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ABSTRACT
This paper analyzes how TCP congestion control can prop-
agate self-similarity between distant areas of the Internet.
This property of TCP is due to its congestion control algo-
rithm, which adapts to self-similar uctuations on several
timescales. The mechanisms and limitations of this prop-
agation are investigated, and it is demonstrated that if a
TCP connection shares a bottleneck link with a self-similar
background traÆc ow, it propagates the correlation struc-
ture of the background traÆc ow above a characteristic
timescale. The cut-o� timescale depends on the end-to-end
path properties, e.g., round-trip time and average window
size. It is also demonstrated that even short TCP connec-
tions can propagate long-range correlations e�ectively. Our
analysis reveals that if congestion periods in a connection's
hops are long-range dependent, then the end-user perceived
end-to-end traÆc is also long-range dependent and it is char-
acterized by the largest Hurst exponent. Furthermore, it is
shown that self-similarity of one TCP stream can be passed
on to other TCP streams that it is multiplexed with. These
mechanisms complement the widespread scaling phenomena
reported in a number of recent papers. Our arguments are
supported with a combination of analytic techniques, simu-
lations and statistical analyses of real Internet traÆc mea-
surements.
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1. INTRODUCTION
Statistical self-similarity and long-range dependence are im-
portant topics of recent research studies. Both phenomena
are related to certain scale-independent statistical proper-
ties. Statistical self-similarity can be detected when traf-
�c rate uctuates on several timescales and its distribution
scales with the level of aggregation. Long-range dependence
means that the correlation decays slower than in traditional
traÆc models (e.g., Markovian), i.e., it decays hyperboli-
cally. A number of authors have argued that self-similarity
in data networks can be induced by higher layer protocols
[4] [5] [19] [21] [23] [24]. In this paper we do not discuss
the roots of self-similarity, instead, we demonstrate how the
induced self-similarity is propagated and spread in the net-
work by lower layer adaptive protocols, in particular, by
TCP, which represents the dominant transport protocol of
the Internet.


The phenomenon of self-similarity was observed in data net-
works in [11] [12], followed by several experimental papers
showing fractal characteristics in other types of networks
and traÆc, e.g., in video traÆc [2] [9] or in ATM networks
[15]. A comprehensive bibliographical guide is presented in
[25]. These observations have seriously questioned the valid-
ity of previous short memory models when applied to net-
work performance analysis [19]. The impact of self-similar
models on queuing performance has been investigated in a
number of papers [3] [6] [16].


Considerable e�ort has been made to explore the causes
of this phenomenon. In [4] the authors argue that self-
similarity is induced by the heavy-tailed distribution of �le
sizes found in Web traÆc. In [24] Ethernet LAN traÆc was
modeled as a superposition of independent On/O� processes
with On and O� periods having heavy-tailed distributions.
An important related theoretical result [21] proves that the
superposition of a large number of such independent alter-
nating On/O� processes converges to Fractional Gaussian
Noise.


To prove the validity of this model in TCP/IP networks,
several papers have investigated the connection between ap-
plication level �le sizes, user think-times, and the On/O�
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model. As there are several layers between the application
and the link layer, it is of primary importance to investi-
gate how protocols convert and transfer heavy-tails through
the protocol stack down to lower layers. The e�ect of TCP
and UDP transport protocols are investigated in [7] [17] [18]
and it is found that TCP preserves long-range dependence
(LRD) from application to link-layer.


Based on this result, the authors of [7] and [8] argue that
transport mechanisms a�ect strongly the short timescale be-
havior of traÆc, but they have no impact in large timescales.
In this paper we demonstrate that this statement is valid
only for the local behavior of TCP when only the traÆc of a
single link is investigated. In contrast, in the network case
a surprisingly complex mechanism is present.


TCP uses an end-to-end congestion control algorithm to
continuously adapt its rate to actual network conditions.
If network conditions are governed by large timescale uc-
tuations, then TCP will \sense" this and react accordingly.
This paper shows that TCP adapts to traÆc rate uctua-
tions on several timescales eÆciently. Moreover, we demon-
strate that TCP can be modeled as a linear system above
a characteristic timescale of a few round-trip times, which
implies that the correlation structure of a background traÆc
stream is taken over faithfully by an adaptive TCP ow. In
particular, it is shown that TCP can inherit self-similarity
from a self-similar background traÆc stream. Since TCP has
an end-to-end control, while adapting to these uctuations,
it propagates self-similarity encountered on its path all along
from the source to the destination host.


We also demonstrate that if a TCP stream is multiplexed
with another one, it can pass on self-similar scaling to the
other TCP stream, depending on network conditions. In
our model the network is regarded as a mesh of end-to-end
adaptive streams. Intertwined TCP streams can spread self-
similarity throughout the network contributing to global
scaling. By analyzing the e�ects from a network point of
view we argue that, on one hand, TCP plays an impor-
tant role in balancing and propagating global scaling. On
the other hand, it keeps local scaling intact where it is al-
ready strong. This way we complement results reported in
[7]. The main purpose of this paper is to analyze the basic
mechanisms behind these phenomena.


To clarify our terminology, we briey summarize the def-
inition of a few basic concepts. Let X = (Xk : k � 0)
be a weakly stationary process representing the amount of
data transmitted in consecutive short time periods. Let


X
(m)
k = 1


m


Pkm
i=(k�1)m+1Xi where m � 1 denote the m ag-


gregated process. X is called exactly self-similar with self-


similarity parameter H if Xk
d
= m1�HX


(m)
k and the equal-


ity is in the sense of �nite-dimensional distributions. In the
case of second-order self-similarity, X and m1�HX(m) have
the same variance and autocorrelation. Second-order self-
similarity manifests itself in several equivalent ways, one of
them is that the spectral density of the process decays as
f1�2H at the origin as f ! 0.


