of ingress links,
we must determine which source IP addresses could intro-
duce tra�c on each access link. On the surface, this problem
seems equivalent to determining the set of destination pre-
�xes associated with each access link. However, Internet
routing is not symmetric. Tra�c to and from a customer

does not necessarily leave or enter the backbone on the same
link. Hence, the forwarding table of the router terminating
the access link may not have su�cient information to iden-
tify the source pre�xes. For example, suppose a customer
with two IP pre�xes has two access links to the ISP. For
load-balancing purposes, the customer may wish to receive
tra�c for one pre�x on the �rst access link, and the rest of
the tra�c on the second access link. (This may involve con-
�guring static routes for these pre�xes in the edge routers
that terminate the access links. Alternatively, the customer
may announce these routes to the ISP using a routing pro-
tocol such as RIP or BGP.) In this example, each pre�x
would be reachable via a single access link. Yet, the cus-
tomer could conceivably send tra�c from either pre�x via
either access link. Hence, the router forwarding tables are
not su�cient for identifying the source addresses that might
generate tra�c on an access link.

Fortunately, an ISP typically knows the IP addresses of its
directly-connected customers. In fact, the customer may be
assigned IP pre�xes from a larger address block belonging
to the ISP. In other situations, the customer already has its
own block of IP addresses. As part of provisioning a new
customer, the ISP con�gures the router that terminates the
associated access link. Packet �lters are speci�ed to de-
tect and remove tra�c with bogus source IP addresses [16].
These packet �lters indicate which sources might send tra�c
via a particular access link. The packet �lters for each inter-
face are speci�ed in the router's con�guration �le. By pars-
ing the router con�guration �les, we can determine which
source pre�xes to associate with each access link. From this
information, we can determine the set of access links asso-
ciated with each source pre�x.

Using packet �lters to identify source IP addresses is most
appropriate for access links to directly-connected customers
that do not connect to other service providers, or have down-
stream customers of their own. For customers that do con-
nect to other service providers, or have downstream cus-
tomers of their own, it is di�cult to specify static packet
�lters for each source pre�x on each possible ingress link.
For example, when a neighboring domain acquires a new
customer, tra�c from these new source addresses could en-
ter the ISP's backbone. Although the downstream provider
typically performs packet �ltering, these �lters may not be
known to the upstream ISP. This is a fundamental issue
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For each 
ow: (input, output, source, dest, start, �nish, bytes)
dest pre�x = longest pre�x match(dest, dest pre�x set);
egress set = reachability(dest pre�x);
if (input.type == peer) /* Inbound or (ingress) transit 
ow */

compute volume[input, egress set, input, output, time bin] for each bin;
else /* Outbound or (egress) transit 
ow */

src pre�x = longest pre�x match(source, src access pre�x set);
if (src pre�x 6= �)

ingress set = sendability(src pre�x);
compute volume[ingress set, egress set, input, output, time bin] for each bin

Output for each aggregate: (ingress set, egress set, input, output, time bin, volume)

Figure 4: Computing tra�c demands based on measurements at peering links

that arises in the Internet due to the use of dynamic routing
protocols based on destination reachability information. In
these situations, our measurement methodology would argue
for performing 
ow-level measurements at the ingress links,
rather than depending on knowing the set of links where
these sources could enter the ISP backbone.

3.3 Matching Flows with Routes
For inbound and transit 
ows, the algorithm in Figure 4 re-
sults in a point-to-multipoint demand. However, each out-
bound 
ow is associated with a set of ingress links, resulting
in a multipoint-to-multipoint aggregate. Computing point-
to-multipoint demands for outbound tra�c requires an addi-
tional step to determine which access link initiated the traf-
�c. Knowledge of intradomain routing can help resolve the
ambiguity. For example, consider a source IP address that
is associated with access links in New York and Chicago.
Suppose the customer sends tra�c to a destination with
egress links in Washington, D.C., and Chicago, and the ac-
tual 
ow was observed leaving the backbone on a peering
link in Chicago. If tra�c from the New York access link
would have been routed to the Washington, D.C., peering
link, then the 
ow observed in Chicago must have originated
from the access link in Chicago.

