

SmartBridge: A Scalable Bridge Architecture

Thomas L. Rodeheffer
Systems Research Center,

Compaq Computer
Corporation

130 Lytton Ave, Palo Alto, CA
94301

tom.rodeheffer@compaq.com

Chandramohan A. Thekkath
Systems Research Center,

Compaq Computer
Corporation

130 Lytton Ave, Palo Alto, CA
94301

chandu.thekkath@compaq.com

Darrell C. Anderson
Computer Science

Department, Duke University
Levine Science Research

Center, Durham, NC 27708

anderson@cs.duke.edu

ABSTRACT
As the number of hosts attached to a network increases beyond
what can be connected by a single local area network (LAN), for-
warding packets between hosts on different LANs becomes an is-
sue. Two common solutions to the forwarding problem are IP rout-
ing and spanning tree bridging. IP routing scales well, but imposes
the administrative burden of managing subnets and assigning ad-
dresses. Spanning tree bridging, in contrast, requires no adminis-
tration, but often does not perform well in a large network, because
too much traffic must detour toward the root of the spanning tree,
wasting link bandwidth.

This paper introduces a new architecture, called SmartBridge, that
combines the good features of IP routing and spanning tree bridg-
ing. We have implemented the SmartBridge design for 10 Mb/s
and 100 Mb/s Ethernet LANs, using standard PC hardware with
off-the-shelf network interface cards and running our algorithms in
software. Our 100 Mb/s system runs at full link bandwidth.

1. INTRODUCTION
A single local area network (LAN) can connect a limited number
of hosts over a limited geographical extent. Interconnecting a large
collection of hosts that are not in close proximity usually requires
the use of multiple LANs and some arrangement to forward packets
between hosts on different LANs.

Two common arrangements in modern networks are IP routing and
spanning tree bridging. IP routing works at the network level be-
tween hosts that use the IP protocol. Spanning tree bridging works
at the link level and is independent of the network protocol (IP or
otherwise) used by the hosts.

IP routing scales well and is a good solution when the network
installation is managed by a competent authority who can adminis-
ter the required subnet and host address assignments. If, however,
authorities are vague or overlapping, such as, for example, often
happens between various departments of a large organization, then

an arrangement that does not require much administration may be
more suitable.

Spanning tree bridges, such as those that follow the IEEE 802.1
standard [9], have several good properties.

1. Spanning tree bridges have algorithms built into them that
make them truly self-configuring and transparent to the hosts.
Spanning tree bridges require no manual configuration nor
do they require any configuration information in the hosts
that are connected to them.

2. Spanning tree bridges are independent of the network proto-
col and can therefore accommodate a variety of hosts run-
ning different network protocols. In particular, spanning tree
bridges can forward packets containing protocols that are un-
routable at the network level, for example, MOP [6], LAT,
and NETBEUI [8].

3. Spanning tree bridges are simple devices; they are therefore
inexpensive to build and very robust.

Unfortunately, spanning tree bridges have some disadvantages that
preclude them from being more widely deployed. Typically, total
inter-LAN traffic increases as the size of the network grows and
eventually the bandwidth through some bridge or LAN becomes
a bottleneck. Adding more bridges or LANs does not solve the
problem, because even if there are redundant connections in the
network, only connections that are part of the spanning tree are al-
lowed to carry traffic. Furthermore, routes along the spanning tree
tend to be longer—sometimes considerably longer—than shortest
paths, and thus packet latency and aggregate utilization is higher
than in a system in which all routes are shortest paths. Packet la-
tency remains a problem even in a highly underutilized network. A
careful choice of the spanning tree may ameliorate some of these
problems in some cases, but in general these problems are unavoid-
able in a spanning tree bridge system as the size of the network
grows.

In this paper, we describe a new bridge design, called SmartBridge.
Our design takes a systems approach to solving the inter-LAN for-
warding problem. Our goal is to retain the good properties of span-
ning tree bridges while arranging to forward packets along shortest
paths.

It is relatively easy to achieve shortest path routing between LANs.
Determining which LAN a host is connected to is a harder problem,

SmartBridge: A Scalable Bridge Architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCOMM '00, Stockholm, Sweden.
Copyright 2000 ACM 1-58113-224-7/00/0008…$5.00.

205

and this problem is yet more difficult because a host may occasion-
ally move from one LAN to another.

Our solution is based on selecting a set of routes that satisfies the
following properties: (1) each route is a shortest path, (2) the union
of all routes starting at any given LAN forms a source tree, which
enables the detection of hosts that have moved, and (3) the union of
all routes ending at any given LAN forms a destination tree, which
enables an efficient implementation of forwarding. Although con-
structing such a set of routes is the key insight into our design, many
other problems must be overcome to provide a complete bridging
solution, as will be discussed later.

We have implemented the SmartBridge design for 10 Mb/s and 100
Mb/s Ethernet LANs. Using standard PC hardware with off-the-
shelf network interface cards and running our SmartBridge algo-
rithms in software, we are able to forward packets at link speeds.

It is important to consider the relevance of our work in the context
of current trends in LANs. In modern switched-Ethernet networks,
point-to-point links connect hosts to switches and switches to other
switches. Switches run the 802.1 spanning tree algorithm to route
packets between them. Often, because of the perceived deficiencies
of spanning trees, these switches support other routing schemes,
such as IP routing or virtual LANs, thus trading off ease of admin-
istration to get claimed better performance. We therefore believe
that current Ethernet switches used in local area networks can ben-
efit by running the SmartBridge algorithms. In addition, because of
convenience or economic needs, a single Ethernet switch port is of-
ten connected to multiple hosts by using a hub, which acts just like
a multi-drop Ethernet segment. If it is desirable to allow connect-
ing more than one switch to the same hub, for example to obtain
higher reliability or relax administrative oversight, then our solu-
tion is relevant. Finally, by far the majority of currently deployed
LANs today are still 10 Mb/s non-switched Ethernets.

2. BACKGROUND
This section first describes some of the more important require-
ments of bridging schemes in an extended LAN. We also describe,
at a high level, the working of spanning tree bridges to motivate our
SmartBridge design.

In the rest of the paper, we use the term extended LAN to denote a
network composed of a collection of LANs transparently intercon-
nected by bridges. Each of the individual LANs is called a segment.
A device connected to a LAN is called a station. We assume that
each station has a globally unique identifier, such as a 48-bit Eth-
ernet UID. We use the term port to refer to the part of a station
specific to a particular connection between that station and a seg-
ment. A bridge is a station that forwards packets between segments
so as to make the interconnections in the extended LAN transpar-
ent to hosts. Bridges will typically have multiple ports, more than
one of which may connect to the same segment. We use the term
host to denote any station that is not a bridge. A host sends and
receives packets to and from other hosts. A host is allowed only
one port. A non-bridge machine with multiple network interfaces
must be considered as a collection of hosts each with its own UID.

2.1 Bridge Requirements
There are three main requirements of a bridging scheme:

1. Bridges must function without any cooperation from the hosts.

In a bridging scheme, hosts exchange packets with each other
as if they were connected to the same segment. The bridges
must discover everything they know about hosts by listening
to the traffic between hosts.