Throughout the paper we use the term \self-similarity" to
refer to scaling of second-order properties over some speci�c
timescales or asymptotically in large timescales, which is


equivalent to long-range dependence if H > 0:5 [14] [22].
We note that certain statements of the paper are also valid
in the sense of exact statistical self-similarity.


The ns-2 simulator1 was used for the network simulations.
Several variants of TCP were investigated (Tahoe, Reno,
SACK), however, we found that the conclusions are invari-
ant to the TCP version.


The paper is organized as follows. A TCP measurement
is analyzed showing self-similar scaling for the traÆc of a
single long TCP connection, and a possible explanation is
presented based on a few simple assumptions in Section 2.
Section 3 investigates how TCP adapts to uctuations on
di�erent timescales, and it is shown that TCP in a bot-
tleneck bu�er can be modeled as a linear system above a
characteristic timescale of a few round-trip times. In Sec-
tion 4 we investigate how an aggregate of TCP sessions with
durations of heavy-tailed and light-tailed distributions prop-
agates self-similarity of a background traÆc stream. Finally,
in Section 5, we present results about the spreading of self-
similarity in the network case when TCP has to pass multi-
ple hops and compete for resources with other TCP streams.


2. ADAPTIVITY OF TCP: A POSSIBLE CAUSE
OF WIDESPREAD SELF-SIMILARITY


We carried out the following experiment. A large �le was
downloaded (a traÆc trace �le from the Internet TraÆc
Archive) from an FTP server (ita.ee.lbl.gov) to a client host
15 hops away in Hungary (serv1.ericsson.co.hu), passing
several backbone providers and even a trans-Atlantic link.
At the client side there was no other traÆc present. The
client was directly connected to an ISP by a 128 kbps leased
line. All packets were captured at the client side with the
tcpdump utility2. The amount of bytes received was 50 Mbyte
and it was logged with a resolution of 50 ms during the �le
transfer for 6900 s. The average throughput, which takes
into account the retransmissions and the TCP/IP overhead,
was about 58 kbps, i.e., some congestion were experienced
in the network. The average round-trip delay between the
server and the client was 208 ms. From the packet trace we
concluded that the version of the TCP was Reno.


Tests were performed for the presence of self-similarity. Here
we present three tests, the �rst and second ones are based
on the scaling of the absolute moments (also called absolute
mean and variance-time plots [20]), and the third one is a
wavelet-based analysis [1], see Figure 1. The result of the
tests suggests asymptotic self-similarity with Hurst param-
eter around 0:75.


During the experiment, there was only one connection ac-
tive on the link, so explanations based on the superposition
of heavy-tailed On/O� processes or chaotic behavior [23]
are not applicable. However, the investigated TCP connec-
tion traversed several backbone links where, due to the large
traÆc aggregations, self-similarity could arise either because
of heavy-tails or chaotic competition. Presumably, what-
ever the reason for self-similarity was, the TCP connection


1UCB/LBNL/VINT Network Simulator - ns (version 2)
http://www-mash.CS.Berkeley.EDU/ns
2Tcpdump is available at http://www-nrg.ee.lbl.gov/
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Figure 1: Scaling analysis of the traÆc generated by
a �le transfer logged at the client side. a) Absolute
mean method H � 0:76. b) Variance-time plot H �
0:77. c) Wavelet analysis H � 0:74 [0.738, 0.749].
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Figure 2: Network model


adapted to the background traÆc stream at the bottleneck
link, and the e�ect of the adaptation was that self-similarity
was propagated to the measurement point. Next a simple
analytic model is introduced supporting this argument.


All relevant components of the simpli�ed network model are
depicted in Figure 2. A single greedy TCP connection sends
data between host A and host B. The path of the connec-
tion consists of three parts: a network cloud before and after
router R and a bottleneck bu�er in router R, where the con-
nection has to share service capacity and bu�er space with
a self-similar background traÆc ow. Self-similarity of the
background traÆc can be induced, for example, by large ag-
gregations of in�nite variance On/O� streams as suggested
in [4]. In the analytic model it is assumed that TCP can
adapt ideally to a background traÆc stream in a bottleneck
bu�er. Under \ideal adaptivity" we mean that the TCP
connection is able to consume all remaining capacity un-
used by the background traÆc stream. It is also assumed
that the TCP connection does not have any e�ect on the
background traÆc. The generality of this assumption cov-
ers several practical cases, for example, if the background
ow is a large aggregate consisting of a large number of con-
nections. The limits of these assumptions are analyzed later
in the paper.


Denote the background traÆc rate by B(t), 0 � B(t) � C,
where C is the service rate of the bottleneck bu�er in bit
per seconds. If TCP congestion control is \ideal" and its
e�ect on the background traÆc is neglected, then the TCP
connection will utilize all unused service in the bottleneck.
The rate of the \ideal" TCP ow is denoted by A(t):


A(t) = C �B(t):


The resulting process is simply a shifted and inverted ver-
sion of B(t), which implies that the correlation structure of
processes A(t) and B(t) are the same. In other words, TCP
\inherits" the statistical properties of the background pro-
cess. In particular, let us model the background traÆc rate
as Fractional Gaussian Noise (FGN):


B(t) = m+
p
aNH(t) (1)


where m is the average rate in bit per seconds [bps], a is the
variance, andNH(t) is a normalized FGN process with Hurst
parameter H. Note that FGN is a discrete time process, so
the rate at time t is approximated by the amount of bytes
sent during suÆciently small constant duration time periods.
Based on the arguments above, the adapting TCP will also
be an FGN with the same statistical self-similarity exponent
H. As TCP congestion control works end-to-end, the same
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traÆc rate can be measured along the path before and after
router R as well. This implies that TCP propagates self-
similarity or LRD to parts of the network where otherwise
it would not be present.