Determining whether an outbound 
ow could have entered
the network at a given ingress link requires knowledge of
the backbone topology and intradomain routing con�gura-
tion at the time the 
ow was measured. For a given ingress
link and set of egress links, we determine on which egress
link the 
ow would exit the network. If this was not the
egress link where the 
ow was observed, then this ingress
link can be eliminated from consideration. In fact, knowing
the path(s) from the ingress link to the egress link provides
additional information. The 
ow was observed as it traveled
from an input (backbone) link to an output (peering) link
at the egress router. The path of the 
ow from the ingress
link must include both of the links that observed the 
ow.
Otherwise, this ingress link should be excluded from con-
sideration. This process must be repeated for each of the
possible ingress links, as shown in Figure 5.

This disambiguation process has three possible outcomes.
First, a single ingress link could have generated the traf-
�c. This is the ideal situation, resulting in a single point-to-
multipoint demand. Second, more than one of the candidate
ingress links could have generated the tra�c. This would

happen if multiple ingress links would send the tra�c to the
same egress router, and would enter this router on the same
input link. (For example, a customer might have two access
links in the same city, for load balancing or fault tolerance.
These two access links would tend to select the same egress
link.) Tra�c from these access links may follow a similar
path through the backbone, imparting load on some of the
same links and routers. When multiple access links could
have generated the tra�c, the disambiguation process gen-
erates multiple demands, each with the an equal fraction of
the tra�c. Third, if none of the candidate ingress links could
have generated the tra�c, the disambiguation process has
failed and the 
ow record is discarded. These \misses" are
discussed in more detail in Section 5.2. In a similar manner,
the routing model is useful for verifying the correctness of
the inbound and transit demands.

The disambiguation process depends on knowing the pos-
sible paths from each ingress link to each egress link. We
obtain this information from a routing model that captures
the details of path selection in the ISP backbone. For each
point-to-multipoint demand, the routing model determines
the particular egress point as well as the path(s) through the
network from the ingress link to the egress link. The set of
egress links represents the outcome of the early steps of the
BGP route-selection process. The routing model captures
the last two steps | selection of the shortest-path egress
link(s) based on the intradomain routing protocol and tie-
breaking based on the router identi�er. The main complex-
ity stems from the modeling of intradomain routing. Our
routing model [7] captures the details of OSPF routing in
networks with multiple areas, including the splitting of traf-
�c across multiple shortest-path routes. Snapshots of the
router forwarding tables from the operational network have
been used to verify the correctness of our routing software.

4. DATA SETS FROM AT&T BACKBONE
This section describes our experiences harvesting, parsing,
and joining four large data sets, each collected from mul-
tiple locations in the AT&T IP Backbone. Monitoring the
peering links produces, on average, one byte of measure-
ment data for every 138 bytes of data tra�c. We describe
how we join these 
ow-level measurements with information
from router con�guration �les, router forwarding tables, and
SNMP data to compute the tra�c demands. Then, we dis-
cuss how we addressed several practical constraints in pro-
cessing the large set of 
ow-level measurements.
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For each aggregate: (ingress set, egress set, input, output, time bin, volume)
For each a in ingress set

route = Route (a, egress set);
if (route does not use input and output links)

remove a from ingress set;
if (ingress set 6= �)

for each a in ingress set
dvolume[a, egress set, time bin] += volume/size of(ingress set);

else
count as a miss;

Output for each demand: (a, egress set, time bin, dvolume)

Figure 5: Disambiguating the set of ingress links based on routing information

4.1 Data Sets
The computation of the tra�c demands draws on several
di�erent data sets, as summarized in Table 3. Router con-
�guration �les re
ect the con�guration of a router as part
of the IP network. The �le speci�es the con�guration of the
router hardware, the partitioning of resources (e.g., bu�ers
and link capacity), the routing protocols (e.g., static routes,
OSPF, and BGP), and the packet-forwarding policies. A
global view of the network topology and con�guration can
be constructed by joining information across the con�gura-
tion �les of the various routers in the ISP's backbone [17].
This enables us to identify all of the routers and links, and
their connectivity. In addition, the joined con�guration �les
enable us to determine the type of each link (access, peer-
ing, or backbone), as well as the packet �lters associated
with each access link. This information is important for
aggregating the 
ow-level measurements. Finally, the con-
�guration �les indicate the link capacities, as well as the
OSPF weight and area for each backbone link, which are
necessary input for the routing model.