2. Bridges must forward exact duplicates of the original pack-
ets. There is no provision for a bridge to add or modify head-
ers to host packets, although a bridge can exchange packets
of its own with other bridges. This requirement creates dif-
ficulties in avoiding forwarding loops and in learning host
locations.

3. Bridges must be self-configuring and self-stabilizing [2].
Bridges must discover compatible bridges and agree on the
topology of the network without external intervention. Fur-
ther, bridges must determine stable, loop-free routes between
hosts on different segments. Loop-free routes are important
because unlike other forms of forwarding (e.g., IP routing)
that use hop counts to discard circulating packets, bridges
cannot add or modify headers. Bridging must work correctly
in the presence of communication failures as well as miscon-
figurations and operator errors. Agreeing on a stable state
of the network in the presence of such failures is a difficult
problem.

A fundamental issue with any bridging scheme is that it must be
able to learn where a host is located and be able to detect when
the host moves. Learning a host location is difficult because typ-
ical LANs are multi-drop fabrics, unlike point-to-point networks
where hosts plug directly into switches. In a point-to-point net-
work, such as ATM [12] or Autonet [18], a switch can vouch for
the presence of a host because it can distinguish a switch-to-switch
link from a switch-to-host link. In multi-drop LANs like Ethernet,
a bridge cannot determine that a host is attached to a particular seg-
ment merely because it hears packets from the host on the segment.
Such a packet could be a perfect duplicate forwarded onto that seg-
ment by another bridge on behalf of the original host. Notice that if
the Ethernet packet format had an additional field, say a simple hop
count field, the problems of circulating packets and host location
could be trivially solved.

2.2 Spanning Tree Bridges
Spanning tree bridges meet the requirements described above by
executing the IEEE 802.1 spanning tree algorithm [15]. This dis-
tributed algorithm can be viewed as constructing a spanning tree
over a graph of the network topology. The vertices of this graph
represent segments and bridges and the edges represent bridge-to-
segment connections. It may be noted that the graph is connected
and bipartite. The goal of the algorithm is to select a subset of the
connections to form a spanning tree.

Figure 1 depicts an extended LAN containing five segments and
three bridges. Figure 2 shows the bipartite topology graph for this
network. A spanning tree has been chosen with B1 as the root
bridge and the connections S3–B3 and B3–S5 selected as standby.
Note that host packets from segment S3 to segment S4 must travel
along the spanning tree path (S3, B2, S2, B1, S4) rather than the
shortest possible path (S3, B3, S4).

Basically, the spanning tree algorithm works as follows. First, the
bridges in the network elect one of their members, called the root
bridge. Then each bridge other than the root bridge determines its
distance (minimum path length in the graph) from the root bridge

206

Bridge B1

Bridge B2

Bridge B3

Segment S1

Segment S2 Segment S5

Segment S4

Segment S3

Figure 1: An Extended LAN. This example network contains five
segments interconnected by three bridges.

S1 S2

S3

S4 S5

B1

B2 B3

active connection
(in spanning tree)

standby connection
(not in spanning tree)

Figure 2: A Network Topology Graph. The topology graph for
the network of Figure 1. Active connections have been selected to
form a spanning tree; the remaining connections are standby.

and selects one of its ports, called the root port, that is closest to the
root bridge. Then the bridges elect one port on each segment, called
the designated port, that is closest to the root bridge. The elections
and distance determinations are performed by broadcasting pack-
ets containing a nomination and applying deterministic tie-breaker
rules.

The root ports and designated ports are called active ports and the
remaining ports in the graph are called standby ports. A bridge-
to-segment connection is called active if its bridge port is active,
and likewise for standby. The spanning tree consists of all active
connections. Since the graph is bipartite, each bridge other than the
root has a segment for its parent (connected via its root port) and
each segment has a bridge for its parent (connected via its desig-
nated port).

Host packets are forwarded only along active connections; this is
enforced by dropping host packets that are received via standby
ports. Since the set of active connections forms a spanning tree,
each pair of segments is connected by a unique loop-free path.

When a bridge receives a multicast packet via an active port, it
forwards it via all of its other active ports. This process is called
flooding and it guarantees that the packet will appear once on each
segment in the network and thus is guaranteed to reach its intended
destinations.

Flooding is clearly wasteful of network resources for unicast pack-
ets, so spanning tree bridges have a provision for learning host loca-

tions. When a bridge receives a packet via an active port P, it infers
that the packet’s source host H can be reached by sending via port
P. The bridge records this fact so that it will forward subsequent
packets destined to H only via port P. Over time, each bridge learns
about the location of each host, to the extent that it knows which
active port is to be used to reach each previously seen source host.
Since almost all LAN protocols generate at least occasional replies
from a destination host, there is a good chance that a packet’s desti-
nation location will be known. A packet whose destination location
is unknown is treated as a multicast and flooded.

If a host moves, its new location will be learned when it sends a
packet. In any event, learned locations expire after a while unless
refreshed. Thus, spanning tree bridges cope with changes in host
location.

3. OUR SOLUTION
The most important difference between SmartBridges and spanning
tree bridges is that SmartBridges forward packets between hosts
of known location along a shortest possible path in the network.
Therefore SmartBridges avoid the congestion and latency problem
that results from forcing traffic to detour toward the root of a span-
ning tree.

SmartBridges operate based on knowing a complete description of
the interconnection of bridges and segments in the network. This
description is called the network topology graph, G. The graph G
is kept current by the processes of inventory construction and topol-
ogy acquisition described below. Given G, it is a simple matter for
each SmartBridge to compute a shortest path between each pair of
segments. We select a special set of shortest paths, called the best
paths set, that have certain properties described below.

In order to forward packets along shortest paths between hosts,
SmartBridges learn the exact segment to which a host connects. A
host’s location is discovered by a neighboring SmartBridge when
the host first transmits a packet. An update protocol informs all
SmartBridges of the location of the host.

3.1 The Distributed Systems Problem
Since the SmartBridges form a distributed system, some technique
must be used to ensure that the SmartBridges’ knowledge of the
network topology and host locations converges to a consistent state
in the absence of further changes.

One approach to ensure convergence would be to use a link-state
protocol [13], in which each bridge regularly emits a packet de-
scribing its connections and these packets are flooded to all seg-
ments. In the absence of further changes in the network topol-
ogy, eventually all bridges’ knowledge of the network topology will
converge. A similar method could be used to ensure convergence in
host locations, although a careful design is essential, since detect-
ing a moved host depends on an assumption of how other bridges
are forwarding the host’s packets.

The main problem with a link-state protocol solution is that the
system must tolerate intervals of inconsistency while the protocol
is converging. Inconsistency typically produces forwarding loops,
which are particularly bad in the case of bridging, since packets
have no time-to-live indicator and would consequently circulate un-
til the loop was fixed or some overload detector went off. A link-
state protocol also provides no indication of termination, so there
is no indication of when the danger of inconsistency might be past.