The result above is based on a simple scenario using a few as-
sumptions, such as ideal TCP adaptivity, single bottleneck,
and assuming that the TCP ow does not modify the back-
ground traÆc characteristics. However, if the implications
of this simple scenario are valid in real TCP/IP networks,
the consequences for traÆc engineering are far reaching. Re-
garding this, we are going to address the following important
questions:


1. What are the limitations of TCP adaptation, i.e., how
\ideal" is TCP congestion control when propagating
self-similarity or other statistical properties?


2. A single long-living connection was used in the sim-
ple network model and in the measurement. Can self-
similarity be propagated by short duration TCP con-
nections?


3. The background LRD traÆc ow used was non-adaptive.
Is self-similarity still propagated if the background traf-
�c ow is an aggregate of adaptive ows?


4. We considered a single bottleneck on the TCP path.
On the other hand, in most cases TCP connections
traverse multiple routers and bu�ers multiplexing with
multiple self-similar inputs. What are the characteris-
tics of the end-to-end TCP ow in this case?


5. Is self-similarity propagated between adaptive connec-
tions, i.e., can self-similarity be inherited from one
TCP to another one that has no direct contact with
the source of self-similarity?


3. TCP AS A LINEAR SYSTEM
In the previous section it was assumed that TCP congestion
control is \ideal", which, as a matter of course, cannot be
the case in real networks. The consequence of self-similarity
is that uctuations are not limited to a certain timescale.
When analyzing how \real" TCPs propagate self-similarity,
the adaptation of TCP to uctuations on several timescales
should be investigated. In this section it is shown that TCP
in a bottleneck bu�er can be modeled as a linear system, i.e.,
TCP takes over the correlation structure of the background
traÆc through a linear function.


TCP is an adaptive mechanism, which tries to utilize all free
resources on its path. Adaptation is performed as a com-
plex control loop called the congestion control algorithm.
Of course, full adaptation is not possible, as the network
does not provide prompt and explicit information about the
amount of free resources. TCP itself must test the path
continuously by increasing its sending rate gradually until
congestion is detected, signaled by a packet loss, and then it
adjusts its internal state variables accordingly. Using this al-
gorithm, TCP congestion control is able to roughly estimate
the optimal load in a few round trip times. Since congestion
control was introduced in the Internet [10], it has proved its
eÆciency in keeping network-wide congestion under control
in a wide range of traÆc scenarios.


background stream


TCP stream Router A Router B


Measurement point


Figure 3: Simulation model for the test of
TCP adaptivity to a self-similar background traÆc
stream. The two bu�ers are identical: service rates
C1 = C2 = 1Mbps, propagation delays d1 = d2 = 5ms,
bu�er sizes B1 = B2 = 40 packets.


In this section we analyze the adaptivity of TCP, and con-
clude that a simple network con�guration, which consists of
a single bottleneck bu�er shared by a \generator" ow and
a \response" TCP ow, can be well modeled as a linear sys-
tem above a characteristic timescale. The cut-o� timescale
depends on the path properties of the connection. The lin-
ear system transforms certain statistical properties, e.g., au-
tocovariance, between the \generator" stream and the \re-
sponse" traÆc stream through a transform function, which
is characteristic of the network con�guration.


3.1 Measuring the Adaptivity of TCP on Sev-
eral Timescales


In the �rst analysis a single, long, greedy TCP stream is
mixed with random background traÆc streams. See Fig-
ure 3 for the con�guration. The background streams are
constructed in a way, such that they uctuate on a limited,
narrow timescale. To limit the timescale under investiga-
tion, the background traÆc approximates a constant ampli-
tude sine wave of a given frequency f : Abackground(f; t) =
a sin(2�ft+�) +m where � is a uniformly distributed ran-
dom variable between [0; 2�]. The process Abackground(f; t)
is a stationary ergodic stochastic process with correlation
R(�) = a2=2 � cos(2�f� ). The power spectrum of this pro-
cess consists of a single frequency component at f . In the
simulation the background process had to be approximated
by a packet stream (packet size of 1000 bytes), with the re-
sult that the spectrum is not an impulse but a narrow spike,
see Figure 4.


If TCP is able to adapt to the uctuations of the back-
ground traÆc ow, the same frequency f should appear as
a signi�cant spike in the power spectrum of the TCP traÆc
rate process as well. The ratio of the amplitudes of this fre-
quency component in the spectra is a measure of the success
of TCP adaptation on this timescale. Denote the measure
of adaptivity at frequency f by D(f)


D(f) = Stcp(f)=Sbackground(f) (2)


where Sbackground(f) is the spectral density of the back-
ground traÆc rate process at frequency f and Stcp(f) is
the spectral density of the adapting TCP rate process at
the same frequency.


Figure 4 depicts an experiment with a background signal of
f = 0:01[1=s]. The top part of the �gure shows the spec-
trum of the background traÆc approximating a sine wave of
frequency f . The bottom part is the measured spectrum of
the TCP response. The spectrum of the response has a sig-
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Figure 4: Frequency response to a sine wave of
f = 0:01[1=s] (top: background sine wave, bottom:
TCP response). In this con�guration the measure
of adaptivity is D(0:01) � 1.
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Figure 5: Measure of adaptivity D(f) as a function
of the frequency for several TCP variants.


ni�cant spike at f , but it also contains a few smaller spikes
at higher frequencies caused by the congestion control.


Conducting the experiment for a wide range of frequencies
f , it is possible to plot the adaptivity curve of TCP. Figure 5
shows the result for several versions of TCP. Note that the
shape of the function only slightly depends on the TCP ver-
sion. It can be seen that TCP adapts well to frequencies
below f0 � 0:15[1=s], but it cannot adapt eÆciently to uc-
tuations on higher frequencies in this con�guration.