Each router has a forwarding table that identi�es the IP ad-
dress(es) and name(s) of the next-hop interface(s) for each
destination pre�x (e.g., \135.207.0.0/16 12.126.223.194 Se-
rial2/0/0:26"). We use the forwarding tables to associate
each destination pre�x with a set of egress links. The name
of the next-hop interface is joined with the name of the cor-
responding egress link from the router con�guration �les.
Joining this information produces the list, dest prefix set,
of destination pre�xes and the map, reachability(), of
each destination pre�x to a set of egress links. In addition,
the forwarding tables are used to verify the correctness of
the routing model. Having a snapshot of the forwarding ta-
bles close together in time enables us to determine how each
router forwarded tra�c toward each destination pre�x. In
particular, the forwarding tables enable us to identify which
subset of the backbone links would carry tra�c destined to
a particular pre�x. These paths were checked against the
routes computed by our routing model.

The 
ow-level measurements were collected by enabling Net-

ow [14] on each of routers that terminate peering links.
Each router exports the measurements as UDP packets in
groups of one to thirty 
ow records. These UDP packets
are sent to a collection server. Each 
ow record corresponds
to a collection of packets that match in their key IP and
TCP/UDP header �elds and were routed in the same man-
ner (i.e., same input and output link, and same forwarding-

table entry). The record includes the packet header and
routing information, as well as the time (i.e., start and �nish
time in seconds) and size (i.e., number of bytes and packets)
of the 
ow. Our analysis focuses on the source and destina-
tion IP addresses, the input and output links, the start and
�nish time, and the number of bytes. The other �elds in the
Net
ow records could be used to compute separate tra�c
demands for di�erent subsets of the tra�c.

Processing a Net
ow record requires associating the input
and output link that observed the 
ow with the correspond-
ing links in our model of the network topology. However,
the Net
ow record identi�es each link in terms of an integer
SNMP index, whereas the forwarding tables and router con-
�guration �les reference a link by its name and IP address!
The SNMP index is an integer value that uniquely identi�es
each interface in the router. The index does not change un-
less the interface is moved or another interface is installed in
the same router. However, this identi�er is not available in
the router con�guration �les or the router forwarding tables.
Periodic polling of the router's SNMP variables allows us to
determine the IP address and name associated with each
SNMP index. SNMP data also includes statistics about the
number of bytes carried on each link on a �ve-minute time
scale. We used these statistics as an independent veri�cation
of the loads computed by aggregating the Net
ow data.

4.2 Practical Constraints
The processing of the Net
ow data introduced several prac-
tical challenges, which we brie
y summarize:

Router clock synchronization: Each router synchronizes
the clock of its route processor to a central server using the
Network Time Protocol (NTP). However, the clocks on in-
dividual interface cards are not always synchronized, due to
a historical bug in Cisco's Internet operating system. We
addressed this problem by aligning the Net
ow records col-
lected on the interface cards with records from the route
processor. All timestamps within the Net
ow data are rela-
tive to a base clock. For each router, it su�ces to adjust the
base clock of the records originating each link with those
originated by the route processor. In post-processing the
Net
ow data, we realign the base clock of each interface to
match with the most recent record from the route proces-
sor. The route processor receives a relatively small number
of data packets (such as routing protocol tra�c and packets
with expired TTL values), compared to the interface cards.
Still, 
ow records are generated by the route processor quite
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Dataset Location Key Fields
Con�guration �les Router Per interface: IP address, name, type (peer/customer/core), and capacity

Per core interface: OSPF con�guration (weight and area)
Per customer interface: network addresses for packet �lters

Forwarding tables Router Per interface: set of network addresses (IP address and pre�x length)
Net
ow logs Peer link Per 
ow: input and output interfaces (SNMP index), src and dest IP

addresses, start and �nish times, and number of bytes and packets
SNMP data Interface Per interface: SNMP index, IP address, name, and utilization

Table 3: Datasets and key �elds used in computing and validating the tra�c demands

frequently on a busy router; during a sampled 24-hour pe-
riod, the interarrival time of 
ow records from the route
processor has a mean of 0.32 seconds and a maximum of
91.4 seconds. Hence, the uncertainty introduced by correct-
ing for timestamp problems is very small compared to the
time scale of the subsequent aggregation.