207

In contrast, our approach in SmartBridge uses the techniques of
diffusing computations [7] and effective global consistency. In a
diffusing computation, an initiator sends out requests to its neigh-
bors, who then send requests to their neighbors, and so on, with a
reply being returned for each request; if each reply is sent only af-
ter the completion of its request, then the initiator will know when
the entire computation is complete. Effective global consistency
allows different processes to act as if knowledge were consistent
everywhere, because a barrier is established that prevents old and
new knowledge from coming into contact.

Since we use effective global consistency, forwarding loops cannot
happen, although packets may be dropped during changes. Since
we use diffusing computations, convergence of the network topol-
ogy is driven forward efficiently by the protocol and we know when
it is complete.

3.2 Inventory Construction
At the very lowest level, the SmartBridge ports connected to a given
segment elect (and regularly re-confirm) a designated port. The
designated port assigns a globally unique identifier (UID) to the
segment and maintains an inventory of the ports connected to the
segment. This is the same idea as the LAN Designated Intermediate
System in IS-IS [14]. We call this process inventory construction.

The inventory construction process is similar to a global member-
ship service [3] such as used in ISIS [4]. However, the goals are
different. A global membership service informs each surviving
member of the same sequence of membership changes, so that a
consistent view of the evolution of the system can be maintained
at each stage. In contrast, the inventory construction process does
not need to produce consistent intermediate states: its goal is to
converge quickly to a state in which each member agrees on the
current membership. This is achieved by electing a designated port
to announce the current membership.

Although multiple ports on a SmartBridge may be connected to the
same segment, this redundancy is not useful for the higher-level
functions of topology acquisition and packet forwarding and in fact
would confuse host location learning (as explained in §4.3.2). Re-
dundant ports are filtered out of the inventory so that each bridge is
represented at most once.

3.3 Topology Acquisition
Any change (addition or removal of bridges) in the filtered inven-
tory initiates an instance of topology acquisition, which is a diffus-
ing computation that propagates to all bridges, collects a list of all
bridge-to-segment connections, and then distributes this list (which
is a representation of the new network topology graph, G) to all
bridges. Each instance of topology acquisition is identified by the
bridge UID of its initiator and an epoch number. Multiple instances
active at the same time compete with each other bridge-by-bridge
for control of the network, with the result that the last instance that
runs to completion contains the current connections of each bridge.

As topology acquisition propagates to all bridges, it establishes a
barrier between any old network topology and the new network
topology graph. In effect, SmartBridges react to a change in net-
work topology by rapidly performing a global reboot.

This topology acquisition process was originally developed for Au-
tonet [18], a point-to-point switch-based network. The original pro-
cess is described in detail in a previous paper [17]. The principal

change required for SmartBridge was a modification of the data
structures to account the multi-drop nature of segments.

During topology acquisition, we suspend the normal forwarding of
packets between hosts. Thus, it is important to complete the topol-
ogy acquisition process in an acceptably short period of time. With
our current implementation, we keep this time on the order of tens
of milliseconds, which is short enough that open TCP connections
between hosts will resume their normal function after the topology
acquisition is complete.

After the network topology graph has been distributed, SmartBridges
can learn the location of hosts and forward packets between them
using shortest path routing. The following sections describe the
learning, forwarding, and routing aspects of our design in more de-
tail.

4. LEARNING AND FORWARDING
SmartBridges forward packets between hosts based on shortest paths
calculated between segments. For this scheme to work correctly,
SmartBridges have to know the segments on which hosts are lo-
cated and the shortest paths between segments. This section de-
scribes the process by which SmartBridges learn the location of
hosts and how they determine the shortest paths.

At a high level, SmartBridge forwarding is quite straightforward.
When a SmartBridge receives a packet, it consults its internal data
structures. Depending on the source and destination of the packet,
these data structures determine how to forward the packet.

To be concrete, suppose a SmartBridge B receives via one of its
connected segments T a packet with source host SH and destina-
tion host DH . Figure 3 shows a flowchart of the SmartBridge’s
actions. Assuming the bridge is not involved in a topology acqui-
sition (§3.3) and is not on a relevant wavefront (§4.2.1), it consults
its host location table to determine the segments S and D on which
the respective hosts SH and DH are located.

If S is unknown (indicated by ⊥ in the flowchart), B must drop the
packet. In this case, B may trigger a location revision request for
host SH on segment T , which eventually causes all SmartBridges
to learn that host SH is located on segment T , as described below
in §4.2.

If S is known, but D is unknown or DH is a multicast address,
B floods the packet as described below in §4.3. Such a packet is
called a network flood packet.

Otherwise, the host location table knows the segments S and D on
which the respective hosts SH and DH are located. In this case,
B forwards the packet along a shortest path as described below in
§4.4. Such a packet is called a shortest path packet.

4.1 Consistent Information Guarantee
An important property guaranteed by the SmartBridge design is
that every SmartBridge that handles a given host packet applies
the same network topology and host location information to the
decision of how to handle the packet. Hence, each SmartBridge
can handle a packet based on knowing how all other SmartBridges
did, or will, handle the packet.

For example, no SmartBridge is allowed to forward any packet
whose source segment location it does not know. So if a Smart-

208

Bridge B receives a packet on segment T
from host SH destined for host DH

Is B on a wavefront
for SH or DH?

(§4.2.1)

S := Host Location [SH]
D := Host Location [DH]

(§4.2)

Is S = ⊥?

Y

N

Y

N

Is D = ⊥ or
is DH multicast?

Y

N

Do flood forwarding,
as appropriate (§4.3.1)

Is B the
best-path talker for
S on T? (§4.4.2)

Y

N

Forward packet along best
path, as appropriate (§4.4.1)

Is B the
network-flood talker for

S on T? (§4.3.2)

Drop packet. Trigger location
revision with SH, T (§4.2)

Y

N

Is B involved in a
topology acquisition?

(§3.3)

Drop packet

Y

N

Is B the parent
of T in the LRST?

(§4.2.2)

Y

N

Drop packet

Figure 3: SmartBridge Flowchart for Handling a Host Packet.

Bridge B receives on segment T a packet from source host SH
whose segment location is unknown to B, then B knows that every
SmartBridge that ever handled this packet also did not know the
location of SH , and therefore the packet could not possibly have
been forwarded, and therefore the source host SH must be located
on segment T .

As another example, when a SmartBridge receives a packet that has
a known source location but unknown destination location, it floods
this packet on a spanning tree. Since every SmartBridge uses the
same host location information and spanning tree when handling
the packet, the packet will correctly flood over all segments in the
network.

When the consistent information guarantee would otherwise be im-
possible to maintain, such as across a topology acquisition or a host
location revision, SmartBridges drop host packets. During topol-
ogy acquisition, which is expected to be fairly infrequent, Smart-
Bridges drop all host packets. Host locations are revised using a
wavefront protocol that provides an impenetrable barrier between
the old host location information and the new. Our wavefront pro-
tocol is described in the following section.