At f0 a resonance e�ect can be observed, at this frequency
TCP is more aggressive, and gains even higher throughput
than what is left unused by the non-adaptive background
ow. This frequency is equal to the dominant frequency of
the TCP congestion window process when there is no back-
ground traÆc present (idle frequency), see Figure 6. In [13] a
macroscopic model for TCP connections was published. It is
derived that if every pth packet is lost for a TCP connection,
then the congestion window process traverses a periodic saw-
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Figure 6: Spectrum of TCP congestion window pro-
cess when no background traÆc is present.


tooth and the length of the period is T = RTT �W=2, where
RTT is the round-trip time of the path in seconds and W
is the maximum window size in packets. In our case we can
approximate RTT = B=C + d, where B is the bu�er size in
packets, C is the service rate in packets per second, and d is
the total round-trip propagation delay in seconds. The max-
imum window size is W = B + Cd, which is the maximum
number of packets in the pipe (bu�er and link). This gives
an estimate of T = 6:81s and fcycle = 1=T = 0:15[1/s]. The
result agrees with the measured resonance frequency f0, and
con�rms our argument that the resonance e�ect observed in
the measure of adaptivity function D(f) is due to the TCP
window cycles (see Figure 4b).


The characteristic timescale of the TCP window cycles ranges
in relatively wide ranges in real networks, and the relation
of T � RTT �W=2 can be used for an approximation. For
example, if the round-trip time, which in the previous sim-
ulation was approximately 0.33 s, is rather in the range of
a few tens of milliseconds, the cut-o� timescale drops below
1 s. Even below this timescale TCP adapts to uctuations,
though the e�ectiveness is limited, as shown by the trans-
mission curve; f0 approximately separates traÆc dynamics
to \local" and \global" scales, above f0 it is the background
process which shapes the spectrum, below f0 the spectrum
is a result of TCP control dynamics and external stochastic
processes has less impact on it.


In the next section we analyze the case when the background
traÆc stream is more complex and contains uctuations on
several timescales.


3.2 Tests for Linearity
In real networks background traÆc is not limited to a single
timescale. In the following we analyze the case when sev-
eral frequencies are present and test whether TCP is able to
adapt to uctuations on these timescales or not. The mo-
tivation is to prove that TCP can adapt to uctuations on
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Figure 7: TCP frequency response to the superpo-
sition of 10 random phase sine waves. top) back-
ground traÆc, bottom) TCP response.


several timescales independently of each other, more pre-
cisely, we want to show that TCP control forms a linear
system in this con�guration.


By linear system we mean that if the background traÆc
rate is given by B(t), and the adapting TCP traÆc rate
A(t) is expressed using a function 	, then A = C �	(B),
where 	 is a linear function of B, i.e., 	(a1B1 + a2B2) =
a1	(B1) + a2	(B2). In case of ideal adaptivity, 	 takes
the simple form of 	(x) = x, and the TCP rate is obtained
simply as A(t) = C�B(t), see Section 2. If the background
traÆc is a superposition of streams Bi(t); i = 1 : : : N


B(t) =


NX


i=1


Bi(t)


then the rate of TCP is given by


X(t) = C �	(B(t)) = C �
NX


i=1


	(Bi(t)):


This construction provides us with a simple test on linearity:
we investigate the response to the superposition of several
Bi(t) streams and investigate the spectrum of the response.
Figure 7 shows the spectral density of the background and
the TCP response when the background is a composition
of 10 random phase sine waves equidistantly spaced in a
logarithmic scale (the nonzero widths of the spikes are due
to the fact that the background mix only approximates sine
waves with varying packet spacing). It can be observed that
TCP was able to adapt to all frequency components in the
mix below f = 1.


To test whether TCP really adapts to uctuations indepen-
dently, a wide range of traÆc mixes were simulated consist-
ing of two frequencies f1 and f2. A large number of sim-
ulations were performed, covering a whole plane with the
two frequencies, in the range of [0:05; 500][1=s]. Then, the
adaptivity measure for one of the frequencies (D(f1)) was
calculated. If the system is linear, the measure of adaptiv-
ity function at frequency f1 should be independent of the
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Figure 8: Measure of TCP adaptivity D(f1) when
the background process is composed of two frequen-
cies f1 and f2.


other frequency f2. The results of the simulations support
our conclusions, see Figure 8.


3.3 Response to White Noise
In the previous analysis the background processes were lim-
ited to superpositions of sine wave processes. In real net-
works background traÆc streams cannot be modeled by just
a few frequency components, it is more appropriate to model
background traÆc streams as \noises".


Two types of special noises are most relevant in traÆc mod-
eling: the White Noise (WN) process and the Fractional
Gaussian Noise (FGN) process. The White Noise process is
the appropriate signal for analyzing the frequency response
of a system and the Fractional Gaussian Noise process fre-
quently appears as the limit process of traÆc aggregations
[21].


If TCP is a linear system, then it should transform the corre-
lation of any complex stochastic process, e.g., WN or FGN
through the same transform function. In this section the
response of TCP to a WN process is analyzed. WN is a
special noise as it has constant spectral density. If TCP is
linear, then it should respond with the characteristic curve
obtained previously. The result is depicted in Figure 9. The
similarity of the curve to our previous test-signal based test
supports the linearity argument. In addition, the constant
at range, which starts at a characteristic timescale and
spans several timescales upwards, provides us with informa-
tion about the timescale limitation of TCP adaptivity. Note
that this mechanism behaves like a low-pass �lter.


