
FIRE: Flexible Intra-AS Routing Environment

Craig Par tridge, Alex C. Snoeren†, W. Timothy Stray er,
Beverly Schwar tz, Matthew Condell, and Isidro Castiñeyra

BBN Technologies
10 Moulton Street, Cambridge, MA 02138

{craig, snoeren, stray er, bschwar t, condell, isidro}@bbn.com

ABSTRACT
Current routing protocols are monolithic, specifying the algo-
rithm used to construct forwarding tables, the metric used by the
algorithm (generally some form of hop-count), and the protocol
used to distribute these metrics as an integrated package. The
Flexible Intra-AS Routing Environment (FIRE) is a link-state,
intra-domain routing protocol that decouples these components.
FIRE supports run-time-programmable algorithms and metrics
over a secure link-state distribution protocol. By allowing the
network operator to dynamically reprogram both the information
being advertised and the routing algorithm used to construct for-
warding tables in Java, FIRE enables the development and
deployment of novel routing algorithms without the need for a
new protocol to distribute state. FIRE supports multiple concur-
rent routing algorithms and metrics, each constructing separate
forwarding tables. By using operator-specified packet filters,
separate classes of traffic are routed using completely different
routing algorithms, all supported by a single routing protocol.

This paper presents an overview of FIRE, focusing particularly
on FIRE’s novel aspects with respect to traditional routing proto-
cols. We also briefly describe our implementation experience.

1. INTRODUCTION
A routing protocol has three constituent functions: it defines a set
of metrics upon which routing decisions are made; it distributes
this information throughout the network; and it defines the algo-
rithms that determine the paths that packets use to traverse the
network. Furthermore, a well-designed protocol contains secu-
rity mechanisms to protect the routing infrastructure from attack
as well as from mischance or misconfiguration.

† Alex C. Snoeren is with the MIT Laboratory for Computer Science
(snoeren@lcs.mit.edu). This paper describes work carried out while at
BBN Technologies.

This work was sponsored by the Defense Advanced Research Projects
Agency (DARPA) under contract No. DABT63-96-C-0100. Views and
conclusions contained in this document are those of the authors and
should not be interpreted as representing official policies, either
expressed or implied.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCOMM’00, Stockholm, Sweden.
Copyright 2000 ACM 1-58113-224-7/00/0008...$5.00.

In today’s routing protocols, these functions are tightly inte-
grated and cannot be unbundled. When a network operator
chooses to use IS-IS [8] or OSPF [25], for instance, the informa-
tion that is distributed about each link and the algorithm that is
used to select paths are fixed; the operator is largely unable to
tune the system to use a new algorithm or different metrics. The
operator may select a more recent routing algorithm by moving
to Cisco’s Enhanced Interior Gateway Routing Protocol (EIGRP)
[37], but the operator is then forced to accept EIGRP’s metrics,
state distribution and security mechanisms.

FIRE, the Flexible Intra-AS Routing Environment, is an attempt
to provide a more flexible routing system. Operators control a
variety of key routing functions, including choosing which algo-
rithms are used to select paths, choosing what information is
used by the algorithms, and identifying traffic classes to be for-
warded according to the specified algorithms. Expressing these
ideas a bit more formally, FIRE splits the standard routing proto-
col into its constituent parts: secure state distribution, computa-
tion of forwarding table(s), and the generation of state informa-
tion (i.e., determining what values to distribute). FIRE then
exposes its state distribution functionality, making computation
of forwarding tables and the generation of state information pro-
grammable at run-time.

The motivation for the novel aspects of FIRE springs directly
from three simple observations:

• Routing algorithms continue to evolve.

• Today’s crude link metrics are often insufficient
to support new routing algorithms.

• Network providers are increasingly interested in
providing specialized routing for different classes
of traffic.

Over the past several years there has been considerable ferment
and change in the design of multicast routing protocols [6, 14,
17]. Potential improvements for unicast routing have also been
developed [4, 34]. Getting any of these algorithms actually
deployed is difficult. Because current routing protocols have
intertwined their algorithm with their state distribution mecha-
nism, deploying new algorithms has meant, in most cases, imple-
menting entirely new protocols. In short, the barrier to deploy-
ing new routing algorithms is very high. Indeed, part of the
motivation for FIRE came from our experience trying to deploy
a new unicast routing algorithm that finds approximately optimal
paths based on multiple, orthogonal link metrics [9].

Most protocols use hop count to approximate the cost of a link.
More sophisticated protocols like EIGRP compute the metric
from a mix of several link properties, but the EIGRP equation for
combining metrics is fixed and represents a balance between
possibly conflicting values. FIRE distributes a rich set of proper-
ties for use by routing algorithms. Properties can be pre-config-
ured, extracted from router MIBs, or even dynamically generated

191

by operator-provided applets. FIRE provides for programmable
property generation, and properties can be regenerated when
conditions suggest forwarding tables need updating.

The increasing heterogeneity of Internet connectivity strongly
suggests that there is a growing diversity in path choices. Differ-
ent paths between two points will be better suited for different
applications. An obvious example is satellite links, which are
being used more frequently in the Internet and which offer high
bandwidth but also high delay. Most routing protocols in use
today forward all traffic using the same forwarding table. Traffic
classes may be differentiated with respect to resource reserva-
tion[7] and queuing priority [28], but, regardless of priority,
packets are still routed along the same path. In FIRE, each
packet is routed along a path using a forwarding table con-
structed to best suit its particular traffic class. By assigning dif-
ferent classes of traffic to separate forwarding tables, FIRE
allows network operators to optimize routing for each traffic
class. Each forwarding table is constructed with a different algo-
rithm, which may use its own set of metrics. Note that class
assignment is facilitated by a set of packet filters specified on a
domain-wide basis, in contrast to active network techniques that
require packets themselves to explicitly specify their routing
algorithm of choice, as in PLANet [16].

This paper is organized as follows. Section 2 provides a brief
overview of FIRE, while sections 3, 4, 5, and 7 present novel
aspects of FIRE that are particularly interesting when compared
to existing protocols, including configuration and management,
programmable routing algorithms, dynamic properties, and our
security model. Section 6 describes FIRE’s state distribution
mechanism in more detail. Section 8 provides a quick tour of the
programming interface to FIRE, and section 9 very briefly dis-
cusses our implementation. Section 10 surveys related work,
while section 11 concludes with a discussion of future work.

2. FIRE OVERVIEW
A traditional routing protocol generates a single forwarding table
at each router, which the router then uses to forward incoming
traffic. FIRE extends that notion by generating a set of forward-
ing tables, each uniquely defined by three pieces of information:
the algorithm used to compute the table, the properties used by
the algorithm in its computations, and a packet filter that deter-
mines which classes of traffic use the forwarding table. In FIRE,
all three of these variables may be configured by the network
operator at run time.

A single instance of FIRE may manage several forwarding
tables, thus serving several classes of traffic, concurrently. Traf-
fic is classified using operator-specified filters and forwarded
according to generated forwarding tables. The tables are gener-
ated using routing algorithms that are downloaded and installed
by the operator on demand. The algorithms are run on a link-
state database, called theproperty repository, containing proper-
ties that are continually flooded throughout the network through
the use of State Advertisements (SAs). These properties may be
statically configured, obtained from routers’ Management Infor-
mation Bases (MIBs), or dynamically generated.

FIRE also permits multiple instances of the FIRE protocol to be
running concurrently in a system. Each FIRE instance is wholly
self-contained, propagates its own state, and maintains a separate
set of forwarding tables. This feature is designed to support Vir-
tual Private Networks (VPNs), where overlays are used to make
a single network look like sev eral independent networks. A net-
work provider can assign a distinct instance of FIRE to each
VPN, and allow the operators to choose how to route different
classes of traffic within their own private network.

ü berfilter
Packet
Filters

Forwarding
Tables

Data Path

Routing
Algorithms

Property
Applets

Vir tual
Machine

SA
Generation

SAs

Property
Repository

Flooding
Mechanism

SAs

SAs

Figure 1: FIRE Router Architecture

The internal architecture of a FIRE router is shown in figure 1.
All incoming traffic on the router’s data path first passes through
an ü berfilter that assigns the traffic to a particular instance of
FIRE. A packet can belong to only one instance, hence the fil-
ters must be disjoint. (In a router with only one instance of
FIRE, the u¨berfilter would contain a single wildcard entry.)
Within a FIRE instance, packet filters determine which forward-
ing table the packet is to use. The packet’s destination address is
looked up, and the packet is forwarded accordingly.

Routing information is processed by FIRE’s flooding mecha-
nism, which ensures SAs generated by any entity in the network
are seen by all others. Properties contained in these SAs are
stored in a property repository, which is used by the routing
algorithms to generate their respective forwarding tables. Each
router is also responsible for advertising its own properties and
periodically floods its SAs into the network.

2.1. Design Philosophy
The most basic contribution of FIRE is the ability to modify the
routing algorithms and property metrics used to generate for-
warding tables. This dynamism requires great care to ensure
robust, reliable behavior; the sheer scope of configuration and,
ev en more importantly, programming options made available by
FIRE’s model substantially increases the chance of misconfigu-
ration or buggy implementations. This vulnerability has guided
our design of the FIRE protocol. We hav e sought to make FIRE
as stable a platform as possible.