4.2 Host Location Revision
Each SmartBridge maintains a host location table that tells which
segment a particular host is located on. As hosts are added or
moved in the extended LAN, the table can get out of date and will
need to be updated. The contents of the host location table on each
SmartBridge is managed by the location revision mechanism de-
scribed below.

To manage host location revision, the SmartBridge with the largest
UID in the network is selected as the location revision root (LRR).
Starting from the LRR, a minimum-depth spanning tree is con-
structed by performing a deterministic breadth-first traversal of the
network topology graph. This tree is called the location revision
spanning tree (LRST). Each SmartBridge performs this compu-

tation separately each time a new network topology graph is dis-
tributed, but since the computation is deterministic and the dis-
tributed graphs are identical, each SmartBridge arrives at the same
result.

A SmartBridge triggers a host location revision when it concludes
that the location of a host needs to be updated. This can happen in
several ways, which will be described shortly. A location revision
request consists of a segment identifier and a host UID. Location
revision requests are forwarded bridge-by-bridge up the LRST to
the LRR, whereupon the LRR initiates a location revision wave-
front that spreads over the network.

4.2.1 Location Revision Wavefront
A location revision wavefront spreads over the network by Smart-
Bridges exchanging packets with their neighbors according to a
wavefront protocol. A wavefront is an instance of a diffusing com-
putation [7] oriented so that it flows over the entire network like
a global reset protocol [1]. Except for the fact that it starts at the
LRR, the wavefront has nothing to do with the LRST .

At any given time, a SmartBridge can be “ahead”, “on”, or “be-
hind” a particular wavefront. A bridge is ahead as long as it has not
received any packets for the wavefront. A SmartBridge is on the
wavefront when it receives the first such packet. It remains on the
wavefront and sends packets to its neighboring SmartBridges and
awaits their acknowledgment. When all neighbors have acknowl-
edged, the SmartBridge is behind the wavefront.

When a location revision wavefront is in progress, we must ensure
that packet handling decisions made by SmartBridges on differ-
ent sides of the wavefront do not violate the consistent information
guarantee. Because of the way the wavefront is propagated, any
path from a SmartBridge that is ahead of the wavefront to one that
is behind the wavefront must pass through a SmartBridge that is on
the wavefront. So we require that a SmartBridge on a wavefront re-
garding host H must drop any packet with source H or destination

209

S BT

U

U′

Figure 4: Network Flood Source Tree for S (NFSS). Arrows in-
dicate direction away from S. Network flood packets whose source
host is known to be located on S are forwarded by B from segment
T to segments U and U ′. Bridge B is the network flood talker for
S on U and U ′.

H and also must drop any location revision request about H . Suc-
cessive wavefronts are kept in order by using sequence numbers.

It is important to ensure that location revision works correctly in
the presence of topology changes. We achieve this by tagging the
wavefront packets with a topology acquisition instance identifier
(§3.3). A SmartBridge ignores wavefronts that do not belong to its
most recent topology acquisition instance.

4.2.2 Detecting Source Host Location
As mentioned above, a SmartBridge triggers a host location revi-
sion when it concludes that the location of a host needs to be up-
dated. One situation in which this happens is as follows. Suppose
a SmartBridge receives on segment T a packet from a source host
SH whose location is unknown. Since no SmartBridge will for-
ward such a packet, it must be the case that host SH is located on
T . Although all SmartBridges on T receive the packet and realize
that SH must be on T , to avoid redundant work, only the Smart-
Bridge that is the parent of T in the LRST is allowed to trigger
a location revision request in this case. The situations when the
known location of the source host is in error are described below in
§4.3.2 for network flood packets and §4.4.2 for shortest path pack-
ets.

4.3 Network Flood Forwarding
A packet with a known source location and a destination that is
either a multicast or a host of unknown location is called a net-
work flood packet. SmartBridges flood network flood packets along
an unrooted spanning tree, called the network flood spanning tree
(NFST).1 This scheme is quite similar to the IEEE 802.1 bridge
standard, but we add a key refinement that enables us to detect and
correct errors in the known locations of hosts. We write NFKS

to refer to an arbitrary network flood packet whose source host is
known to be on segment S.

For any segment S, the union of all routes along the NFST that
proceed away from S forms a directed tree whose source is S. We
call this tree NFSS , the network flood source tree for S. Figure 4
provides an illustration.

4.3.1 Forwarding Rule for NFK S

The network flood forwarding rule can be stated as follows: a
SmartBridge must forward NFKS along directed connections that
appear in NFSS . Forwarding must occur along each connection
in the proper direction. Supposing SmartBridge B receives NFKS

1In practice, since we already construct a location revision span-
ning tree (LRST) to manage host location revision (§4.2), we just
reuse the LRST for the NFST .

via segment T , it forwards it onto all segments U such that (T, B, U)
appears in NFSS .

If NFK S actually starts at segment S, the SmartBridges will flood
NFK S over the NFST , since every connection in NFSS is di-
rected away from S.

4.3.2 Talker Detects a Moved Source Host
Note that any segment U �= S has a unique parent in NFSS . We
call this parent the network flood talker for S on U .

From the forwarding rule, the talker is the only bridge that could
possibly forward NFKS onto U . So if NFKS appears on U with-
out being forwarded there by the talker, it must be the case that the
source host of NFKS is actually located on segment U , and not on
segment S as was believed. This is the network flood talker check.
Note that the talker and only the talker can evaluate this check for
NFK S on U . The talker triggers a host location revision accord-
ingly.

This scheme requires that a SmartBridge be able to distinguish the
packets it transmits from other packets that appear on the segment.
No network interface we are aware of receives its own transmis-
sions, so the requirement is satisfied for a single port. However,
a SmartBridge can have multiple ports connected to the same seg-
ment. We ensure that the requirement is satisfied even in this case
by detecting and removing redundant ports during the inventory
construction phase, as described in §3.2. One of these redundant
ports will be pressed into service if the primary port to a segment
fails for some reason.

4.3.3 Data Structures for Efficient Evaluation
A SmartBridge constructs certain data structures that enable effi-
cient evaluation of the talker check and forwarding rule for each re-
ceived packet. First, for each segment U connected to SmartBridge
B, B determines if the undirected connection (B, U) appears in
NFST . Connections that so appear are called active and the oth-
ers inactive. Inactive connections can be ignored in the handling
of network flood packets. Second, bridge B constructs a network
flood previous hop table NFPHB which maps each segment S in
the network to the unique segment T such that (T, B) appears in
NFSS . We write this as NFPH B [S] = T . A network flood packet
from S is supposed to reach B via T , which is to say that T is sup-
posed to be the previous hop of a network flood packet from S
arriving at B. NFPH B is easily computed using a single traversal
of the NFST starting at B.

SmartBridge B uses the value of NFPHB[S] to determine how its
active connections are directed in NFSS . Given any active con-
nection (B,U), note that B is the network flood talker for S on U
exactly when U �= NFPHB [S]. This information is what B uses
to evaluate the talker check and forwarding rule for the network
flood packet NFKS .

4.3.4 Causal Ordering Among Multicast Packets
As will be described the next section, shortest path forwarding has
a talker check and forwarding rule for BPKS,D based (in part) on
a directed source tree BPSS just like the check and rule for NFKS

based on NFSS . It would be possible to ignore NFSS and instead
use BPSS .