4. TCP ADAPTATION TO SELF-SIMILAR
BACKGROUND TRAFFIC


Once we have investigated the linearity of TCP and have
shown that the transform function is at below a charac-
teristic frequency, it is quite obvious to expect that TCP,
while adapting to signals of complex frequency content, re-
produces the same spectral density as the original signal
above a timescale, which depends on the path properties
(round-trip time, size of the pipe, etc.).
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Figure 9: a) TCP's frequency response to white
noise, spectral density (dots) and its smoothed ver-
sion (line). b) Measure of adaptivity D(f), see also
Figure 4b


If, for example, TCP traverses a link where the traÆc shows
self-similarity, it will adapt to it with a spectral response
equal to the spectrum of the self-similar traÆc (asymptoti-
cally). As TCP is end-to-end control, this property is \prop-
agated" all along the TCP connection path. A visual test
can be seen in Figure 10, where traÆc rates of a self-similar
H = 0:8 FGN background stream and an adapting TCP
are depicted. The �gure shows that on larger timescales the
TCP trace mirrors the FGN trace.


Figure 11 shows the power spectrum of the TCP and FGN
traces of Figure 10 at an aggregation level of 10ms. As sug-
gested in the previous section, TCP shows the same spec-
trum as FGN at timescales above 1-10s, i.e., TCP traÆc
shows asymptotically second-order self-similarity with the
same scaling parameter (H = 0:8).


4.1 Can Adaptive SRD Traffic Propagate Self-
Similarity?


So far we have analyzed cases when long greedy TCP ses-
sions were mixed with background traÆc. It has been shown
that the distribution of �le sizes in Web traÆc is heavy-
tailed [5]. This increases the probability of the occurrence of
such long TCP connections. Nevertheless, it is investigated
whether short duration TCPs (durations with light-tailed
distributions) have the same adaptivity property to LRD
traÆc or not. A positive answer increases the generality of
our argument. Based on previous work [21] we would expect
that if On and O� durations are light-tailed, the aggregate
traÆc is short-range dependent (SRD). This section demon-
strates that TCP streams have LRD properties in spite of
the short-range dependent result suggested by the On/O�
model.


During the simulation we established k parallel sessions.
Within each session TCP connections were generated in-
dependently and the durations of TCP connections were ex-
ponentially distributed (with mean TOn) followed by expo-
nentially distributed silent periods (TOff). The simulation
was started from the equilibrium state of the process. (See
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Figure 10: Traces of FGN (H = 0:8) and adapting
TCP ows at two aggregation levels. a) 100ms ag-
gregation b) 10s aggregation


Figure 12.) Let's denote the number of active TCPs at time
t by N(t), 0 � N(t) � k. With this construction N(t) is a
stationary Markov process and it is short-range dependent.
See the self-similarity tests for N(t) in Figure 13 (H � 0:5).


On the other hand, if these sessions are mixed with LRD
background traÆc, the aggregate TCP traÆc, i.e., the amount
of bytes transmitted by all TCPs, is LRD (Figure 13). The
reason is that the superposition of short duration TCPs can
eÆciently adapt to a background LRD process just like one
long duration TCP connection.


A real network measurement also supports our argument.
Short �les (90 kbyte) were downloaded using the wget utility
from serv1.ericsson.co.hu to locke.comet.columbia.edu (round-
trip timeRTT � 180 ms, average download rate r � 160 kbps,
SACK TCP)3. Whenever the download ended, a new down-
load was initiated for the same �le. The experiment lasted
for an hour, and the �le was downloaded about 800 times.
The traÆc was captured with tcpdump at the client host.
The Variance-Time plot shows that the traÆc rate dynam-
ics was self-similar, inspite of the short �le-sizes, see Fig-
ure 14. As a new download does not use any memory from


3Note that the access speed at the serv1.ericsson.co.hu side
was increased to 256 kbps during this measurement.
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Figure 11: a) Power spectrum of background traÆc
H = 0:8. b) Power spectrum of TCP traÆc adapting
to the FGN, estimated H = 0:8.


a previous TCP connection, long-range correlations can be
explained only by the long-memory dynamics of the net-
work. In case of smaller �les, TCP's capability to adapt to
changing network conditions decreases. Although 90 kbyte
is larger than the current average �le size in the Internet, it
has to be emphasized that a subset of connections is enough
to propagate self-similarity. Furthermore, if HTTP 1.1 re-
places HTTP 1.0, persistent TCP connections will be able
to adapt better to traÆc uctuations, eventually improving
the propagation e�ect; similarly, if a TCP implementation
preserves some state from a previous connection, the prop-
agation e�ect is improved.


4.2 Discussion on SRD TCP Streams
For simplicity, �rst assume that there is only one session
with On/O� TCP connections multiplexed with LRD traÆc.
In this case N(t) takes the values 0 or 1 for exponentially
distributed durations. Assuming ideal adaptivity, when the
session is active (a TCP is active) it can grab all capacity
left unused by the background LRD traÆc. Then the traÆc
rate during the active periods of the On/O� session can be
expressed by A(t) = F (t) where F (t) is the free capacity
(bit rate) left by the self-similar background traÆc, F (t)
is an FGN process, see Section 2. During inactive periods
A(t) = 0. Thus the traÆc rate of the TCP controlled On/O�


background stream


Router 2 (C2,B2,d2)


On/Off TCP streams


Router 1 (C1,B1,d1)


Figure 12: Simulation model of SRD driven TCP
traÆc multiplexed with self-similar background traf-
�c (FGN with H = 0:8). C1 = C2 = 1Mbps, d1 = d2 =
5ms, B1 = B2 = 40 packets. k = 10 parallel sessions
with exponentially distributed On and O� periods
with means TON = TOFF = 10s.
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Figure 13: a) Absolute mean test for the On/O�
process N(t) (H � 0:5) and the aggregate TCP traÆc
(H � 0:73). b) Variance-time plots, H � 0:5 and
H � 0:72, respectively.


session for all t can be written in explicit form as


A(t) = N(t)F (t) (3)


Assuming that the sessions are independent of the back-
ground process (N(t) and F (t) are independent), the auto-
covariance of A(t): A(� ) = cov(A(t); A(t+ � )) is


A(�) =


E [(N(t)F (t)�mNmF ) (N(t+ �)F (t+ � )�mNmF )](4)


where mN = E[N(t)] and mF = E[F (t)]. Factorizing:


A(�) = E[N(t)N(t+ �)]E[F (t)F (t+ � )]�m2
Nm


2
F (5)
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Figure 14: Variance-time plot of traÆc generated
by short �le transfers from serv1.ericsson.co.hu to
locke.comet.columbia.edu, logging resolution 100 ms,
H � 0:7.