FIRE alleviates many of the security and performance con-
straints of traditional active networking by providing a strict sep-
aration between control and data flow. Unlike previous active
network approaches for extensible routing [16, 36], the routing
environment is completely separate from the traffic to be routed.
The decoupled nature of FIRE’s property applets and routing
algorithms allows FIRE to achieve forwarding performance simi-
lar to traditional routing protocols while providing the rapid
extensibility and flexibility of active networking. Further, it
greatly limits the scope of additional robustness concerns, since
no new threats are posed by the traffic itself.

One vital design decision was to make FIRE a link-state routing
protocol. While there remains considerable debate about relative
strengths and weaknesses of link state and distance vector, from
the FIRE perspective link state has two advantages. First, there
are well-defined mechanisms to make the distribution of link-
state information robust against Byzantine failures [29] while, to
our knowledge, no such mechanisms exist for distance vector.

192

Hence link state is more secure against certain failures of indi-
vidual routers. Second, the incremental updating of distance-
vector information at each hop in a path means the correct rout-
ing of packets in a distance vector environment potentially
depends on the correct operation of all routers in the network,
while link state only requires correct operation along the desired
path. Again, link state appears more robust.

The desire for robustness can also be seen in FIRE’s security
model, which is based on the philosophy of containment. SAs
are cryptographically signed by their creator to prevent modifica-
tion in flight; advertisements can be suppressed or damaged in
flight but cannot be surreptitiously modified or spoofed. Further-
more, each FIRE entity has an associated authorization certifi-
cate specifying what information it is allowed to advertise.
These certificates are used, for example, to prevent a malicious
or misconfigured router from advertising a route to a distant por-
tion of the network and ‘‘black-holing’’ traffic.1

An additional layer of protection is provided by sending all FIRE
traffic over a special transport protocol, the FIRE Layer InterNet-
work Transport Protocol (FLINT). FLINT is designed to facili-
tate the use of IPsec [19] to authenticate hop-by-hop traffic. In
addition, FIRE uses an internal hard-coded algorithm to build a
special forwarding table for FLINT traffic that cannot be rede-
fined. Hence FLINT traffic (and thus FIRE control and manage-
ment traffic) will continue to be correctly forwarded even if bugs
in a deployed routing algorithm cause all other traffic to be mis-
directed.

2.2. Operator Configuration
Central to the FIRE model is the notion of anOperator. FIRE
works within a particular Autonomous System (AS)—an area
completely controlled by one administrative entity. That entity
appoints one or more people (e.g., a network operations center
personell) as the Operator. The Operator is authorized to config-
ure the network through two mechanisms: the Operator Configu-
ration Message (OCM) and the Operator Configuration File
(OCF).

The OCM is a special SA message that contains a few system
wide configuration values, a list of the OCFs to load, and instruc-
tions about which OCFs to run.

An OCF lists the algorithms used to compute forwarding tables,
the properties each entity must advertise, and a set of filters used
to map an incoming packet onto the proper forwarding table.
OCFs are stored on file repositories throughout the network to
provide redundant availability in the face of network partition-
ing; the location of these file repositories are specified in the
OCM. When the Operator issues an OCM containing a new
OCF, each node retrieves all pertinent files specified by the OCF.

2.3. Algorithms
Routing algorithms in FIRE are downloaded Java programs,
available from file repositories as directed by the OCF. The
algorithms are designed to use distributed network properties
from the property repository to generate a local forwarding table.
Each instance of an algorithm (multiple forwarding tables may
be generated using the same algorithm with different property
metrics) is run in a separate Java Virtual Machine (JVM) on the
router itself. Thissandboxingprevents a buggy or malicious
routing algorithm from disabling the entire router.

1 The termblack-holecomes from a particular router failure mode in
which the router advertises that it is zero hops from from one or more
prefixes that it actually does not serve. The result is traffic for those pre-
fixes gets sent to that router, nev er to emerge again.

2.4. State Distribution
A FIRE system is composed of two classes of entities: nodes and
links. Routers and broadcast networks are nodes; links are uni-
directional adjacencies between nodes. Each entity in the FIRE
system has a unique ID and a set of properties associated with its
ID. The ID encoding specifies whether the entity is a link, sub-
net, or router.

A node is responsible for generating values for all of the proper-
ties listed in the OCF. Property values for links are generated by
adjacent nodes. Network properties are the responsibility of
Designated Routers, which are selected using a distributed elec-
tion process similar to OSPF. Some of these values may be con-
figured into the nodes (e.g., multicast support or policy-based
cost values). Others may be readily available from the router’s
MIB (e.g., average queue length and CPU utilization). FIRE
also allows operators to write their own property applets. Like
algorithms, property applets are written Java and each is
executed in its own JVM instance.

In addition to internal properties communicated throughout the
FIRE domain, routers serving as gateways to other ASs may
need to communicate with BGP or a similar Inter-AS protocol.
Even within an AS, there may be a need to support concurrent
routing protocols for other purposes, such as multicast, if they
have not yet been implemented in FIRE. In the case of an exter-
nal routing protocol such as BGP, the Inter-AS protocol needs to
inject summaries of external routes and summarize routes of
internal networks. FIRE uses special External Route advertise-
ments to support both classes of information exchange.

All property values are distributed to every node in the network
using reliable flooding. Each node stores these values in a prop-
erty repository in order to build a complete and consistent map
of the network. Updates of the values of these properties are
periodically flooded throughout the network, refreshing the
repositories.

3. CONFIGURATION & MANAGEMENT
Control and management of a FIRE system rests with the Opera-
tor. Through the use of an Operator Control Message (OCM),
the Operator can specify the Operator Configuration Files
(OCFs) to load.

3.1. Configuration Messages and Files
The OCM itself is rather small and contains the configuration
rules for the FIRE system, the set of OCFs that are to be loaded,
and names one of them as therunningOCF. The OCM is cryp-
tographically signed with the Operator’s secret key. There can
be only one OCM valid at any point in time. The OCM is
injected into the network by an Operator at any FIRE node, and
is distributed along with normal routing updates throughout the
network by the standard flooding mechanism.

Upon receipt of the OCM, a node retrieves the listed OCFs from
one of the file repositories specified in the OCM. File retrieval is
facilitated by a special, simple file transfer protocol called the
Large Data Transfer Protocol (LDTP). This protocol is based on
the Trivial File Transfer Protocol (TFTP) [33], altered to run
over FLINT and enhanced to protect against insertion attacks
and reduce its vulnerability to Denial-of-Service attacks. When
an OCF is retrieved from a file repository, the OCF is parsed and
any additional support files downloaded. In particular, the OCF
contains the a list of routing algorithms and property applets,
along with a list of the file repositories where these files can be
obtained. LDTP is again used to retrieve these files. All files to
be downloaded are cryptographically signed to ensure integrity.

193

The OCM tags each OCF with one of three directives:load,
advertise, or run. An OCF load directive simply causes the
router to retrieve the files from the file repository. An OCF
advertisedirective additionally forces the generation of property
values and their issuance as SAs once the OCF has finished load-
ing. In addition to the steps required by the loading and advertis-
ing states, an OCF number tagged with the run directive causes
routers to run the associated routing algorithms to generate for-
warding tables. The resulting forwarding tables, along with the
specified packet filters, are installed into the router.

The list of OCFs can change from one OCM to the next. In fact,
this is precisely how the Operator introduces new OCFs into the
system, and prepares the network to run them. A careful Opera-
tor will iterate a particular OCF through the loading and adver-
tising stages, ensuring the expected operation before switching it
to the run state. Old OCFs that are removed in succeeding
OCMs are purged from the system, along with any algorithm
files that they use.

3.2. OCF 0
There is one OCF that is considered immutable—OCF 0. All
entities must advertise OCF 0 properties regardless of what other
OCFs are loaded or which one is running. This OCF contains
the minimum amount of information necessary to maintain rout-
ing functionality, and is always operational.

An OCF 0 forwarding table is always built using SPF [24] (Dijk-
stra’s algorithm [12]) with hop count as its metric. FLINT traffic
is always sent using this forwarding table. By ensuring FLINT
traffic is forwarded using a straightforward, reliable routing
table, FIRE application traffic, including LDTP, should always
be correctly routed, allowing OCFs and their associated files to
be downloaded regardless of the state of (in)operation of the cur-
rently running OCF.

OCF 0 contains exactly four properties:

FIRE Metric
The hop count for this entity used to build the SPF routing
table for FIRE management traffic. It defaults to one for
each router node and zero for each link and network node.

IP Addresses
The set of IP addresses associated with this entity. For
links, this is the set of IP addresses associated with the
source interface, both canonical and aliases. For routers,
this includes any stub hosts that are reachable through this
node. Networks do not participate in this property.

FIRE Up
This boolean value states that FIRE is currently running
for this node or link. If set to false, no traffic is routed
through this entity.

OCFs Loaded
A list of the OCF numbers (other than zero) for which this
entity is flooding SAs. Only router nodes participate in
this property.