The reason to have a separate NFSS based on NFST is to pro-
vide causal ordering among multicast packets. That is, if (1) host A

210

sends multicast M1, (2) host B receives M1, and (3) host B subse-
quently sends multicast M2, then any host C that receives both M1
and M2 will receive M1 before M2. (This assumes bridges do not
reorder packets.) The ordering occurs because both packets travel
across the same spanning tree, namely NFST .

Bridging systems that use a single spanning tree for all forwarding
provide causal ordering among all packets. This is not possible for
SmartBridges.

4.4 Shortest Path Forwarding
A packet whose source and destination hosts have known locations
is called a shortest path packet. The key feature that distinguishes
SmartBridges from traditional, spanning tree bridges is that Smart-
Bridges guarantee to forward each shortest path packet along a
shortest path from its source to its destination. By shortest paths,
we mean those that have the fewest number of hops in the network
topology graph. Clearly, the shortest path need not be unique. We
write BPK S,D to refer to an arbitrary shortest path packet whose
source and destination hosts are known to be on segments S and
D, respectively.

SmartBridges use a special set of shortest paths, called a best paths
set. Given a network topology graph G, a best paths set PP satis-
fies the following three best path properties:

shortest path For each pair of vertices S and D in G, PP contains
a path from S to D that is a shortest path in G.

source tree For each vertex S in G, the union of all paths in PP
that start at S forms a directed tree whose source is S. We
call this tree BPSS , the best path source tree for S.

destination tree For each vertex D in G, the union of all paths in
PP that end at D forms a directed tree whose sink is D. We
call this tree BPDD, the best path destination tree for D.

Figure 5 illustrates these properties. A path in PP is called a best
path. For each pair of vertices S and D in G, the shortest path
property guarantees that PP contains at least one path from S to
D, and from either of the tree properties it follows that this path is
unique. Let the unique best path from S to D be called PS,D .

Next we explain how SmartBridges use PP (actually the best path
source and destination trees) to forward shortest path packets and
to detect and correct errors in the known location of the source host.
In §5 we explain how to construct these trees given G.

4.4.1 Forwarding Rule for BPK S,D

The best path forwarding rule can be stated as follows: a Smart-
Bridge must forward BPKS,D along directed connections that ap-
pear in the intersection of BPSS and BPDD . Forwarding must
occur along each connection in the proper direction. Supposing
SmartBridge B receives this packet via segment T , it forwards it
onto all segments U such that (T, B, U) appears in BPSS and
(T, B,U) appears in BPDD . Because of the destination tree
property, there will be at most one such segment U .

Note that PS,D, the unique best path from S to D, appears in both
BPSS and BPDD . Therefore, if BPKS,D actually starts at seg-
ment S, the SmartBridges will forward it along PS,D from S to
D.

shortest path from S to D

BPSS, the best path source tree for S
B is the best path talker for S on U and U′

BPDD, the best path destination tree for D
B forwards to U packets on T and T′ destined for D

S

source

sink

D

B
DS

U′

T U

B
DS

T′

T U

Figure 5: Best Path Properties.

4.4.2 Talker Detects a Moved Source Host
Note that any segment U �= S has a unique parent in BPSS . We
call this parent the best path talker for S on U . The situation is
exactly analogous to the case of a network flood talker regarding
a network flood packet (§4.3.2). Since no SmartBridge will for-
ward BPKS,D except along directed connections that appear in
BPSS , the talker is the only bridge that could possibly forward
BPK S,D onto U . The talker performs a best path talker check and
triggers a host location revision accordingly. The same ability for
a SmartBridge to distinguish its own packets is needed here as was
discussed in the case of a network flood talker.

4.4.3 Data Structures for Efficient Evaluation
A SmartBridge constructs certain data structures that enable effi-
cient evaluation of the talker check and forwarding rule for each
received packet.

For each segment T connected to SmartBridge B, bridge B con-
structs a best path next hop table BPNHT,B which maps each des-
tination segment D in the network to B’s next hop on the best path
from T to D, PT,D . If PT,D does not go through B, then we
say that B’s next hop is ⊥. We write an access to the table as
BPNH T,B [D]. Formally, BPNH T,B[D] = U , where U is the
segment such that (T, B, U) appears in BPDD, if such a segment
exists, otherwise BPNH T,B [D] = ⊥. Although at first glance it
might appear that bridge B would have to examine the destination
tree BPDD for every D in order to compute BPNHT,B , actually
it suffices to perform a single traversal of the source tree BPST , as
described later in §5.3.

Similarly, for every segment U connected to B, there is a best path
previous hop table BPPHU,B which maps each source segment S
to B’s previous hop on PS,U . BPPH U,B can be computed us-

211

ing a single traversal of the destination tree BPDU . However,
as described later in §5.1, our method of selecting a best paths
set PP happens to produce symmetric paths, that is, PS,D is al-
ways the reverse of PD,S . Consequently, BPPHU,B is identical to
BPNH U,B and so it is not necessary to compute or store it sepa-
rately.

Note that B is the best path talker for S on T exactly when
BPPH T,B [S] �= ⊥. When SmartBridge B receives a packet
BPK S,D via segment T , it performs three table accesses to evalu-
ate the talker check and forwarding rule:

1. If BPPH T,B[S] �= ⊥ then trigger a location revision.

2. Let U := BPNH T,B [D]. If U = ⊥ then drop the packet.

3. If T �= BPPH U,B [S] then drop the packet.

Otherwise SmartBridge B forwards BPKS,D to U .

5. COMPUTING BEST PATHS
The previous section described how SmartBridges operate assum-
ing that a best paths set PP could be constructed. This section
describes how to construct such a set.

5.1 Edge Weights
Our method for selecting a best paths set is based on an assignment
of weights to edges in the network topology graph G. We say that
a path from S to D is a least-weight path if there is no path from S
to D of less total weight.

For any path P in G, the length of P , written L(P), is the number
of edges in P , and the weight of P , written W (P), is the total of
the weights of the edges in P . We assign weights to edges so that
the following two edge weight properties are satisfied for each pair
of vertices S and D in G:

shortest Any least-weight path from S to D is a shortest path in
G.

unique The least-weight path from S to D is unique.

Given an edge weight assignment that satisfies these properties, it
turns out that the set of least-weight paths is in fact a best paths set,
as is easily proved by considering each of the best path properties
in turn. The shortest path property is obvious. The source tree
and destination tree properties follow from the facts that (1) least-
weight paths are unique and (2) any subpath of a least-weight path
must itself be a least-weight path.

Since a path has the same weight as its reverse, the best paths set
selected by this edge weight scheme has a symmetry property: the
reverse of any best path is itself a best path. This property causes
the best path source tree for A and the best path destination tree
for A to be identical—except that the direction of every connec-
tion is reversed—for any vertex A. This makes the implementation
more efficient, since only one of these two trees and its derived data
structures need to be computed.