Lost measurement data: Net
ow records are transmitted
to the collection server using UDP. As such, the measure-
ment data is not delivered reliably. Limited bandwidth to
our collection server resulted in loss of up to 90% of the
UDP packets during heavy load periods. Nearly all of these
packets were lost on the link connecting to our measure-
ment server, dwar�ng the losses experienced by the Net
ow
data in the rest of the backbone. The tra�c on the link
to the collection server consists mainly of the UDP Net
ow
data. The tra�c dynamics typically introduced by TCP
congestion control do not arise in this context. The domi-
nance of UDP tra�c, coupled with the limited bandwidth,
results in a nearly random sampling of the measurement
records. To test our hypothesis of random packet loss, we
analyzed the loss patterns based on the sequence numbers
of the Net
ow records that arrived successfully. Detailed
analysis of the loss characteristics showed that the distribu-
tion of the number of consecutive losses is consistent with
assuming independent loss. Based of the assumption of ran-
dom independent loss, we apply a correction factor to the
received 
ow records to account for lost measurement data,
taking in to account the fact that the loss rate varies across
time and (potentially) across routers. First, we determine
the loss rate during each (ten-minute) time interval for each
router (and each \engine" that exports Net
ow data), based
on sequence numbers in the stream of 
ow records. Then,
we assume that 
ows that are observed are statistically sim-
ilar to other 
ows that ended during the same time period.
We apply a correction factor based on the loss probability
during that time period, corresponding to the time that the

ow record was exported to the collection server. This cor-
rection factor is applied to all bytes within the 
ow. To
verify our approach, and to select the ten-minute interval
for applying the loss correction, we compared our corrected
Net
ow data against independent link-load statistics from
SNMP. The experiments showed a good match.

Data sets from multiple time periods: Computing the
tra�c demands required joining four independent data sets,
each collected from multiple locations in the network at dif-
ferent times during the day. This introduces signi�cant chal-
lenges in joining and analyzing the data. These data sets
also provide a unique opportunity to quantify the e�ects of

Net
ow Con�guration Forwarding SNMP
Logs Files Tables Indices

(all day) (8pm GMT) (4pm GMT) (8pm GMT)
11/03/1999 11/03/1999 11/04/1999 11/01/1999
11/04/1999 11/04/1999 11/04/1999 11/01/1999
11/11/1999 11/11/1999 11/14/1999 11/08/1999
11/12/1999 11/12/1999 11/14/1999 11/08/1999

Table 4: Collection times for each data set

routing instability on an operational network. Table 4 sum-
marizes the data sets used in the experiments in the remain-
der of the section. We focus on four days in November 1999.
November 3 and 4 are a Wednesday and a Thursday, respec-
tively. November 11 and 12 are a Thursday and a Friday,
respectively. These 
ow measurements enable us to compare
tra�c on two consecutive days and two consecutive weeks.
Daily con�guration �les are used to generate the topology
model. Each experiment uses the most recent forwarding
tables and SNMP data available. The SNMP data is the
least sensitive, since the SNMP index for each link does not
change unless the network undergoes a structural change;
these changes occur infrequently on the routers that ter-
minate peering links. Independent veri�cation assured that
this did not occur during the periods of our data collection.

5. EXPERIMENTAL RESULTS
In this section, we present the results from aggregating and
validating the 
ow-level measurements collected at the peer-
ing links. Then, we discuss the application of the rout-
ing model to disambiguate and validate the demands. In
both cases, we discuss the implications of the ambiguity of
the ingress links for outbound 
ows, 
uctuations in egress
reachability information, and inconsistencies across the var-
ious data sets. Then, we present our initial results from
analyzing the spatial and temporal properties of the tra�c
demands.