In addition to being used by the OCF 0 routing algorithm, these
properties are also available to routing algorithms running at any
other OCF number.

4. ALGORITHMS
After an algorithm’s support files are downloaded, the code is
loaded into an execution environment on the router. Our FIRE
implementation invokes algorithms in a Java Virtual Machine
(JVM). If the algorithm is being asked to generate multiple for-
warding tables based on different properties, a separate JVM

(each with the same algorithm code) is created for each instance.
Because we expect SPF to be a frequently used algorithm, in
addition to being an integral part of OCF 0 routing for FIRE
packets, SPF is implemented as a built-in function rather than a
downloadable applet.

4.1. Programming Interface
The FIRE algorithm programming interface is intentionally very
simple. Whenever new information is inserted into the property
repository by the reception of an SA, a snapshot of the repository
is made and the routing algorithm is called. The algorithm’s job
is to generate a forwarding table from the snapshot of the reposi-
tory.

The programming interface does not explicitly support incre-
mental updates. Our reasoning is that requiring algorithms to
support incremental updates is both unreasonable (some algo-
rithms may not have a straightforward way to do incremental
updates) and, as an added complexity, subjects them to addi-
tional bugs. However, FIRE does permit the JVM to preserve
data structures across calls to build a routing table, so program-
mers are free to perform incremental updates (or just cache use-
ful information) if they wish. The programming interface is dis-
cussed in more detail in section 8.1.

4.2. Algorithm Frequency
When determining how frequently to run an algorithm, the key
issue is correctness of routing. The fundamental idea behind
link-state routing is that if everyone has the same information
(the flooding protocol ensures information at all nodes will con-
verge) and runs the same algorithms, they will get the same
results and routing tables will be consistent. Obviously the
sooner one runs algorithms in response to updates, the faster the
convergence and the less likely that routing loops or black holes
will occur. (It is instructive to consider the alternative. Suppose
one ran algorithms only once everyn minutes. If an SA arrives
at one router just before it runs its algorithms, and at a neighbor-
ing router just after it runs its algorithms, the two neighbors will
be out of sync for up ton minutes and traffic may loop.) In our
view, loop freedom and black hole avoidance is vital to proper
operation, so FIRE runs algorithms whenever new information
arrives.

4.3. Thrashing
Given FIRE’s predilection for invoking routing algorithms, it
becomes important to protect against thrashing, where any new
piece of information could cause an algorithm to run. FIRE tries
to avoid thrashing in three ways:

First, algorithms cannot be stopped in mid-run. They run to
completion with the property snapshot they hav e, and if an
update is received while running, the algorithms are simply
invoked again as soon as they complete. So FIRE algorithms are
guaranteed to generate forwarding tables, regardless of the rate
of incoming property updates.

Second, FIRE dallies slightly before invoking an algorithm.
Rather than starting up each algorithm as soon as one new or
updated SA arrives, FIRE waits a brief, configurable period (usu-
ally a few seconds) to allow additional new information to arrive,
since routing updates tend to come in bursts.2 Indeed, conven-
tional wisdom holds that routing protocol traffic tends to be
either very heavy (lots of new SAs) or very light (very few SAs)

2 We hav e not found a careful study that discusses this behavior
within an autonomous system. Chinoy’s study [10] of backbone adver-
tisements supports the idea that updates are bursty.

194

at any giv en moment. Dallying tries to ensure that during peri-
ods of heavy traffic, algorithm runs balance responsiveness with
efficiency.

The final protection is not on algorithms themselves, but instead
results from FIRE’s limits on SA frequency. Since SAs can only
be issued at a specified maximum rate (which is enforced by
neighboring routers as part of the flooding protocol), a particular
node cannot trigger system-wide algorithm runs too frequently.
This mechanism is discussed in more detail in section 6.3.

5. PROPERTIES
Any information needed by routing algorithms to construct for-
warding tables must be distributed throughout the network.
FIRE packages this information into typed values calledproper-
ties. Properties differ from metrics used in traditional routing
algorithms. Metrics are weights, assigned to a link, that influ-
ence the likelihood of its inclusion in the path selection algo-
rithm. Properties, on the other hand, are applicable not only to
links, but to routers and networks as well.

For example, consider a network where the Operator wants to
encourage a certain class of packets to be forwarded over the
fastest links. In a metric-based system, the Operator would have
to assign a weight to each link, where the weight corresponded
in some fashion to the link’s speed. In a property-based system,
the link advertises its bandwidth as a property and the routing
algorithm uses the actual bandwidths to find the fastest paths.
Since bandwidths are bottleneck limited, the metric-based algo-
rithm would likely be a modified version of SPF or a max-flow
optimization.

Another example is the implementation of Core-Based multicast
Trees [6]. Selecting optimal cores in a metric-based routing pro-
tocol is an open problem. In a property-based system, however,
routers can dynamically advertise the property that they are will-
ing to be cores. Properties can be thought of as name-value
pairs, where the value is typed and can have multiple parts. So,
for instance, routers might support a property named "multicast-
core" whose value is a list of multicast groups for which the
router is currently a core. A clever routing algorithm would then
search the potential cores for one that was well-placed for the
intended set of multicast recipients. This could be enhanced by
having routers advertise how heavily they are loaded (e.g., the
number of groups for which they are already serving as cores)
and factoring load into the core selection algorithm.

The OCF defines the set of properties that a node or link must
advertise. Some of these properties will make sense for both
nodes and links, some will make sense only for nodes or links,
and some will makes sense for only some nodes or some links.
The OCF’s grammar allows the Operator to specify the class of
entity that should participate in advertising a particular property.
If a participating entity is unable to generate a value for a partic-
ular property (perhaps it does not have the required hardware to
support routing based on that property), the property’s value can
be set tounsupported.

Links are abstractions and cannot themselves issue SAs. The
same is true for network nodes. The node that is the originating
endpoint of a link is responsible for advertising the link. For net-
work nodes, the Designated Router undertakes the responsibility
of advertising for the network node and, in addition, for the links
going from the network node to adjacent nodes as well. Note
that this implies all network properties must either be statically
configured or can be measured by an adjacent router.

A property can be generated by (a) using a configured value, (b)
obtaining information from the router’s MIBs, or (c) running a

property applet. Configured values and MIBs are assumed to be
in place prior to the circulation of an OCF containing algorithms
that rely on these values.

5.1. Property Applets3

The ability to generate dynamic properties is one of the most
powerful aspects of FIRE, as well as its most dangerous. FIRE
borrows from the Active Networks [16, 36] philosophy, allowing
downloaded code to be executed on the router itself. Unlike
algorithms, however, which simply compute a function over the
provided property repository, property applets need access to a
far larger set of capabilities, possibly including file and network
access. On the other hand, property applets, unlike more general
dynamic router extensions, such as PLANet’sactive extensions
[16], simply gather information about the relevant FIRE entity,
and do not act in any way on the traffic being forwarded by the
router. Even so, applets clearly represent a potential security
risk. In addition to requiring all downloaded code to be crypto-
graphically signed by a software authority (as discussed in sec-
tion 7), our FIRE implementation uses Java’s security infrastruc-
ture [15] to provide a balance between code security and applet
functionality. The FIRE specification also allows for implemen-
tations to provide support for additional execution environments.
The large body of work on Proof-Carrying Code [27] could be
leveraged for installations with particularly tight security con-
straints.

Regardless of language or execution environment, property
applets are constrained in what they can do. They can communi-
cate with the local router on which they run, and they can send
packets to the router’s neighboring nodes (but no further, as
routers need only advertise properties related to themselves,
adjacent links, or directly-connected networks). Other than these
basic restrictions, however, applets are allowed to execute arbi-
trary Java instructions. It is left up to the software signing
authority to ensure that approved property applets function
appropriately for use in a production environment.

5.2. Property Updates
Scheduling property applets is another difficult task. The opera-
tor may schedule applets to be run at specified intervals, or trig-
gered by particular events, as specified by the OCF. Applets
must be run at discrete times, however, and the processes the
applets are trying to capture may not be discrete in nature. Fur-
thermore, even if applets were run continuously, some control
must be placed on the advertisement of new values. But FIRE
cannot, in general, determine when properties have changed,
since property values and types are arbitrary. Therefore property
applets themselves are charged with notifying FIRE when their
generated values have changed, and to what degree. The inter-
face used for this notification is discussed in section 8.2.

FIRE uses the applet notification mechanism to determine when
to issue new SAs. In the absence of explicit notification, FIRE
issues new SAs periodically, at some configurable interval, usu-
ally on the order of minutes. If, however, one or more property
values have recently changed, FIRE will schedule new SAs to be
issued at a rate commensurate with the configured maximum SA
rate. If an applet has indicated that a property value has changed
dramatically enough to warrant immediate notification, an SA is
issued immediately, subject to the flapping rules discussed in
section 6.3.3.

3 Note that neither routing algorithms nor property applets areapplets
in the strict Java sense of inheriting from thejava.applet.Appletclass.

195

6. PEERING & STATE DISTRIBUTION
Every routing protocol needs a mechanism to discover adjacent
routers, termedneighborsor peers, and reliably distribute state
information to them. Developing secure, robust mechanisms to
support these functions can be quite difficult. Many previous
routing protocols have been plagued by limited functionality,
such as neighbor discovery algorithms that do not support uni-
directional links [25], or buggy implementations [31].