The left hand side of the product is


E[N(t)N(t+ � )] = (6)


E[(N(t)�mN +mN )(N(t+ �)�mN +mN)] = (7)


= N(�) +m2
N (8)


The same holds for F (t), and so the covariance can be writ-
ten as


A(� ) = (N (�) +m2
N )(F (�) +m2


F )�m2
Nm


2
F (9)


Finally,


A(�) = N (�)F (�) +m2
FN(�) +m2


NF (�) (10)


If F (t) is LRD, its autocovariance decays asymptotically as
F (� ) � ���F as � !1, where 0 � �F < 1. On the other
hand, if N(t) is SRD, its autocovariance decays asymptoti-
cally faster than ���N where �N � 1.


Consequently, the covariance of A(t) decays asymptotically
at the lower rate, in this case at the rate of the background
LRD process since �F < �N :


A(�) � ���F as � !1 (11)


If the On/O� process is LRD as well, e.g., the On and/or
O� times are heavy-tailed, then asymptotically the larger
Hurst exponent is measured on the path. In practice, the
border of the scaling region depends on the actual shape of
the covariances and the means mA and mF .


If there are more than one On/O� streams sharing the bot-
tleneck bu�er with a self-similar background traÆc stream,
N(t) takes higher values than 1 as well. However, for the
adaptivity of the aggregate it is suÆcient to have at least
one active connection as it was shown in Section 4.1. The
aggregate traÆc of multiple On/O� streams adapting to a
background stream may be approximated by


Aaggr(t) = �[N(t)]F (t) (12)


where �(:) is the Heaviside-function, (�(x) = 1 if x > 0
and 0 otherwise). �[N(t)] itself is also an On/O� process.


TCP stream
Router 1 Router NRouter 2


LRD HLRD HLRD H1 2 N


Figure 15: A TCP connection traversing multiple
hops with independent background LRD (Hi) in-
puts.


If the On/O� processes are independent and they are ex-
ponentially distributed, then N(t) forms a Markov process
(�[N(t)] is the indicator process for the empty state of this
Markov chain) and it is SRD.


The conclusion of this section is that if the end-to-end ser-
vice uses TCP connections, then the traÆc generated by the
service is also adaptive, and in this case the adaptivity of
the end-to-end service is suÆcient to \propagate" LRD to
other parts of the network. Moreover, if N(t) is LRD, then
the larger Hurst exponent max(HN ; HF ) is propagated.


5. SPREADING OF SELF-SIMILARITY IN
THE NETWORK


Previously we analyzed the case when a TCP connection
shares a single bottleneck bu�er with LRD background traf-
�c, and it was only this bottleneck that a�ected the rate of
TCP. In this section the network case is discussed.


Two aspects are analyzed. The �rst one deals with the case
when the path of an adaptive connection passes through sev-
eral bu�ers with self-similar inputs. These bu�ers are candi-
dates to become bottlenecks occasionally during the lifetime
of the connection. The second one investigates whether self-
similarity can spread from one adaptive connection to the
other causing widespread self-similarity in a network area.


The presented results are intended to highlight the basic
mechanisms, so the investigated scenarios are simpli�ed for
the ease of discussion.


5.1 Discussion of the Multiple Link Case
A wide area TCP connection usually spans 10-15 routers
along its path, out of which there are usually several back-
bone routers with high level of aggregated traÆc, see Fig-
ure 15. A TCP connection has to adapt to the whole path.
The capacity of the end-to-end path, at time t, depends on
which bu�er is the bottleneck at this time. Because of traÆc
uctuations, the location of the bottleneck moves randomly
from one router to the other.


Assuming ideal end-to-end adaptivity, the rate of the adap-
tive TCP connection is equal to the free capacity of the
bottleneck link at time t:


A(t) = min
i2N


Fi(t) (13)


where N is the number of links and Fi(t) denotes the free
capacity of the ith link on the path.


For simplicity, assume that the crossing background LRD
streams on the links are independent and the link at time
t is either empty: Fi(t) = 1, or full: Fi(t) = 0. With this
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Figure 16: Variance-Time plots of Fi FGN pro-
cesses of H = 0:8; 0:7; 0:6; 0:5 respectively (identical
mean rates and variance), and the end-to-end pro-
cess A(t) = mini2N Fi(t). The end-to-end path is char-
acterized by H � 0:8 asymptotically.


simpli�cation the rate of the adaptive connection can be
written as


A(t) =
NY


i=1


Fi(t) (14)


In the previous section it was shown that the product of
independent LRD processes is also LRD and it is asymptot-
ically characterized by the largest exponent:


A(�) = ��mini �i as � !1 (15)


Thus, in the multiple link case it is the largest Hurst expo-
nent among the background LRD streams on the links that
characterizes the TCP connection.


For a numerical example using more complex processes, four
FGN background samples were generated with equal mean
rates, but with di�erent Hurst exponents, to model Fi(t),
i = 1 : : : 4, see Figure 16. The end-to-end process A(t),
which is the minimum of the FGN processes, is asymptot-
ically second-order self-similar, and it has the same Hurst
exponent as the largest Hurst exponent among the Fi(t) pro-
cesses, i.e., the result is the same as in the simple full/empty
case.