5.1 Netflow Aggregation
The �rst phase of computing the tra�c demands applies
the methodology in Figure 4 to the Net
ow data. Typically,
more than 98% of the bytes observed at the peering links can
be mapped to a point-to-multipoint (inbound/transit 
ows)
or multipoint-to-multipoint aggregate (outbound 
ows), as
shown in the \miss" column. These mismatches stem from
the three key steps in Figure 4 | (i) identifying the input
and output links that observed the 
ow, (ii) associating the
destination IP address with a set of egress links, and (iii)
associating the source IP address (of an outbound 
ow) with
a set of ingress links.
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A signi�cant fraction of the misses can be explained by step
(i), as shown in the \Out 0" and \Loop" columns. Each
Net
ow record logs the SNMP indices for the input and
output links that observed the 
ow. In our data sets, ev-
ery Net
ow record had valid input and output �elds that
matched with our SNMP data. Approximately 0:5{0:7% of
the bytes in the network had a output link of 0, meaning
that the data was delivered to the route processor. Fur-
ther inspection of the raw Net
ow data reveals that about
0:4% of these bytes stem from tra�c actually destined to
the router. That is, for these 
ows, the destination IP ad-
dress is the router's loopback IP address. This tra�c comes
from ICMP (Internet Control Message Protocol) messages,
telnet, and SNMP polling for routine operational tasks. The
remaining 
ows with an output link of 0 correspond to un-
routable tra�c. For example, a packet with an expired TTL
(time-to-live) �eld, as generated by traceroute, would fall in
this category. These unroutable packets are directed to the
route processor for further handling. The second category
of misses (\loop") arises when a 
ow enters and leaves the
router on the same link. These transient forwarding loops
account for an extremely small portion of the total bytes in
the network (e.g., less than 0:03%).

The remainder of the \misses" occur in trying to deter-
mine the ingress and egress links for a 
ow. As expected,
the matching process is most successful when measurements
are collected at the ingress link, as seen in the \Inbound
(Egress)" column. Still, a small number of mismatches arise
in associating a 
ow's destination IP address with the egress
links. That is, the destination IP address does not match
with any of the pre�xes observed in the snapshots of the
router forwarding tables. These mismatches stem from tran-
sient changes in reachability information. For example, the
destination may have been temporarily unreachable when
the forwarding tables were collected. Or, perhaps the des-
tination's egress point moved from one router to another,
with neither snapshot showing a route to that destination.
These kinds of 
uctuations in reachability information are
unavoidable in dynamic routing protocols. Fortunately, they
did not have a signi�cant a�ect on our ability to match the

ows. To verify this hypothesis, we identi�ed the top few
destinations, responsible for the majority of the missed traf-
�c, and found that these destinations were represented in
the forwarding tables collected on subsequent days.

Identifying the egress links for outbound tra�c has simi-
lar challenges, as seen by the statistics in the \Outbound
(Egress)" column1. Yet, the most challenging part of ag-
gregating the outbound 
ows arises in matching the source
IP address with one or more access links, as shown in the
\Outbound (Ingress)" column in Table 5. The aggregation
process identi�es at least one candidate ingress link for over
99:3% of the outbound bytes. However, matching the source
IP address with a set of access links does not necessarily im-
ply that one of these links actually generated the tra�c.

1The statistics for egress matching for outbound tra�c are
slightly lower than the corresponding statistics for inbound
tra�c. This arises from the operation of our aggregation
software, which does not try to identify a set of egress links
for an outbound 
ow unless one or more possible ingress
links could be identi�ed.

This check does not occur until the later stage of disam-
biguating the set of ingress links based on the routing model.

Overall, the results are consistent across the four experi-
ments. However, the November 11 data has a higher pro-
portion of mismatched bytes (4:7% vs. less than 2% for the
other days). These extra misses arise in two categories |
egress links for inbound tra�c and ingress links for out-
bound tra�c. Both errors relate to customer IP addresses.
Upon further inspection, most of these misses stem from a
single access link. The access link was upgraded some time
after 8pm GMT, when the con�guration �les were collected.
Hence, our copy of the con�guration �le of the router termi-
nating the new link had the name and IP address of the old
link. The forwarding table was collected several days later
on November 14. In this table, the next-hop entries point-
ing to the new link are used to direct tra�c to a collection
of customer pre�xes. However, in our automated joining of
the data sets, we did not associate these customer pre�xes
with the old link speci�ed in the con�guration �le. Hence,
these customer pre�xes were unknown during the aggrega-
tion of the Net
ow data. Manually associating the pre�xes
with the old link, and repeating the experiment, reduced the
number of egress misses (for outbound tra�c) from 1:019%
of the bytes to 0:468% and the number of ingress misses
(for inbound tra�c) from 2:939% of the bytes to 0:595%,
consistent with results from other days.