Because of the difficulties in implementing state distribution and
peering protocols, we decided not to make these functions pro-
grammable. Rather, FIRE fixes these essential mechanisms as
built-in (non-programmable) infrastructure. Routing algorithms
running on top of FIRE need not concern themselves with the
subtle details involved in convergent, soft state distribution.
FIRE builds on a considerable body of prior work [20, 25] to
provide mechanisms that are secure, efficient, and robust.

6.1. FLINT
All routing traffic in FIRE is transported using FLINT. FLINT
provides a multiplexing datagram service, similar to UDP, but
under a separate protocol number. Using a special transport pro-
tocol for routing traffic provides several benefits. First, it pro-
vides a unique port space, free of the special implications of
UDP and TCP port numbers. Second, it greatly simplifies the
policies needed for IPsec’s Security Policy Database. According
to FIRE’s security model, all FLINT traffic must be authenti-
cated using IPsec (see section 7).

Each FIRE instance operates within a 128-port segment of the
FLINT port space. The first port in this segment is known as the
base port, and the ports used for the various FIRE protocols in
each instance are derived by adding a specified offset from the
base port. Using this scheme, multiple FIRE instances (possibly
overlay networks, such as VPNs) can operate on the same physi-
cal links without the need for additional tunneling or encapsula-
tion.

6.2. Neighbor Discovery
Topologically, FIRE models a network as a mesh ofnodescon-
nected bylinks. Besides all participating routers in the network,
broadcast subnets are also treated as nodes, as in OSPF [25],
thereby reducing the number of links between routers on a
broadcast subnet fromO(n2) to O(n).

Unlike OSPF, howev er, FIRE explicitly supports uni-directional
links. Links are defined as uni-directional, so a bi-directionally
connected pair of nodes has two links between them, one in each
direction. Two nodes are considered neighbors if some combina-
tion of adjacencies (that does not pass through another router
node) supports bi-directional communication between the two
nodes—a two-way link is not required.

The sample network in Figure 2 contains six nodes: three routers
and three broadcast networks. The solid arrows represent
directed adjacencies. Suppose Networks 1 and 3 were Ethernets,
and Network 2 was a satellite network. Since FIRE models links
as uni-directional, there are two links between Router A and Net-
work 1. The same is true between Router B and Network 3, and
Network 3 and Router C. In this example, however, Router A
has the only uplink to Network 2, while all routers have down-
links. The dashed lines depict the peering relationships that
would be established in this topology. Routers B and C peer in
the standard fashion across Network 3. Routers A and B also
form a peering relationship, even though they must use two sepa-
rate physical links in order to communicate. In contrast, Routers
A and C do not peer, as no single-hop path exists from C to A.

Router A Network 1

Network 2

Router B
Network 3

Router C

B.3 C.3

A.1

B.2 C.2

A.2

A.x

B.y

Figure 2: FIRE Network Model

The FIRE Peering Protocol is based largely upon the OSPF’s
Hello Protocol [25]. It establishes peering relationships between
adjacent routers for the exchange of SAs. It also selects aDesig-
nated Router(DR) andBackup Designated Router(BDR) for
each broadcast subnet.

6.2.1. Designated Routers
Designated Routers serve two purposes. First, they are responsi-
ble for issuing property updates for the subnet and its associated
links. Second, they help to limit the number of peering relation-
ships established over a particular subnet. Routers on a broad-
cast subnet peer only with the DR for the network, rather than
having to peer with all routers on the subnet.

Routers functioning as DRs in FIRE must have a bi-directional
connection (possibly using two separate interfaces) to the net-
work they are representing. This restriction is enforced by the
FIRE Peering Protocol, as discussed below. In the case of wire-
less broadcast networks, there may be no guarantee that a single
node can communicate with all other FIRE nodes on the wireless
subnet. If there exists no node that can reliably broadcast to all
the others, the wireless network must be modeled (for the pur-
poses of FIRE peering) as a mesh of point-to-point links, rather
than as a broadcast medium. The same is true for non-broadcast
multi-access networks (NBMA) networks.

To prevent flapping of the DR (and hence repeated re-issuance of
the network properties for which the DR is responsible), the
Peering Protocol also elects a BDR. If the DR ever fails, the
BDR assumes the role of the DR, and a new BDR is elected. If
two DRs (or BDRs) are ever present on a single subnet due to
network healing, one of the candidates is selected based upon
election rules very similar to those of OSPF, with one caveat.
Since DRs may be required to run property applets on behalf of
the subnet, FIRE’s election process ensures the DR has a bi-
directional connection to the subnet.

6.2.2. FIRE Peering Protocol
Every router is configured with a set of interfaces over which
FIRE peering relationships (which may not be the same as the
list of interfaces over which traffic is routed) are formed. FIRE
is then changed to manage these interfaces in a manner very sim-
ilar to OSPF.

The Peering Protocol is essentially a beaconing process, in
which all participating routers send out beacon packets at jittered
regular intervals. These beacons contain information about the
originating router’s FIRE ID, and the sending interface’s IP
address, netmask, and priority. Beacons sent over broadcast

196

media may also contain flags indicating the originator believes
itself to be either the DR or BDR for that subnet. Beacons are
constructed per interface, and multicast to a well-known multi-
cast IP address on a well-known offset from the base port.

6.3. State Distribution
Once a peering relationship has been established between two or
more neighboring routers, they begin exchanging routing infor-
mation through the use of SAs. These SAs are reliably flooded
throughout the network, thereby providing a robust, convergent
method of distributing shared state across the network.

6.3.1. State Advertisements
SAs contain information about the AS in which FIRE is running.
There are four types of SAs: configuration, certificate, external
route, and property.Configuration SAs, also known as Operator
Configuration Messages (OCMs), are generated by the operator
and are detailed in section 3.Certificate SAs, as discussed in
section 7, are used to distribute public keys and authority certifi-
cations. Routes managed by protocols other than FIRE (such as
exterior routes) are advertised through the use ofExternal Route
SAs.

Property SAsadvertise an entity’s metrics for a particular OCF.
Each node and link has an associated property SA for each OCF
being advertised. The particular properties listed are determined
by the OCF and the type of the entity being advertised. The pay-
load of a property SA is a self-parsing S-expression containing
values for each property. Special flag values are available to
define a property as being unsupported, or that a particular entity
is a non-participant.

SAs contain acreator field which contains the FIRE ID of the
originating entity in addition to anidentifier field which identi-
fies the entity being described in the SA. For property SAs asso-
ciated with a router, the creator and identifier fields are identical.
Property SAs for links are originated by the router on the trans-
mission end of the link; DRs issue property SAs for their respec-
tive subnets and any links the subnets may be responsible for.

An SA is uniquely identified by its type, identifier, and OCF
number fields. Every SA is also timestamped and has a
sequence number, so SAs with the same type, identifier, and
OCF values can be ordered.

6.3.2. SA Refreshment
In addition to being timestamped, each SA is also given an expi-
ration time, after which it is considered invalid, and is no longer
flooded by FIRE. To prevent instability caused by expiring SAs,
routers periodically renew SAs they hav e generated before the
previous version expires. To reissue an SA, the router first
replaces the superseded SA in its own SA cache with the newly
generated version, and then floods the new SA to each of its
neighbors.

6.3.3. Damping of Flapping
Whenever an attached interface comes up, the router must adver-
tise its existence by issuing SAs. In order to preventflapping,
the rapid re-issuance of SAs for the same entity, we utilize the
Skeptic model from Autonet [30]. When a new SA is warranted,
due to a change in the properties contained within, the Skeptic
delays slightly before issuing the SA. It not only limits the rate
of SA issuance to a fixed maximum rate, but penalizes rapidly
changing SAs by exponentially increasing the delay with each
new request. As request frequency decreases, the Skeptic
reduces the delay penalty accordingly. Howev er, if a router

determines an associated link has gone down and was previously
advertised as being up, it immediately generates a new SA for
that link indicating the link has gone down. This rule insures
inoperable links are always eliminated from the topology.

6.4. Reliable Flooding
Each FIRE router maintains a cache of all current SAs. The pur-
pose of the state distribution mechanism is to maintain a consis-
tent shared view of the set of current SAs across all routing
nodes. Reliable flooding is employed to make sure that an SA
generated by one node is eventually received by all nodes in the
AS. Stated simply, each router is responsible for forwarding any
new SA to all of its neighbors. To prevent SAs from being
unnecessarily flooded to neighbors that have already indicated
they hav e a copy, either by preemptively acknowledging it, or by
actually sending the SA itself, routers maintain state for each
neighbor associated with every SA in its cache.

6.4.1. State Message Transmission
Information is exchanged between FIRE nodes using State Mes-
sages, sent to a well-known offset from the base port. A State
Message contains either an SA or an acknowledgment of the
receipt of one or more SAs. State Messages are flow controlled
using a simple windowing protocol. The transmission window is
specified in terms of the number of SAs that may be transmitted
without acknowledgment. Each FIRE implementation has a
fixed, built-in window size (the default is eight), which is the
same for all FIRE routers in an AS. A router maintains separate
transmission queues for each neighbor. SA acknowledgment
messages are never queued, but instead are sent as soon as possi-
ble. The remaining SAs are queued and transmitted as soon as
window space is available.