We know of two ways of producing an assignment of edge weights
that satisfy the edge weight properties: one based on a ranking of

(root)S

A (last common ancestor)

VU

W

Common prefix SA

Paths AU and AV
are disjoint L(AU) = L(AV)

Figure 6: Breadth-First Discovery of Vertex W. Vertex W has to
choose between parent candidates U and V depending on the least
weight path from the root S to W .

edges and the other based on a ranking of vertices. Our implemen-
tation uses the former scheme, although the latter would be slightly
simpler to implement, as mentioned in the following section.

Let each edge E be assigned a unique rank, written r(E). (A rank
is a positive integer: 1, 2, 3, etc.) Then we assign edge E the
weight 1 + 2−r(E). Since no edge can appear more than once in
a shortest path, the edge weight properties follow from the use of
distinct negative powers of two.

The alternative scheme using a ranking of vertices is similar. Let
each vertex V be assigned a unique rank, written r(V). Then we
assign edge E = (V1, V2) the weight 1+ 4−r(V1) + 4−r(V2). By a
similar argument, it is easy to show that this assignment also satis-
fies the edge weight properties.

5.2 Best Path Traversal
Since least-weight paths are shortest paths, a breadth-first traver-
sal of the network topology graph starting with S, which explores
vertices in order of increasing minimum path length from S, also
explores vertices along each least-weight path from S in order of
increasing minimum path weight from S.

Recall that for any vertex S, the union of all best paths that start
at S forms a spanning tree whose source is S, called the best path
source tree for S, written BPSS . So the set of best paths starting at
S can be represented by recording in each vertex its parent in this
tree.

When the traversal explores V , V ’s parent and the weight of the
least-weight path from S to V are known and have been recorded in
V . Visiting each of V ’s adjacent vertices W , the traversal computes
the path weight from S via V to W and records it in W if it is the
best so far. V is a parent candidate of W . Notice that W may have
been previously visited from other parent candidates.

Figure 6 depicts the situation pictorially. Vertex W has to choose
between parent-candidate vertices U and V based on the least-
weight path from S. The least-weight paths from S to U and from
S to V are known and can be retraced by backtracking through the
vertices’ parent fields.

An implementation could choose between parent candidates (e.g.,
U and V in Figure 6) by explicitly computing path weights, storing
them with the parent field in each vertex, and comparing the path
weights via each of the parent candidates. However, this explicit

212

path weight scheme has the disadvantage that path weights require
a large number of bits—proportional to the number of edges or
number of vertices in the graph, depending on whether edge rank-
ing or vertex ranking is used—and thus is impractical for large-
scale extended LANs.

It may be observed that the choice of best parent in the traversal
depends only on the relative weights of the candidate paths, and
not on the actual values of the weights. Hence, our implementation
uses the following implicit path weight scheme which compares
path weights without explicitly computing them.

Recall that when the traversal considers U and V as parent can-
didates of W , the best paths from S to U and from S to V are
already known. These paths have some last common vertex, say A,
possibly S itself. Thus, W ’s parent can be chosen by comparing
the weights of two paths: from A to U to W and from A to V
to W . Observe that the two paths have the same length, no com-
mon edges, and no common vertices except A and W . The edges
(and vertices) on these two paths can be enumerated, in reverse,
by starting at W , stepping back to U and V , and then simultane-
ously stepping back to their parents, grandparents, and so on, until
a common ancestor is encountered, which will be A.

In the edge rank scheme, one path contains the edge of least rank
among all edges on both paths and that path is guaranteed to have
the larger weight. In the vertex rank scheme, one path contains the
vertex of least rank among all vertices on both paths (disregarding
A and W) and that path is guaranteed to have the larger weight.

The vertex rank scheme is slightly more efficient, because it does
not require ranks to be stored with edges, thus simplifying the ad-
jacency list representation of the graph somewhat.

5.3 Computing the BPNH Tables
Based on the network topology graph G and an edge weight as-
signment, each SmartBridge B computes a best path next hop table
BPNH T,B for each segment T connected to B. Using a determin-
istic algorithm based on the same graph, each SmartBridge sepa-
rately assigns the same edge weights, and therefore computes its
BPNH table entries based on the same best paths set.

After initializing all entries in BPNH T,B to ⊥, SmartBridge B
performs a best path traversal of G starting at T , as described in
the previous section. When the traversal visits a vertex W �= T ,
the parent V of W in the tree of best paths starting at T is known.
Observe that if V = B then W must be a segment connected to B
and the best path from T to W must be (T, B, W). In this case, B’s
next hop on PT,W is W itself, so we set BPNH T,B [W] := W .
Otherwise W inherits the same next hop as its parent V , so we set
BPNH T,B [W] := BPNH T,B [V].

6. IMPLEMENTATION
We have implemented the SmartBridge design on two different
types of inexpensive PC hardware. The first type is used to bridge
10 Mb/s Ethernets and the second is used to bridge 100 Mb/s Eth-
ernets.

Our 10 Mb/s bridge consists of a 66 MHz Intel 486 processor and
three identical Ethernet controllers. The Ethernet controllers plug
into the ISA bus and use the 3Com 3C589 chip. This controller
uses programmed I/O. The ISA bus is 16 bits wide and runs at 8
MHz.

LINE-2
bridge

CUBE DUAL CUBE

segment

KEY

connection

LINE-3

LINE-4

Figure 7: Reconfiguration Test Topologies. Cube and Dual Cube
are dual graphs of each other.

Our 100 Mb/s bridge has a 400 MHz Celeron processor. It uses the
Intel EtherExpress network controller, which plugs into the PCI
bus. This controller supports DMA. The PCI bus is 32 bits wide
and runs at 66 MHz.

The bridge boots a stock FreeBSD kernel (release 3.2) with the
bridging code embedded in it as a completely separate module. We
have not altered the Ethernet device driver in any way except to add
a filter at the input routine to pass incoming packets to the bridging
code.

The three primary performance metrics are (1) the time to do a
reconfiguration, (2) the steady state throughput of a SmartBridge,
and (3) the packet latency of going through a SmartBridge. Of
these, reconfiguration times are highly dependent on the network
topology.

It is important to keep reconfiguration short because normal packet
forwarding is suspended during this time. Hosts sending packets
during reconfiguration will notice dropped packets. Reliable trans-
mission protocols like TCP will timeout if packets are dropped for
a sufficiently long time [5].

6.1 Reconfiguration Time
We measured the reconfiguration time of our 10 Mb/s system in
each of the topologies shown in Figure 7 and Figure 8 plots the re-
sults. Since the clock granularity in our system is 10 milliseconds,
times less than one clock tick were measured by averaging a large
number of runs. Observe that the reconfiguration time for the line
topology increases almost linearly as bridges are added. This is not
surprising, since the diameter of the network (and thus the diame-
ter of the propagation order spanning tree) increases linearly with
the number of bridges. In fact, for a given number of bridges and
ports, the line topology gives the worst case reconfiguration time,
but with twelve bridges the reconfiguration time is still only about
16 milliseconds. This is well less than the timeout period of proto-
cols like TCP, which is typically on the order of 500 milliseconds.