5.2 Route Disambiguation
The second phase of computing demands applies the method-
ology in Figure 5 to match the aggregated tra�c with routes.
The disambiguation process is primarily used to infer the
ingress link associated with each outbound demand. How-
ever, we �nd that the procedure also provides a useful consis-
tency check on our initial processing of the 
ow-level data,
and aids in studying the dynamics of the other data sets
involved in the computation.

Our methodology is most e�ective for inbound and tran-
sit tra�c, where measurements are available at the ingress
links. In this case, the techniques in Section 3 produce
a point-to-multipoint demand. Still, our experimental re-
sults from aggregating the Net
ow data are not su�cient to
show that we associated each tra�c demand with the cor-
rect ingress link and set of egress links. The routing model
provides an important consistency check by verifying that
tra�c from the ingress link to the set of egress links would
actually traverse the links that measured the 
ow. The re-
sults of this check are shown in the \Inbound (miss)" column
in Table 6, which shows that the routing test failed for less
than 1% of all bytes entering the network at the peering
links. This is very promising, though not perfect. Not all
changes in the set of egress links would result in a change
in how the observed tra�c would exit the network. Still, an
error rate of less than 1% suggests that our methodology is
e�ective for handling tra�c measured on ingress links.

We expect our approach to be less e�ective for outbound
tra�c, due to unavoidable ambiguity about the ingress links.
In addition, the peering links are vulnerable to 
uctuations
in reachability information due to the dynamics of interdo-
main routing between neighboring ISPs. In a small number
of cases, the forwarding tables at the peering links are in-
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Inbound Outbound
Run Miss Out 0 Loop Egress Ingress Egress
11/03/99 1.720 0.691 0.006 0.442 0.451 0.127
11/04/99 1.630 0.749 0.010 0.379 0.452 0.039
11/11/99 4.720 0.540 0.009 1.019 2.939 0.210
11/12/99 1.778 0.563 0.022 0.475 0.642 0.074

Table 5: Percent of bytes unmatched in aggregating the Net
ow data

consistent with the observed 
ows. That is, the forwarding
table suggests that the router that observed the 
ow would
have forwarded the tra�c to a di�erent link! These inconsis-
tencies are 
agged in the \baddest" column, and account for
1:0{3:5% of the bytes leaving the network on peering links.
We observed the fewest errors on the November 4th data
set, where we had forwarding tables and Net
ow data from
the same day. To verify our hypothesis that these inconsis-
tencies stem from 
uctuations in reachability information,
we inspected a single day of 
ow data in greater detail. The
source-destination pairs in the a�ected demands typically
moved in and out of the \baddest" category across the day,
suggesting that the forwarding table entries in the opera-
tional router were changing across time.

Computing demands for outbound 
ows is also complicated
by uncertainty about which ingress link generated the traf-
�c. Approximately 35{45% of the bytes leaving the network
at the peering links were associated with multiple candi-
date ingress links. Some of this ambiguity could be resolved
by the routing model. In fact, between one-third and one-
fourth of these bytes could be resolved to a single ingress
link after applying the disambiguation process outlined in
Figure 5, as seen by the \perfect" column in Table 6. With
further inspection, we see that some of these demands came
from customers with access links on the east and west coasts.
Tra�c from these access links are likely to exit the net-
work on di�erent egress links. However, complications arise
when a customer has more than one link in the same re-
gion of the country. For example, a single customer may
have two access links terminating on di�erent routers in the
same city. This o�ers protection from the failure of a single
router without forcing customer tra�c to enter the network
in a di�erent city.

The routing model typically cannot disambiguate tra�c from
two access links from the same customer in the same city.
Tra�c from these two access links would typically exit the
network on the same peering links for most (if not all) desti-
nation pre�xes, and often follows a similar path through the
ISP backbone. This occurs when the intradomain path costs
to and from these two access links are very similar, if not
the same. In this case, successfully disambiguating the two
access links is not very important! Associating the tra�c
with the wrong access link does not have much in
uence on
the 
ow of tra�c in the backbone. In fact, assuming that
the tra�c was split evenly across the two links, as shown
in Figure 5, is quite reasonable. Customers often con�gure
their routers to perform load balancing across their multiple
access links, resulting in a nearly even division of the tra�c
on the two links. Overall, disambiguation to a single city
accounts for 13{19% of the outbound bytes, as seen in the

\one city" column in Table 6. In total, about two-thirds
of the ambiguous ingress sets were resolved to one or more
access links in a single city (\perfect" or \one city").