When possible, messages being flooded to multiple neighbors
reachable via the same interface are multicast. A threshold value
(four is the default) specifies a portion of the receive window that
is reserved for multicast traffic on multicast-enabled receive
interfaces. After the threshold is reached, only multicast packets
may be sent to the receiver until some of the unicast packets have
been acknowledged. This threshold prevents a large amount of
traffic intended for one neighbor from delaying the delivery of
multicast traffic to the group.

6.4.2. Retransmission
To provide a reliable flooding mechanism, FIRE retransmits
unacknowledged State Messages in the transmission window at
intervals based upon the round trip time (RTT) between neigh-
bors, as measured using Jacobson’s algorithms [18]. Successive
retry attempts are backed off exponentially until either an
acknowledgment is received or a maximum retry count is
exceeded. However, unlike initial floods, retransmissions are
unicast directly to specific neighbors rather than multicast.

6.4.3. State Message Processing
Upon receipt of a State Message, a router first looks into its
cache to see if it has already been received. If so, it simply
acknowledges the message and completes processing. If, on the
other hand, the message contains an SA the router has not seen
before, it firsts validates that the SA header is properly formed.
If the header is invalid for whatever reason, the router immedi-
ately sends an acknowledgment to the sender, echoing back the
header information.

Routers receiving acknowledgments compare the enclosed
header with outstanding transmissions. If the SA was damaged

197

in transmission, the headers will not match, and the SA will be
retransmitted as if unacknowledged. If, however, the corruption
occurred in the sender itself (hence any retransmissions would be
equally useless), the acknowledgment will cause the offending
router to cease its transmissions of the corrupted SA.

Assuming a received SA has a well-formed header, a router then
verifies the signature before sending an acknowledgement,
caching the SA, and flooding the SA to its neighbors. In the case
of a non-DR router on a broadcast subnet, it has only one neigh-
bor on that subnet: the DR. Only the DR floods SAs to every
member of the subnet.

6.5. Synchronization
Reliable Flooding distributes SAs to all routers currently con-
nected to the network. When new routers come up, however, or
disjoint portions of the network are reconnected, the SA reposi-
tories must be resynchronized. This synchronization is done
through theState Dumpprocess.

The State Dump process is initiated whenever a new adjacency is
formed. Since the adjacency may form asynchronously due to
the beaconing process of the Peering Protocol, the start of the
dump is delayed for some period or until the adjacent router ini-
tiates it. The State Dump procedure seeks to swiftly synchronize
two neighbors while generating the near minimum amount of
traffic. No special message types are used by the process; state
dumps use SAs and acknowledgements so that if new SAs are
sent during the State Dump process, the SAs can simply be inte-
grated into the State Dump data stream.

A peer-to-peer process, both routers perform an identical set of
functions. Each sends an acknowledgment for every SA in its
cache to the new neighbor. Since the number of SAs to be
acknowledged may be large, it may be necessary to spread them
across multiple State Messages. This bulk acknowledgment
serves as a synopsis of the contents of each router’s SA cache
and allows the adjacent router to note which SAs need not be
transmitted. The router then places the Configuration SA (if
available) into the send queue. It follows these SAs with the
remaining unacknowledged SAs in its cache.

As each router receives SAs and acknowledgments from its
neighbor, the flooding procedure causes the removal of corre-
sponding SAs from the send queues. Because acknowledgments
are sent first and SAs that are acknowledged are not transmitted,
most of the SAs that are sent between the neighbors will be new.

6.6. A Bootstrapping Example
Figure 3 shows an annotatedtcpdump trace of the packet
exchange generated by three FIRE routers being simultaneously
brought up on the same subnet.4 The trace is shown in relative
time, with the whole process completing in just over a minute
and a half. The delay is dominated by the configurable wait
imposed by the Peering Protocol for DR election and dally pre-
ceding synchronization. As can be seen in theNeighbor Discov-
ery portion at the beginning of the trace, each router issues a
peering beacon on boot-up, announcing its presence on the sub-
net. At the next beaconing interval (10 seconds in this example)
each router advertises that it has heard from the others, also
including the interfaces the received beacons were sent and
received on.

This beaconing process continues on indefinitely. We hav e
elided further peering beacons from the trace for the sake of

4 For clarity, neither IPsec (including LGKP) nor certificate exchange
are enabled in this example.

Neighbor Discover y

00.3233 grumpy.1051 > OSPF-ALL.2080:
grumpy grumpy mask 255.255.0.0 sn 0 pri 10

00.9918 sleepy.1036 > OSPF-ALL.2080:
sleepy sleepy mask 255.255.0.0 sn 0 pri 10

01.7104 happy.1031 > OSPF-ALL.2080:
happy happy mask 255.255.0.0 sn 0 pri 10

10.3324 grumpy.1051 > OSPF-ALL.2080:
grumpy grumpy mask 255.255.0.0 sn 1 pri 10
happy happy grumpy, sleepy sleepy grumpy

10.9990 sleepy.1036 > OSPF-ALL.2080:
sleepy sleepy mask 255.255.0.0 sn 1 pri 10
grumpy grumpy sleepy, happy happy sleepy

11.7188 happy.1031 > OSPF-ALL.2080:
happy happy mask 255.255.0.0 sn 1 pri 10
sleepy sleepy happy, grumpy grumpy happy

B/DR Election

60.3347 grumpy.1051 > OSPF-ALL.2080:
grumpy grumpy mask 255.255.0.0 sn 6 pri 10 DR
happy happy grumpy, sleepy sleepy grumpy

60.9970 sleepy.1036 > OSPF-ALL.2080:
sleepy sleepy mask 255.255.0.0 sn 6 pri 10
grumpy grumpy sleepy, happy happy sleepy

61.7278 happy.1031 > OSPF-ALL.2080:
happy happy mask 255.255.0.0 sn 6 pri 10 BDR
sleepy sleepy happy, grumpy grumpy happy

Network SA Generation

62.3421 grumpy.2096 > OSPF-ALL.2096: ocf0 192.1/16-NET
62.3425 happy.2096 > grumpy.2096: ocf0 192.1/16-NET ack
62.3426 sleepy.2096 > grumpy.2096: ocf0 192.1/16-NET ack

62.3439 grumpy.2096 > OSPF-ALL.2096: ocf0 192.1/16-happy-LNK
62.3441 happy.2096 > grumpy.2096: ocf0 192.1/16-happy-LNK ack
62.3442 sleepy.2096 > grumpy.2096: ocf0 192.1/16-happy-LNK ack

62.3455 grumpy.2096 > OSPF-ALL.2096: ocf0 192.1/16-sleepy-LNK
62.3458 happy.2096 > grumpy.2096: ocf0 192.1/16-sleepy-LNK ack
62.3459 sleepy.2096 > grumpy.2096: ocf0 192.1/16-sleepy-LNK ack

62.3472 grumpy.2096 > OSPF-ALL.2096: ocf0 192.1/16-grumpy-LNK
62.3474 happy.2096 > grumpy.2096: ocf0 192.1/16-grumpy-LNK ack
62.3475 sleepy.2096 > grumpy.2096: ocf0 192.1/16-grumpy-LNK ack

State Dump

i) synchronization

90.3513 grumpy.2096 > sleepy.2096: ocf0 grumpy-RTR ack [|fire]
90.3518 grumpy.2096 > happy.2096: ocf0 grumpy-RTR ack [|fire]
90.3520 sleepy.2096 > grumpy.2096: ocf0 sleepy-RTR ack [|fire]
90.3524 happy.2096 > grumpy.2096: ocf0 happy-RTR ack [|fire]

ii) grumpy — sleepy

92.3621 grumpy.2096 > sleepy.2096: ocf0 grumpy-RTR
92.3628 sleepy.2096 > grumpy.2096: ocf0 grumpy-RTR ack
92.3623 grumpy.2096 > sleepy.2096: ocf0 grumpy-192.1/16-LNK
92.3639 sleepy.2096 > grumpy.2096: ocf0 grumpy-192.1/16-LNK ack
92.3625 sleepy.2096 > grumpy.2096: ocf0 sleepy-RTR
92.3657 grumpy.2096 > sleepy.2096: ocf0 sleepy-RTR ack
92.3623 sleepy.2096 > grumpy.2096: ocf0 sleepy-192.1/16-LNK
92.3635 grumpy.2096 > sleepy.2096: ocf0 sleepy-192.1/16-LNK ack

iii) grumpy — happy

(essentially identical to step ii, above)

DR Flooding

92.3641 grumpy.2096 > OSPF-ALL.2096: ocf0 sleepy-192.1/16-LNK
92.3647 happy.2096 > grumpy.2096: ocf0 sleepy-192.1/16-LNK ack
92.3650 sleepy.2096 > grumpy.2096: ocf0 sleepy-192.1/16-LNK ack

92.3663 grumpy.2096 > OSPF-ALL.2096: ocf0 sleepy-RTR
92.3665 sleepy.2096 > grumpy.2096: ocf0 sleepy-RTR ack
92.3669 happy.2096 > grumpy.2096: ocf0 sleepy-RTR ack

92.3683 grumpy.2096 > OSPF-ALL.2096: ocf0 happy-RTR
92.3685 happy.2096 > grumpy.2096: ocf0 happy-RTR ack
92.3686 sleepy.2096 > grumpy.2096: ocf0 happy-RTR ack

92.3702 grumpy.2096 > OSPF-ALL.2096: ocf0 happy-192.1/16-LNK
92.3704 happy.2096 > grumpy.2096: ocf0 happy-192.1/16-LNK ack
92.3705 sleepy.2096 > grumpy.2096: ocf0 happy-192.1/16-LNK ack

Figure 3: FIRE Bootstrap Trace

198

brevity. Roughly a minute after boot-up (recall that all periodic
ev ents are jittered slightly), each router independently conducts a
DR election, and the winners announce the results in their bea-
cons, as can be seen in the traces labeledB/DR Election. The
newly elected DR,grumpy , then proceeds to advertise SAs for
the network, multicasting them to all routers on the subnet.