Although we extrapolate that our system could scale to a line topol-
ogy containing about two hundred bridges, any realistic network

213

� Line
� Dual Cube
� Cube

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|0.00

|4.00

|8.00

|12.00

|16.00

|20.00

 Bridges

 R
ec

on
fi

gu
ra

ti
on

 T
im

e
(m

s)

�

�

�

�

�

�

�

�

�

�

�

��

Figure 8: Reconfiguration Times. Time to reconfigure Smart-
Bridges in various topologies is plotted against the number of
bridges.

“SmartBridge”
configuration

host

“Direct”
configuration

host

A

A

B

B

Figure 9: Throughput Test Configurations.

would have many more interconnections and thus a smaller net-
work diameter for a given number of bridges. The cube and dual
cube topologies are examples of such more realistic networks, and
their reconfiguration times can be seen to be less than that of the
line topology for the same number of bridges. Link speeds faster
than 10 Mb/s and faster CPUs in bridges would also shorten the
reconfiguration time and allow even larger configurations.

Our reconfiguration time does not include the time to detect and
stabilize an inventory change; that takes an additional 15 ms. The
detection time depends on the granularity of the FreeBSD clock
and could be shortened by making the clock tick faster.

6.2 Throughput and Latency
We used netperf [11] to measure the maximum throughput from
one host to another at various packet sizes both with and without a
SmartBridge between them. Link and transport overheads are not
counted in the throughput. If these overheads are included, our 100
Mb/s system runs at full link bandwidth for maximum-size packets.

Figure 9 shows the two configurations. The “SmartBridge” config-
uration has two hosts on different segments connected by a Smart-
Bridge. The “Direct” configuration has two hosts directly con-
nected to the same segment.

Figure 10 plots the throughput of our 10 Mb/s system. The Smart-
Bridge is capable of sustaining 8.4 Mb/s with large packets at a
CPU utilization of over 90%. Without a SmartBridge, directly con-
nected hosts can achieve a throughput of 9.6 Mb/s. The principal
reason that the SmartBridge does not saturate the link is that the
network controller uses programmed I/O to move data to and from
the network, and the CPU saturates before the link saturates.

� Direct
� SmartBridge

|
0

|
256

|
512

|
768

|
1024

|
1280

|
1536

|0.00

|2.00

|4.00

|6.00

|8.00

|10.00

 Packet Size (bytes)

 T
hr

ou
gh

pu
t

(M
b/

s)

�

�

�

�

�
� � � �

�

�

�

�

� � � � �

Figure 10: Throughput of the 10 Mb/s system.

� Direct
� SmartBridge

|
0

|
256

|
512

|
768

|
1024

|
1280

|
1536

|0.00

|20.00

|40.00

|60.00

|80.00

|100.00

 Packet Size (bytes)

 T
hr

ou
gh

pu
t

(M
b/

s)

�

�

�

�

�
� � � �

�

�

�

�

�
� � � �

Figure 11: Throughput of the 100 Mb/s system.

With a controller capable of doing DMA, the throughput of the
SmartBridge is much better. Figure 11 plots the throughput of our
100 Mb/s system. In this case, SmartBridge throughput is very
close to direct throughput. CPU utilization is only 35% at large
packet sizes.

We also used netperf to measure the additional latency due to a
SmartBridge. The additional latency was almost exactly one store-
and-forward delay. This is not surprising, given that our commodity
network controllers do not permit cut-through.

6.3 Table Sizes
Each SmartBridge stores information in several tables. The sizes
of these tables depend on the number of bridges, b, the number of
segments, s, the average number of ports on a bridge, p, the number
of hosts, h, and the average number of bridge ports connected to an
segment, i. Note that i = b ∗ p/s.

In our implementation, the maximum of vertices is 2048, the maxi-
mum number of ports per bridge is 128, and the maximum number
of hosts allowed is 8192. Thus (b + s) ≤ 2048, p ≤ 128 and
h ≤ 8192.

With the data representation in our implementation, the network
topology graph and related working space takes about 8 ∗ (b +

214

s) bytes for vertices and about 5 ∗ (b ∗ p) bytes for edges. A
given SmartBridge B computes and stores only the relevant net-
work flood and best path tables: the network flood previous hop
table NFPH B takes 8 ∗ s bytes and the best path next hop tables
BPNH ∗,B take about 7∗(p∗s) bytes total. The host location table
takes 12∗h bytes, and the inventory construction process consumes
about 20 ∗ (i ∗ p) bytes in addition to debugging data. This figure
can be further lowered if we use short integers instead of linked list
pointers.

6.4 Comparison with Spanning Tree Bridges
A spanning tree bridge stores a host direction table that is approx-
imately the same size as a SmartBridge’s host location table. In
a typical network, the number of hosts should be 10 to 100 times
the number of bridges and segments, so we expect the host location
table to consume the majority of available storage in each Smart-
Bridge. Hence the storage requirement is approximately the same
between SmartBridges and spanning tree bridges.

In both bridge designs, access to the host table requires an associa-
tive lookup based on host UID, and such an access is performed for
both the source and destination addresses of each packet. A Smart-
Bridge also performs accesses to the NFRT or the BPFT on each
packet, but the implementation can arrange to represent segments
by small integer indexes, thus making the NFRT or BPFT ac-
cesses quite efficient. Hence the amount of processing required to
forward a packet is approximately the same between SmartBridges
and spanning tree bridges.

A spanning tree bridge system requires an enormous amount of
time to reconfigure after a topology change: on the order of 30 to
90 seconds. This results from the fact that the spanning tree pro-
tocol can move through inconsistent states, which could create for-
warding loops; to avoid such loops the bridges suspend forwarding
for a length of time guaranteed to allow the protocol to converge. A
SmartBridge system reconfigures in about 20 milliseconds—three
orders of magnitude faster—because it uses a diffusing computa-
tion to obtain control of the network and move efficiently to com-
pletion.

6.5 Shortcomings
Our current design and implementation has some shortcomings,
which could be overcome by further work.

We treat all LANs as equally good for forwarding traffic. It would
be better to prefer a higher-speed LAN over a lower-speed LAN,
even to the extent of preferring several high-speed hops to one low-
speed hop.

We treat all traffic as equally deserving of service. It would be bet-
ter to regulate broadcast traffic (by dropping excessive broadcasts)
so that a broadcast storm could not deny service to unicast traffic.

We treat anyone sending SmartBridge protocol messages as if it
were a SmartBridge. It would be better to use cryptographic au-
thentication to verify that the sender really should be trusted.

7. RELATED WORK
Apart from the SmartBridge design, there are three general ap-
proaches to mitigating the congestion problem in spanning tree
bridges that are currently in use: replication, crossover, and tunnel-
ing. However, none of these techniques guarantees to send packets
on the shortest path between hosts.

client

A B

front end
server

back end
servers

Cn

C1

Figure 12: Triangle routing. Client A sends a request to a front-
end server B that forwards it to one of several back-end servers
C.