However, some customers are multi-homed to routers in dif-
ferent cities, and may even generate tra�c from a single
block of IP addresses on both links. Such multi-homing is
useful for additional fault-tolerance, or because the customer
has sites in multiple geographic locations. When the hom-
ing locations are relatively close to each other, the routing
model may not be able to disambiguate the set of ingress
links. This is a situation where additional measurement at
the ingress links would be useful. Still, overall, the disam-
biguation process is quite successful. Only 2:5{4% of the
bytes could not be associated with (one or more) point-to-
multipoint demands. These results are shown in the \Out-
bound (miss)" column in Table 6, which includes the con-
tribution of the \Outbound (baddest)" statistics. Based on
these results, the rest of this section focuses on analyzing
the statistical properties of the observed demands.

5.3 Traffic Analysis
In this section, we present initial results of a statistical anal-
ysis of the tra�c demands. We focus on: (i) statistical
characteristics of inbound and outbound tra�c, at di�erent
levels of aggregation (point-to-multipoint demands, or cor-
responding point-to-point loads on edge routers), (ii) time-
of-day variations, and (iii) variations at coinciding time in-
tervals within the two weeks.

A network with many access and peering links has a large
number of point-to-multipoint demands. However, a very
small proportion of these demands contribute the major-
ity of the tra�c. In Figure 6, we rank point-to-multipoint
demands (or point-to-point loads) from largest to smallest,
and plot the percentage of the total tra�c attributable to
each. These plots are restricted to the upper tail of the dis-
tribution, accounting for 80% of the total tra�c. We refer
to the particular demands (or loads) in this upper tail as the
heavy hitters. We found the plots to be nearly linear on the
log-log scale, as is characteristic of a Zipf-like distribution,
where the contribution of the k-th most popular item varies
as 1=ka, for some a. We found this general pattern to hold
for all data sets and at all levels of temporal and spatial ag-
gregation. Figure 6(b) shows greater concentration of tra�c
over fewer heavy hitters in outbound versus inbound tra�c.

Similar trends have been seen in earlier studies that con-
sider the load on individual links or servers. For example,
link-level traces show that the distribution of tra�c at the
pre�x and AS level follows Zipf's law [18]. Studies of the
World Wide Web have shown that a small fraction of the
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Inbound Outbound
Disambiguation

Run miss mult. ingress perfect one city mult. cities miss baddest
11/03/99 0.83 37.89 9.49 16.27 11.25 3.55 1.51
11/04/99 0.71 38.49 9.78 16.42 11.77 2.45 0.96
11/11/99 0.14 39.73 11.91 13.75 12.47 4.39 3.47
11/12/99 0.98 44.07 11.43 18.95 11.96 4.01 3.12

Table 6: Disambiguation statistics
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Figure 6: Percent bytes attributed to top ranked tra�c volumes, listed in decreasing order

requests, resources, and servers are responsible for the bulk
of the tra�c [19, 20]. The small number of heavy hitters
has important implications for tra�c engineering. On the
positive side, since the leading heavy hitters account for so
much tra�c, care in routing just these demands should pro-
vide most of the bene�t. In addition, when measuring traf-
�c demands, relatively coarse statistical subsampling should
su�ce. On the negative side, if the internal routing con�g-
uration concentrates heavy-hitter tra�c on common links,
through error or inherent 
uctuations in the identities of the
heavy hitters, the negative impact on performance could be
severe. In general, the concentration of demand on a few
sources opens up the possibility of large-scale network vari-
ability if these sources change behavior.

How do the top demands vary by time of day? In Fig-
ure 7(a) we plot the percentage of bytes attributable to the
top 500 point-to-multipoint outbound demands over a half
hour, ranked in decreasing order. The graph includes 48
curves, to cover the day. (The identities of the top 500 may
change from half hour to half hour.) There is signi�cant vari-
ation in demand sizes at the highest ranks. We have looked
at the top demands more closely, and found that they may
exhibit quite di�erent time-of-day patterns. This is demon-
strated in Figure 7(b), where we have plotted the time of
day variation for three heavy demands entering the network
in San Francisco. We informally label these three demands
as domestic consumer, domestic business, and international,
because they correspond of the usage patterns of consumer

and business domestic dial tra�c, with international tra�c
roughly similar to a time-shifted business pattern.