Finally, approximately 30 seconds after DR election, theState
Dump procedure is initiated between each router and the DR.
The independent processes are roughly identical, hence the pack-
ets for the second dump are not included in the trace. After syn-
chronizing with each router, the DR then floods the new SAs
from each router to the remaining router(s). The DR multicasts
these SAs for efficiency, hence the issuing router also receives a
duplicate copy, which it ACKs and silently discards. SAs for all
ten entities on the subnet (3 routers, with two links a piece, and
the network itself) are distributed in only 16 messages. In gen-
eral, a subnet withn routers (3n + 1 entities) will exchange
7n − 5 messages.

7. SECURITY
Implementing a security infrastructure for a routing protocol pre-
sents an interesting problem. To provide most security services,
one needs a key infrastructure. But generic key infrastructures
generally require pre-existing packet routing functionality. Our
solution is to implement any security infrastructure that FIRE
requires within FIRE itself.

7.1. Attacks
A routing protocol, FIRE in particular, is subject to attacks of
two basic types:

Wiretapping
Attackers are assumed to have access to the communica-
tions links in such a way that they may modify, suppress,
insert, or replay FIRE messages or fragments. FIRE must
therefore protect against such attacks. Insertion of bogus
fragments could prevent a re-assembled message from
being accepted at the destination; replaying old messages
might disrupt current activities (such as electing a DR);
flooding a router with bogus FIRE messages or tampering
with data in FIRE messages could result in a denial of ser-
vice.

Subversion
The routers and other FIRE nodes may be subverted, either
physically such that an attacker completely controls a
router’s behavior or by use of compromised keying mate-
rial such that an attacker may originate messages that
appear to come from the router. A subverted node could
send out inaccurate data, possibly affecting a much larger
portion of the network.

Many of the harmful behaviors described could also occur due to
bugs in software or hardware. Thus, FIRE’s design expects that
a certain amount of misbehavior (intentional or not) will occur.
FIRE’s security model is built on a philosophy of containment:
our goal is to bound the effects of misbehavior and detect the
misbehavior whenever possible.

FIRE meets this goal using three sets of mechanisms. First,
FIRE employs a certificate infrastructure with a tiered authority
structure. These certificates advertise the public keys of nodes,
links and entities such as the Operator. All SAs are digitally
signed to provide end-to-end authentication and integrity. Sec-
ond, FIRE makes use of IPsec to protect against certain hop-by-
hop attacks that end-to-end security measures cannot prevent.
IPsec’s authentication, data integrity, and anti-replay services

make it very difficult for a non-participating entity to inject FIRE
traffic. Third, and most importantly, the FIRE protocols are
designed to be robust against the failure or subversion of an indi-
vidual router or set of routers.

7.2. Certificates and Digital Signatures
FIRE’s basic security mechanisms are based on public key cryp-
tography, using X.509 [1] certificates, and patterned after the
existing work on Secure OSPF [26] and Secure BGP [20]. Each
FIRE node participates in a certificate hierarchy that is managed
by the FIRE system. At the top of the hierarchy is the Root.
Each separate FIRE instance has its own certificate hierarchy,
therefore different ASs will have unique Roots. Routing infor-
mation shared at border routers must be secured by the exterior
gateway protocol.

The Root creates certificates for a set of principals that are enti-
tled to perform various actions. These principals include the
Operator and a Software Master. The Operator is the logical
entity that runs the network. The Software Master is the logical
entity that approves algorithm and property applets (the choice
of which approved programs are used is left to the Operator).
Below the Operator sit the FIRE nodes themselves. Each node
has its own public/private key pair and certificate. FIRE certifi-
cates are circulated as part of the normal FIRE flooding proto-
cols in special Certificate SAs. Each node is responsible for
flooding its own certificates.

Each SA is signed by its creator. Thus, even though almost all
FIRE messages are relayed through other nodes, messages are
protected from tampering in-flight. Because each message is
unambiguously linked to its signer, advertising of false informa-
tion is limited and can be traced. A node can only lie about the
information it is entitled to advertise.

While digital signatures solve many security problems, there is
still a class of attacks they do not protect against. These hop-by-
hop attacks are dealt with by IPsec and the FIRE protocols them-
selves, as discussed next.

7.3. IPsec
FIRE uses IPsec to protect single hop links between nodes. In
the absence of protection by IPsec, a non-FIRE entity could
replay FIRE messages. Furthermore, because peering must be
negotiated before FIRE certificates are exchanged, the Peering
Protocol needs protection against replay and corruption of pack-
ets. IPsec’s ESP header [21] with anti-replay protection guards
against these attacks.

One challenge in supporting IPsec is that FIRE uses multicast to
optimize local communications. IPsec lacks a protocol to effi-
ciently distribute keying material for local multicast groups, so
we developed a lightweight protocol, the Local Group Keying
Protocol (LGKP), that distributes symmetric keying material to
all participating routers on a subnet.

7.4. Protocol Robustness
Some security features are implemented by the FIRE protocols
themselves. Most notably, FIRE implements reliable flooding.
Reliable flooding ensures that if one uncompromised path exists
between a creator of a message and a consumer, the consumer
will eventually see the message. Reliable flooding achieves this
guarantee by (a) allocating buffering in each node on a peer-by-
peer basis, so no one peer can consume all the buffering in a
node and cause a denial-of-service attack that prevents a mes-
sage from being relayed; and (b) flooding every message over all
links.

199

Unlike many previous routing protocols, FIRE’s flooding mecha-
nism does not utilize any explicit request messages. The avoid-
ance of any suchpull mechanisms prevents denial-of-service
attacks launched by malevolent routers that continue to request
already-received information from adjacent routers.

In addition to ensuring the reliable dissemination of routing
information, FIRE also limits the spread of disinformation. The
information that a node may advertise is limited by a signed set
of permissions contained in an X.509 attribute certificate. Thus,
particular routers can be restricted to advertising links only to
adjacent networks, preventing a subverted router from being able
to black-hole arbitrary traffic.

Other FIRE protocols also have protective mechanisms. LDTP
has mechanisms to protect against attacks similar to SYN-flood-
ing, where an attacker creates multiple partial sessions that tie up
resources at the LDTP server. Similarly, the Peering Protocol
contains features that make it difficult for routers to cause the
DR to change unless the existing DR goes down.

8. PROGRAMMING INTERFACES
One of the key features of FIRE is the ability to dynamically
load new routing algorithms and to define new properties using
applets. Ideally, FIRE implementations would use a language
designed to support self-proving applets (programs that could be
verified to meet certain constraints). By making it possible to
verify (within limits) how a program behaved, the risk of soft-
ware bugs could be dramatically reduced. Our reference imple-
mentation, however, uses Java, both because the self-proving
languages were not mature enough (not one had a stable virtual
machine that could be embedded into the FIRE implementation)
and because Java’s popularity reduces the learning curve for
FIRE algorithm and applet developers.

The choice of Java, howev er, forced us to pay more attention to
the design of FIRE’s programming interfaces. Writing graph
algorithms is a notoriously difficult problem—bugs are common.
This difficulty is compounded by Java’s support for a range of
complex language features such as concurrency and event han-
dling, which also tend to produce programmer bugs. FIRE’s
programming interfaces a deliberately simple, in an effort to
encourage a straightforward programming style.

public interface Algorithm
{

// initialize the class
public void init(String[] args);

// generate forwarding table entries; will be called multiple
// times; state will be stored across invocations
public void run(Repository repo);

// cleanup when we’re done
public void cleanup();

}

Figure 4: Jav a Algorithm Interface

8.1. Routing Algorithm Interfaces
A routing algorithm is provided with two separate programming
interfaces: the algorithm interface and the forwarding table API.
Every algorithm must implement the Java public interface shown
in figure 4. The algorithm is invoked by FIRE through calls to
this interface.