7.1 Replication
One approach to mitigate the congestion problem in spanning tree
bridges is to create not one, but several spanning trees, each with a
different root. This is most easily done by creating different virtual
universes. Each universe would have its own spanning tree, with a
different root and set of active connections. A hash function over
source and destination is applied to each packet to determine the
universe to which the packet belongs, and the packet is forwarded
using the spanning tree for that universe.

Although this approach tends to spread the load across different
root bridges and different redundant connections, there is nothing
to prevent two hosts from getting unlucky and landing in a universe
with a bad spanning tree from their perspective. A more serious
weakness of this approach is that the location of each host must be
learned separately in each universe. This can be a serious problem
for triangle-routing protocols such as illustrated in Figure 12, where
the location of a packet’s destination may never be learned in the
universe to which that packet belongs, since learning is based on a
packet’s source.

The multi-universe approach can easily be applied to SmartBridge,
with a different set of best paths in each universe. The SmartBridge
system would still learn the segment on which a host is located with
the first packet sent by that host, but, unlike spanning tree bridges,
this knowledge can be used in all universes.

7.2 Crossover
Under special circumstances, a segment that is not part of the span-
ning tree can be used to divert load from the root. Imagine bridges
A and B that are connected by a redundant segment. Using the
standard spanning tree learning process, A learns about all the hosts
located below it in the spanning tree, as does B. Then, using a spe-
cial protocol, A and B can exchange their information about their
hosts and agree to use the redundant segment to forward packets di-
rectly to the other bridge for hosts that are below it in the spanning
tree. This scheme and extensions are described more fully by Perl-
man [16]. Unlike SmartBridges, crossover schemes are ad-hoc ap-
proaches to the problems of load balancing. They place fairly tight
topological constraints and do not necessarily improve the perfor-
mance of all hosts.

7.3 Tunneling
Tunneling is a scheme where multiple LANs (or extended LANs)
are connected by “tunnels”, which are dedicated paths between
pairs of LANs (or extended LANs). Tunnels are created by wrap-
ping LAN packets within a larger data frame and using any conve-
nient network protocol to carry the encapsulated packets between
the tunnel’s end points. The standard LAN (or bridge) proto-
col is used to carry traffic within each LAN (or extended LAN).
VLAN [10] is similar to tunneling.

215

VLAN [10] is similar to tunneling.

Tunnels have some attractive features. They can keep extended
LANs (and the corresponding spanning trees) from getting very
large. They also offer the flexibility of routing traffic from specific
LANs, or even better, only packets belonging to specific protocols.
Unfortunately, tunneling requires manual configuration and set up
because tunnel end points have to know about each other. Tunnels
are complementary to SmartBridges in that extended LANs con-
nected by SmartBridges can be tunneled.

8. CONCLUSIONS
The problem of alleviating congestion in extended LANs is long-
standing, and SmartBridge is the first comprehensive solution that
we are aware of.

SmartBridges route packets using shortest paths and require little or
no human administration or configuration. They can be built inex-
pensively using standard, off-the-shelf hardware. The algorithms
at the heart of the design are simple to implement and give good
performance.

Although methods for performing incremental updates to the topol-
ogy will be needed at extremely large scales, our “global reboot”
approach is simple, easily proven correct, and fast enough to han-
dle large scale extended LANs involving dozens to hundreds of
bridges.

As 100 Mb/s switched Ethernet and Gigabit Ethernet become more
common, the number of bridges in an extended LAN is likely to
increase, making the SmartBridge solution even more valuable.

Our future plans include testing the design on higher speed net-
works, validating its scalability in larger configurations and incor-
porating it into switches. As a practical matter, SmartBridges must
also cooperate with spanning tree bridges in the same network, and
we have a preliminary solution, which we plan to test further.

Acknowledgements
We would like to thank our colleagues Mark Lillibridge and Raymie
Stata for many illuminating technical discussions. Thanks are also
due to our anonymous referees and our shepherd Radia Perlman.

9. REFERENCES
[1] Yehuda Afek, Baruch Awerbuch, and Eli Gafni. Applying

static network protocols to dynamic networks. In 28th
Annual Symposium on Foundations of Computer Science.
IEEE, October 1987.

[2] Baruch Awerbuch, B. Patt, and George Varghese.
Self-stabilization by local checking and correction. In 32nd
Annual Symposium on Foundations of Computer Science,
pages 268–277. IEEE, October 1991.

[3] Kenneth P. Birman. Building Secure and Reliable Network
Applications, chapter 13.10: The Group Membership
Problem, pages 253–265. Manning, 1996.

[4] Kenneth P. Birman and Thomas A. Joseph. Reliable
communication in the presence of failures. ACM
Transactions on Computer Systems, pages 47–76, February
1987.

[5] Douglas E. Comer and David L. Stevens. Internetworking
with TCP/IP Volume II. Prentice Hall, 1991.

[6] Digital Equipment Corporation. DIGITAL Standard 200-1
DIGITAL Network Architecture—Maintenance Operations
Functional Specification, Version T4.0.0, B1 edition, January
1988. Document number A-DS-EL00200-01-0000, Compaq
Computer Corporation, Houston, Texas.

[7] Edsger W. Dijkstra and C. S. Scholten. Termination detection
for diffusing computations. Information Processing Letters,
11(1):1–4, August 1980.

[8] IBM. The NETBIOS frames protocol. In IBM Local Area
Network Technical Reference, December 1990. Document
number SC30-3383-03.

[9] IEEE. Local and Metropolitan Area Networks: Common
Specifications: Media Access Control (MAC) Bridges.
ANSI/IEEE Std 802.1D-1998.

[10] IEEE. Local and Metropolitan Area Networks: Virtual
Bridge Local Area Networks. IEEE Std 802.1Q-1998.

[11] Rick Jones. The Public NetPerf Homepage. available at
http://www.netperf.org/netperf/NetperfPage.html.

[12] David E. McDysan and Darren L. Spohn. ATM Theory and
Applications. McGraw-Hill, 1999.

[13] J. M McQuillan, I. Richer, and E. C. Rosen. The new routing
algorithm for the ARPANET. IEEE Transactions on
Communications, 28(5):711–719, May 1980.

[14] David Oran. OSI IS–IS Intra-domain Routing Protocol. RFC
1142. Available from http://www.rfc-editor.org/rfc.html. A
republication of ISO DL 10589.

[15] Radia Perlman. An algorithm for distributed computation of
a spanning tree in an extended LAN. In Proceedings of the
Ninth Data Communications Symposium, pages 44–53.
ACM, 1985.

[16] Radia Perlman. Interconnections: Bridges and Routers,
chapter 3.7.2: Using Extra Links, pages 86–94.
Addison-Wesley, 1992. 1st edition.

[17] Thomas L. Rodeheffer and Michael D. Schroeder. Automatic
reconfiguration in Autonet. In Proceedings of the 13th ACM
Symposium on Operating System Principles, pages 183–197,
1991.

[18] Michael D. Schroeder et al. Autonet: A high-speed,
self-configuring local area network using point-to-point
links. IEEE Journal on Selected Areas in Communications,
October 1991.

216