Another possible interpretation of (13) is that we consider
the Fi(t) not as rate processes, but as indicator processes of
congestion. From the end user perspective it is important
to analyze whether the network is able to support the ex-
pected service level requirements, for example, whether the
�le transfer rate degrades below an acceptable level or not.
Let Fi(t) be the indicator process of link i indicating whether
the link is congested and it cannot support the expected ser-
vice rate for the connection (Fi(t) = 0), or is not congested
(Fi(t) = 1). Thus, if the background congestion indicator
processes are LRD, then it is the largest Hurst exponent
that characterizes the end-to-end service characteristics of
the investigated TCP connection.


indirect stream


FGN stream


direct stream


Figure 17: Network model for the investigation of
self-similarity spreading.


5.2 Spreading of Self-Similarity among Adap-
tive Connections in Multiple Steps


So far, in all analyzed cases, adaptive traÆc was in direct
contact with self-similar background traÆc. In this section it
is investigated whether self-similarity caused by adaptation
can be passed on to adaptive traÆc streams that have no
direct contact with the source of self-similarity. A few simple
conditions are given as well. Assuming that our argument
is valid, self-similarity can spread out from a localized area,
consequently, strong self-similarity is balanced throughout a
wider area of the network.


A simple network scenario is used for the investigation. An
adaptive traÆc stream (direct stream) shares a link with
self-similar FGN (H = 0:8) background traÆc. The direct
stream is mixed with another adaptive stream on a second
link, which itself has no direct connection with the FGN
traÆc (indirect stream), see Figure 17. The data rate of the
direct stream is thus a�ected by two other streams, and also
the two adaptive streams have an e�ect on one another. We
are going to investigate the statistical properties of both the
direct and the indirect streams.


Assume ideal adaptivity and max-min fairness among the
adaptive streams. Also assume that the service rates of both
links are equal (C). If the background stream was inactive,
the bottleneck would be the �rst bu�er and the adaptive
streams would share simply half the service rate, both send-
ing at a rate of C=2.


Adir(t) = Aindir(t) = C=2 (16)


In the presence of the FGN stream owing through the sec-
ond bu�er, the rates can still remain C=2, unless it is the sec-
ond bu�er which becomes the bottleneck, i.e., when the ca-
pacity left unused by the FGN stream is C�AFGN(t) < C=2.
In this case the direct stream can use at most Adir = C �
AFGN (t), so the indirect stream can grab all remaining ser-
vice capacity in the �rst bu�er Aindir = C �Adir = AFGN .
In short:


Adir(t) = min(C=2; C �AFGN (t)) (17)


Aindir(t) = max(C=2; AFGN (t)) (18)


Calculation of the autocovariance of Adir and Aindir is diÆ-
cult because of themin andmax operators. We consider two
simple, extreme cases. In the �rst case, the rate of the back-
ground LRD stream is always greater than C=2, simplifying
the expressions to Adir(t) = C � AFGN (t) and Aindir(t) =
AFGN (t), i.e., spreading of self-similarity is ideal. In the sec-
ond extreme case the rate of background process is always
smaller than C=2, leading to Adir(t) = Aindir(t) = C=2,
i.e., self-similarity disappears from both adaptive streams.
These results has been veri�ed by simulations as well.
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Figure 18: a) R/S plot of heavy-tailed stream H =
0:82. b) R/S plot of indirect stream H = 0:71


The investigated scenario demonstrates the simplest mech-
anism of how adaptive connections may have e�ect on each
other. We simulated a more complex scenario, where the
synthetic FGN stream is replaced by an aggregate stream
of randomly generated short TCP �le transfers. The dis-
tribution of the �le sizes is heavy-tailed. The direct and
indirect TCP streams are also replaced by aggregates, but
the �le sizes within these aggregates are light-tailed.


The streams consist of nheavy�tailed = ndir = nindir = 100
sessions.The �le size distributions are Pareto distributions
with the following parameters: the average �le size is 40
kbyte for all streams, the average waiting time between �les
is 20 sec. The shape parameters are aheavy�tailed = 1:1 and
adir = aindir = 3 for both the �le size and the waiting time
distributions. With these parameters only one stream has
heavy-tails (aheavy�tailed < 2).


The results of the simulation experiment are depicted in
Figure 18. As suggested in [4] the traÆc stream consisting
of heavy-tailed �le downloads is LRD (H � 0:82). Further-
more, the indirect traÆc stream, although it was created us-
ing light-tailed distributions is LRD as well (H � 0:71). The
cause is that long-range dependent uctuations are propa-
gated via the indirect stream.


Performing the previous experiment using di�erent param-
eters, we have found that depending on the traÆc mix, the
spreading between indirect and direct streams can be strong
but it can be weak as well. In certain cases, spreading to an
indirect stream does not happen at all, just like in the sim-
ple analytic example assuming ideal TCP ows and max-min
fairness. The exact requirements for spreading are subjects
for further study.