After an algorithm’s code files are loaded, a separate instance of
the JVM is created for each invocation of the algorithm and the
init() function is called with an array of strings specified in the
OCF. (The separation of each algorithm into a different instance
of the JVM allows any particular routing algorithm to fail with-
out halting the proper operation of the remaining algorithms sup-
ported by the router.) The argument strings (similar toC’s
argv) may be used to pass arbitrary operator-specified values
into the algorithm, such as threshold values. The role ofinit() is
to do any initialization required and prepare the environment for
forwarding table generation.

OCF 0 OCF 1

FID FIRE Metric IP Addresses FIRE Up OCFs Loaded Delay (ms) Drop %

A 1 A.1, A.2, A.x true 1 NP 2%

A → 1 0 A.1 true NP 2 0%

1 0 NP true NP NP NP

1 → A 0 true NP 2 0%

A → 2 0 A.2 true NP 250 unsup

2 0 NP true NP NP NP

2 → A 0 true NP 250 3%

2 → B 0 true NP 250 3%

2 → C 0 true NP 250 3%

B 1 B.2, B.3, B.y true 1 NP 0.5%

B → A 0 B.y true NP 40 1%

B → 3 0 B.3 true NP 1 0%

3 0 NP true NP NP NP

3 → B 0 true NP 1 0%

3 → C 0 true NP 5 0%

C 1 C.2, C.3 true 1 NP 0%

C → 3 0 C.3 true NP 5 0%

Figure 5: A Property Repository

FIRE periodically invokes the algorithm’srun() method on a
snapshot of the repository for the relevant OCF. Figure 5 shows
a sample property repository for the network in figure 2. The
repository contains two properties the operator has selected for
OCF 1, in addition to the OCF 0 properties. Adjacencies can be
deduced from FIRE IDs (FIDs), as can the type of entity. Enti-
ties not participating in a particular property are denoted asNP.

An algorithm’s implementation has built into it property names
to use as input. The OCF specifies a mapping from currently
advertised property names to the names required by the routing
algorithm. OCF 0, for example, mapsFIRE Metric to the name
expected by the built-in SPF algorithm in order to compute rout-
ing tables for FLINT traffic. If the operator desires to run the
algorithm on a different property in another OCF, a new name
mapping would be used. If, on the other hand, more sophisti-
cated preprocessing is desired, such as EIGRP’s cost function, a
wrapper function can be employed to read the existing repository
and rewrite the desired metrics into the appropriate property,
before passing the repository on to the standard routing algo-
rithm.

At the end of a run, a routing algorithm must generate a forward-
ing table, using the API shown in figure 6. Again the API is
deliberately simple. The forwarding table is created before the
JVM is invoked, so the table is always present (no initialization
is required). Furthermore, the interface does not distinguish
between modifying and adding an entry. The algorithm simply
states that it needs the following entry in the table, and the API
will either modify the existing entry or add a new one as
required. All updates are batched for efficiency, and changes to
the forwarding table are only made when thedo_updates()
method is called.

200

public class ForwardingTable
{

// update an entry; if the entry doesn’t already exist, add
// it; if it does exist, modify it
public static native void update_entry(InetAddress destination,

int mask_length, InetAddress next_hop, FID iface);

// delete an entry from the forwarding table
public static native void delete_entry(InetAddress destination,

int mask_length);

// purge all entries from the forwarding table
public static native void purge_table();

// apply all of the updates from the above calls
public static native void do_updates();

}

Figure 6: Jav a Forwarding Table API

8.2. Property Applet Interface
The interface for property applets is similar to that for algo-
rithms. FIRE callsinit() when the property is first specified by
the current OCF and passing in the argument string from the
OCF. As with routing algorithms, when the property applet is no
longer in use, FIRE terminates it by callingcleanup()before
shutting down the enclosing JVM.

Unlike algorithms, which respond to changes, the goal of prop-
erty applets is to detect changes. One might imagine this differ-
ence would result in very different ways of invoking them.
While it would be desirable to allow applets to specify a com-
plex, event-driven mechanism to trigger themselves, such an
implementation proved far too complex and mistake-prone.
Instead, the applet invocation interface is essentially identical to
that of algorithms; an applet is simply invoked periodically by
calling generate(). The timing and frequency of FIRE’s calls to
generate()are specified in the OCF.

public class SA_update
{

// report data back to FIRE
public static native void report_data(Object value);

// tell FIRE it should send an SA in the next cycle
public static native void value_changed();

// tell FIRE to send an SA ASAP
public static native void force_SA();

}

Figure 7: Jav a SA API

When an applet is run, it may choose to record an updated value
for the property or leave the existing value alone. For especially
noisy properties, it may be desirable to squelch the vales within
applet itself, rather than continually issuing SAs with different
values. Furthermore, some changes may be significant while
others are not (e.g., a change in measured queueing delay from
50 ms to 49 ms probably isn’t very important, but a change from
50 ms to 10 ms likely is). FIRE itself has no idea what changes
in values are significant, so the API shown in figure 7 allows the
property applet to provide a notion of significance. The applet
can simply record a new value, in which case the new value will
be advertised only when the next SA is periodically generated
(assuming the value is not updated again before the SA is

generated). If the change is significant, however, the applet can
call value_changed(), indicating that it would be desirable to
send an SA with the new property value. Or the applet can indi-
cate with force_SA()that the property’s value has changed so
dramatically that an SA should be sent immediately (subject to
SA damping rules).

9. IMPLEMENTATION
We hav e implemented FIRE as a user-level daemon with sup-
porting kernel modifications for FreeBSD. Multiple FIRE dae-
mons may coexist to support separate FIRE instances on the
same router (by communicating on different base ports). Each
FIRE daemon, however, must be responsible for a disjoint set of
traffic. This section discusses some of the more interesting fea-
tures of the implementation.

9.1. Forwarding
FIRE places two new requirements on the IP forwarding mecha-
nism. First, it requires every packet to be filtered. Second, it
requires support for multiple forwarding tables. Both changes
were novel for a BSD kernel.5

9.1.1. Packet Filtering
FIRE packet filters are specified using the Berkeley Packet Filter
(BPF) [23] syntax, which provides a well-known and highly
portable specification language. For performance reasons, we
restrict FIRE BPF filters to the IP header. Even with this limita-
tion, however, the BPF kernel implementation is not adequate for
filtering at line speed. We chose to implement Dynamic Packet
Filtering (DPF) [13] in the FreeBSD kernel with a device driver
interface similar to BPF. Our kernel DPF implementation pro-
vides multiple filter sets, each of which is individually accessible
using standard UNIX file system semantics (and permissions).

One filter set in particular,/dev/fwf0 , is known as theü berfil-
ter. All IP packets forwarded by the router (byip_forward()) are
passed through the u¨berfilter. If no match is found, the packet is
forwarded according to the default kernel forwarding table (the
default kernel table exits to support legacy applications that need
access to the old kernel routing table). If, however, the packet
matches a filter installed in the u¨berfilter, it is passed through the
specified secondary filter set. A matching filter in the secondary
set specifies the appropriate forwarding table to use. If no match
is found, the packet is dropped.

Each FIRE daemon requests its own filter set, and then installs a
filter in the überfilter corresponding to the set of traffic it is
responsible for, causing DPF to route any matching packets
through the daemon’s secondary filter set. Our implementation
uses a translation library to install the BPF-style filters specified
in the OCF directly into its secondary filter set, where DPF effi-
ciently demultiplexes them to the appropriate forwarding table.

9.1.2. Forwarding Tables
Once the correct forwarding table has been selected, FIRE fol-
lows the standard IP forwarding mechanism and finds a best
matching prefix for the destination address. Due to the addi-
tional performance cost of filtering, we replaced the standard
BSD radix-trie lookup tables [32] (O(W) performance, whereW
is the length of an address) with the ETH-WASHU lookup algo-
rithm [35]. This algorithm both reduces the worst-case lookup to
O(log2W) and is more space efficient than the BSD algorithm.

5 We note that in-kernel packet filtering itself is not new, and is used
for efficient protocol demultiplexing in the Nemesis [22] and Scout [5]
operating systems, among others.

201

Kernel forwarding tables are updated using the standard BSD
PF_ROUTE socket interface; the only change is a forwarding
table handle is now passed inrt_msg . The new forwarding
table lookup function returns astruct rt_entry for the
next hop router, which is backward compatible with routes
returned byrtalloc().

9.2. Sandboxing
The implementation currently supports JVML routing algorithms
and property applets through the use of TransVirtual Technolo-
gies’ Kaffe. Each algorithm or applet is run in its own Kaffe
Java Virtual Machine (JVM), interfacing with FIRE through the
use of the provided Java Native Interface (JNI) API discussed in
section 8. The JNI functions are supported by a thin C wrapper
that interfaces with both the FIRE daemon and the kernel. For-
warding table updates are communicated directly to the kernel
by the wrapper through the use of aPF_ROUTEsocket. In the
case of algorithms associated with OCFs that are onlyadver-
tised, and not yetrunning, the forwarding table functions are
stubbed, and requested updates are logged, but not yet installed
into the kernel forwarding tables.