To investigate change among the heavy hitters more system-
atically, we consider grouping the demands into quantiles
(e.g., the �rst group corresponds to the highest ranked de-
mands together accounting for 5% of the tra�c, the second
group to the remaining highest ranked demands account-
ing for the next 5% of the tra�c, and so forth). How do
the groupings change with time-of-day? Figure 8 provides a
two-dimensional histogram, where the gray-scale of the i,j-
th block indicates the proportion of the demands in quantile
i in one time period that move to quantile j in another time
period, h hours later. In Figure 8(a), the lag h is a half
hour, and in Figure 8(b) it is 24 hours. The top demands
(top right corner) show the least variation. In both cases,
the concentration of mass along the diagonal indicates little
quantile jumping. Demands in a given quantile appear in
the same quantile or a nearby quantile 24 hours later. Vary-
ing h over the 24 hour interval we found the mass along
the diagonal �rst tends to di�use and the band widens up
to h = 12 hours, whereupon the mass then tends to con-
centrate and the band narrows up to h = 24 hours. These
preliminary results suggest a certain amount of stability in
the identity of the top demands across time.

6. CONCLUSION
Engineering a large ISP backbone introduces fundamental
challenges that stem from the dynamic nature of user be-
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Figure 8: Stability of the measured tra�c demands across time (two-dimensional histograms)

havior and reachability information, and the lack of end-to-
end control over the path of a 
ow. Yet, careful engineering
of the network is important, since the routing con�gura-
tion and backbone topology have signi�cant implications on
user performance and resource e�ciency. In this paper, we
propose a model of tra�c demands that captures (i) the
volume of data, (ii) the entry point into the ISP network,
and (iii) destination reachability information. This simple
abstraction facilitates a wide range of tra�c engineering ap-
plications, such as performance debugging, route optimiza-
tion, and capacity planning. We also present a methodology
for populating the demand model from 
ow-level measure-
ments and interdomain routing information, and apply our
approach to a large, operational ISP network. Our analy-
sis of the measured demands reveals signi�cant variations in
demand sizes and popularities by time-of-day, but a certain
amount of stability between consecutive days.

In populating our demand model, we faced three main chal-
lenges:

� Working with four di�erent datasets: Organizing
access to all data sets during the same time period is
di�cult. Insuring their completeness and consistency
posed both operational and computational challenges.
Last, determining how best to join the datasets forced
us to address the questions of subsampling and tem-
poral uncertainties between the datasets.

� Ambiguity of ingress points: For a 
ow measured
only at its egress link, determining the ingress link is
challenging. This di�culty arises because hop-by-hop
routing (based on the destination IP address) implies
that downstream routers do not necessarily have (or
need!) information about how packets entered the do-
main. In addition, the increasing decentralization of
the Internet makes it di�cult for any one ISP to know
the source IP addresses of downstream domains.

� Dynamics of the egress points: Policy changes in
one domain can have unforeseen implications on the
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reachability information seen by other ISPs. We see
evidence of this in the churn in the forwarding tables
across time, and the resulting inconsistencies between
the data sets. This complicated the identi�cation the
set of egress links for tra�c demands.

Despite these challenges, our approach for populating the
demand model performs quite well. Inconsistencies that
arose could be explained by natural network dynamics.

Motivated by our experimental results, our ongoing work fo-
cuses on two main topics | real-time computation of tra�c
demands and detailed analysis of the measured tra�c. First,
we want to determine the tra�c demands in the operational
network on ever smaller time scales by having more immedi-
ate access to con�guration, routing, and usage data. Thus
far, we have considered o�ine processing of the multiple
data sets. Moving forward, we plan to investigate monitor-
ing architectures that would enable real-time processing of
the two key, dynamic data sets | the 
ow-level statistics
and the reachability information | based on the current
state of the network. Second, we plan to devote more at-
tention to the analysis our measured tra�c demands. The
network-wide view of con�guration and usage data in an
ISP backbone provides a rich opportunity to characterize
the 
uctuations in IP tra�c demands. Our initial analy-
sis suggests that these demands have interesting spatial and
temporal properties with signi�cant implications for Inter-
net tra�c engineering. Further statistical analysis of this
data would lend insight into new techniques for the design
and operation of IP backbone networks.
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