6. CONCLUSIONS
It was demonstrated how a TCP connection, when mixed
with self-similar traÆc in a bottleneck bu�er, takes on its
statistical second order self-similarity, propagating scaling
phenomena to other parts of the network. It is suggested
that the adaptation of TCP to a background traÆc stream
can be modeled by a linear system and the validity of our
approach is analyzed. It was shown that TCP inherits self-
similarity when it is mixed with self-similar background traf-
�c in a bottleneck bu�er through the transform function of
the linear system. This property was demonstrated for both
short and long duration TCP connections. We also investi-
gated TCP behavior in a networking environment. It was
found that if congestion periods are long-range dependent
in several hops on a connection's path, the largest Hurst
exponent characterizes the end-to-end connection. It was
also demonstrated that TCP ows, in certain scenarios, can
pass on self-similarity to each other in multiple hops. The
presented mechanisms are basic \building blocks" in a fu-
ture wide-area traÆc model, and in real-life it is always their
combined e�ect that we can observe. The presented network
measurements are intended to highlight the basic mecha-
nisms in simpli�ed network scenarios, when it can be as-
sured that only the network conditions and TCP's response
to network conditions are the cause of the investigated phe-
nomena. As thousands of parallel TCP connections contin-
uously intertwine the Internet, the mechanisms described in
this paper can provide us with a deeper insight why signif-
icant and strong self-similarity is a general and widespread
phenomenon in current data networks.


7. REFERENCES
[1] P. Abry and D. Veitch. Wavelet analysis of


long-range-dependent traÆc. IEEE/ACM
Transactions on Networking, 44(1):2{15, 1998.


[2] J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger.
Long-range dependence in variable-bit-rate video
traÆc. IEEE Transactions on Communications,
43(2/3/4):1566{1579, Febuary/March/April 1995.


[3] F. Brichet, J. Roberts, A. Simonian, and D. Veitch.
Heavy traÆc analysis of a storage model with long
range dependent on/o� sources. Queuing Systems,
23:197{215, 1996.


[4] M. E. Crovella and A. Bestavros. Self-similarity in
world wide web traÆc: Evidence and possible causes.
IEEE/ACM Transactions on Networking,
5(6):835{846, December 1997.


[5] M. E. Crovella, M. S. Taqqu, and A. Bestavros.
Heavy-tailed probability distributions in the world
wide web. Preprint: A Practical Guide To Heavy
Tails: Statistical Techniques and Applications, 1996.


253







[6] A. Erramilli, O. Narayan, and W. Willinger.
Experimental queuing analysis with long-range
dependent packet traÆc. IEEE/ACM Transactions on
Networking, 4(2):209{223, April 1996.


[7] A. Feldmann, A. C. Gilbert, P. Huang, and
W. Willinger. Dynamics of IP traÆc: A study of the
role of variability and the impact of control. In In
Proceedings of SIGCOMM, Cambridge, MA, USA,
August 1999.


[8] A. Feldmann, A. C. Gilbert, and W. Willinger. Data
networks as cascades: Investigating the multifractal
nature of Internet WAN traÆc. ACM Computer
Communication Review, 28:42{55, September 1998.


[9] M. Garrett and W. Willinger. Analysis, modeling and
generation of self-similar VBR video traÆc. In Proc.
ACM SIGCOMM, pages 269{280, 1994.


[10] V. Jacobson. Congestion avoidance and control. In
Proceedings of ACM SIGCOMM, pages 314{329,
Stanford, USA, 1988.


[11] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V.
Wilson. On the self-similar nature of Ethernet traÆc.
In Proc. ACM SIGCOMM, September 1993.


[12] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V.
Wilson. On the self-similar nature of Ethernet traÆc
(extended version). IEEE/ACM Transactions on
Networking, 2(1):1{15, 1994.


[13] M. Mathis, J. Semke, and J. Mahdavi. The
macroscopic behavior of the TCP congestion
avoidance algorithm. Computer Communication
Review, 27(3), July 1997.


[14] S. Moln�ar, T. D. Dang, and A. Vid�acs. Heavy
tailedness, long-range dependence and self-similarity
in data traÆc. In Proc. 7th International Conference
on Telecommunication Systems Modeling and
Analysis, Nashville, Tennessee, USA, March 1999.


[15] S. Moln�ar and A. Vid�acs. On modeling and shaping
self-similar ATM traÆc. In Proc. 15th Int. TeletraÆc
Congress, Washington D.C., 1997.


[16] I. Norros. A storage model with self-similar input.
Queuing Systems, 16:387{396, 1994.


[17] K. Park, G. Kim, and M. Crovella. On the
relationship between �le sizes, transport protocols,
and self-similar network traÆc. In In Proceedings of
the International Conference on Network Protocols,
pages 171{180, October 1996.


[18] K. Park, G. Kim, and M. Crovella. On the e�ect of
traÆc self-similarity on network performance. In In
Proceedings of the SPIE International Conference on
Performance and Control of Network Systems, pages
296{310, November 1997.


[19] V. Paxson and S. Floyd. Wide area traÆc: The failure
of Poisson modeling. IEEE/ACM Transactions on
Networking, 3(3):226{244, June 1995.


[20] M. S. Taqqu, V. Teverovsky, and W. Willinger.
Estimators for long-range dependence: an empirical
study. Fractals, 3(4):785{788, 1995.


[21] M. S. Taqqu, W. Willinger, and R. Sherman. Proof of
a fundamental result in self-similar traÆc modeling.
Computer Communication Review, 27:5{23, 1997.


[22] B. Tsybakov and N. D. Georganas. On self-similar
traÆc in ATM queues: De�nitions, overow
probability bound, and cell delay distribution.
IEEE/ACM Transactions on Networking,
5(3):397{409, June 1997.


[23] A. Veres and M. Boda. The chaotic nature of TCP
congestion control. In Proc. IEEE INFOCOM, Tel
Aviv, Israel, April 2000.


[24] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson.
Self-similarity through high-variability: Statistical
analysis of Ethernet LAN traÆc at the source level.
IEEE/ACM Transactions on Networking, 5(1):71{86,
February 1997.


[25] W. Willinger, M. S. Taqqu, and A. Erramilli. A
bibliographical guide to self-similar traÆc and
performance modeling for modern high-speed networks,
In Stochastic networks: Theory and applications,
Ed:F. P. Kelly, S. Zachary and I. Ziedins. Clarendon
Press, Oxford, 1996.


254