Communicating property values is a bit trickier, howev er. Since
the Property Repository is constantly in a state of flux, a static
snapshot is provided to routing algorithms when they are
invoked. This snapshot is passed to the JVM through the file
system. The C wrapper reads the repository snapshot files and
marshals them into appropriate Java structures as required by the
algorithm. The FIRE daemon passes control messages to the
JVM through a named pipe. Results of property applets are com-
municated back to the FIRE daemon in a similar fashion. Figure
8 depicts the interaction of the various parts of our FIRE imple-
mentation.

9.3. Performance
We hav e performed a preliminary performance analysis on our
prototype implementation. Because FIRE is implemented in a
FreeBSD kernel rather than a commercial router platform, the
forwarding performance results are not particularly interesting.
Our implementation forwards packets about 33% slower than
stock FreeBSD, mostly due to deficiencies in our prototype code.
We believe this performance gap would be almost entirely elimi-
nated in an optimized implementation.

FIRE
Daemon

Repository
Snapshot

C Wrapper

JNI API

JVM

algorithm

applet

PF_ROUTE

Filters Forwarding TablesKernel

/dev/fwf

SA Cache

Figure 8: FIRE Daemon Implementation

Of more import is the performance of the routing protocol itself,
measured in packet exchanges. As shown in figure 3, our FIRE
implementation generates at most 2 packets (ignoring retrans-
missions due to packet loss) on a subnet for each entity adver-
tised (one packet from the creating entity to the DR, and one
multicast packet from the DR to the other nodes). ACKs are
bundled together, hence the exact ACK count varies dramatically

based on the precise timing of events. At OCF 0, which provides
SPF functionality, our message count is a small multiple of
OSPF (approximately 3x, since, unlike OSPF, we count links
and networks as separate entities). Each additional advertised
OCF generates a similar number of packets, resulting in a linear
growth in traffic. Note, however, that one OCF may contain
properties for generating multiple forwarding tables, hence the
incremental cost of additional forwarding tables is only in the
size of the messages, not the packet count.

10. RELATED WORK
There has been considerable work over the past decade on sup-
porting different types of service. The focus of the vast majority
of this work has been on queueing schemes such as Fair Queue-
ing [11], and schemes such as Guaranteed Service and Differen-
tiated Services [28] that use these queueing schemes to support
different service levels. This work, however, has not examined
routing system support. FIRE is, therefore, complementary to
these schemes, in that FIRE provides support for routing accord-
ing to different requirements, but does not specify queueing
regimes.

Other routing protocols have sought to be extensible. OSPF [25]
allows the definition of new state advertisement messages (this
feature was used for Secure OSPF). IS-IS [8] has similarly flexi-
ble features. The major distinction between these protocols and
FIRE is that both protocols require recoding of existing imple-
mentations to generate and use the new information being adver-
tised, while FIRE provides run-time support. This also contrasts
with Multi-Protocol Label Switching (MPLS) [3], where an
operator can manually configure paths through the network for
specific classes of traffic. The MPLS solution is static, while
FIRE, like most routing protocols, offers a completely dynamic
solution.

While FIRE provides the ability to download and execute arbi-
trary code on production routers, FIRE is not a traditionalActive
Network—unlike [16, 36], user generated traffic cannot affect
routing behavior in FIRE. This separation of operator-initiated
control flow and forwarded data traffic allows FIRE to sidestep
many of the difficult performance and security issues associated
with Active Networking, although not all. In particular, FIRE’s
authentication and authorization scheme addresses similar prob-
lems as those dealt with in SANE [2]. In addition, basic router
software verification techniques, such as SANE’s secure boot-
strapping, remain applicable.

11. CONCLUSION & FUTURE WORK
FIRE significantly increases the control network operators have
over how their network routes traffic. Operators can change
routing algorithms and metrics at run time and dynamically con-
figure which traffic classes are forwarded by the various algo-
rithms. By enabling network operators to change the routing
algorithms employed by the protocol, FIRE significantly lowers
the barrier to deploying new algorithms in an AS. FIRE also
presents several interesting new research problems.

One obvious research problem is whether FIRE’s concepts can
be applied to distance-vector algorithms. In bandwidth-con-
strained and highly-connected networks (e.g., some wireless net-
works) distance vector’s ability to summarize the data at each
hop is an advantage because it limits the spread of topology
updates, reducing bandwidth usage. As noted in section 2, our
concern for robustness resulted in the use of link state in our ini-
tial research, but given FIRE’s significant benefits in such net-
work environments, we believe it would be valuable to explore
adapting FIRE to support distance-vector algorithms.

202

Another important open problem is providing support for FIRE-
style routing across multiple ASs. The main difficulty in inter-
domain routing is developing a method to summarize the key
features of an AS to its neighbors. Is there a single summary
that meets all needs, or do summaries need to be constructed on
a per-algorithm or per-property basis? Translating or interfacing
between two different sets of algorithms and properties at border
gateways presents another significant obstacle.

ACKNOWLEDGEMENTS
We are indebted to Robert Morris, Ram Ramanathan, and Robert
Shirey for their invaluable comments on previous versions of this
paper. Steve Kent provided expert guidance on several security
issues. Benjie Chen assisted with the performance measurement
of our prototype. Ayan Banerjee, Rahul Biswas, Matt Fredette,
Fabrice Tchakountio, Laurie Thompson, and Greg Troxel con-
tributed to the reference FIRE implementation.

REFERENCES
[1] C. ADAMS AND S. FARRELL, “Internet X.509 public key

infrastructure certificate management protocols,” RFC
2510 (Mar 1999).

[2] D. S. ALEXANDER, W. ARBAUGH, A. KEROMYTIS, AND J.
SMITH, “A secure active network environment architec-
ture,” IEEE Network,12, 3, pp. 37-45 (May/Jun 1998).

[3] D. O. AWDUCHE, J. MALCOLM, J. AGOGBUA, M. O’DELL,
AND J. MCMANUS, “Requirements for traffic engineering
over MPLS,” RFC 2702 (Sep 1999).

[4] S. BAHK AND M. EL ZARKI, “Dynamic multi-path routing
and how it compares with other dynamic routing algo-
rithms for high speed wide area network,”Proc. ACM
SIGCOMM ’92,pp. 53-64 (Aug 1992).

[5] M. BAILEY , B. GOPAL, M. PAGELS, L. PETERSON, AND P.
SARKAR, “PathFinder: A Pattern-Based Packet Classifier,”
Proc. USENIX OSDI ’94,pp. 115-123 (Nov 1994).

[6] A. BALLARDIE , P. FRANCIS, AND J. CRO WCROFT, “Core
Based Trees (CBT): An architecture for scalable multicast
routing,” Proc. ACM SIGCOMM ’93,pp. 85-95 (Sep
1993).

[7] B. BRADEN, L. ZHANG, S. BERSON, S. HERZOG, AND S.
JAMIN , “Resource ReSerVation Protocol (RSVP) -- Ver-
sion 1 functional specification,” RFC 2205 (Sep 1997).

[8] R. CALLON, “Use of OSI IS-IS for routing TCP/IP and
dual environments,” RFC 1195 (Dec 1990).

[9] I. CASTINEYRA, “Hop-Spec: specifying the capabilities of
the hop within an internetwork,” Technical Report 7813,
BBN Technologies (1992).

[10] B. CHINOY, “Dynamics of internet routing information,”
Proc. ACM SIGCOMM ’93,pp. 45-52 (Sep 1993).

[11] A. DEMERS, S. KESHAV, AND S. SHENKER, “Analysis and
Simulation of a Fair Queueing Algorithm,”Internetwork:
Research and Experience,1, 1, pp. 3-26 (Jan 1990).

[12] E. DIJKSTRA, “A note on two problems in connexion with
graphs,”Numerische Mathematik,1, pp. 269-271 (1959).

[13] D. ENGLER AND M. F. KAASHOEK, “DPF: Fast, flexible
message demultiplexing using dynamic code generation,”
Proc. ACM SIGCOMM ’96,pp. 53-59 (Aug 1996).

[14] D. ESTRIN, D. FARINACCI, A. HELMY, D. THALER, S.
DEERING, M. HANDLEY, V. JACOBSON, C. LIU, P. SHARMA,
AND L. WEI, “Protocol Independent Multicast-Sparse
Mode (PIM-SM),” RFC 2362 (Jun 1998).

[15] J. GOSLING, B. JOY, AND G. STEELE, The Java language
specification,Addison Wesley, Reading, MA (1996).

[16] M. HICKS, J. MOORE, D. S. ALEXANDER, C. GUNTER, AND

S. NETTLES, “PLANet: An active internetwork,”Proc.
IEEE INFOCOM ’99,pp. 1124-1133 (Mar 1999).

[17] H. HOLBROOK AND D. CHERITON, “IP Multicast Channels:
EXPRESS Support for Large-scale Single Source Applica-
tions,” Proc. ACM SIGCOMM ’99,pp. 65-79 (Sep 1999).

[18] V. JACOBSON, “Congestion avoidance and control,”Proc.
ACM SIGCOMM ’88,pp. 314-329 (Aug 1988).

[19] S. KENT AND R. ATKINSON, “Security architecture for the
Internet Protocol,” RFC 2401 (Nov 1998).

[20] S. KENT, C. LYNN, AND K. SEO, “Secure Border Gateway
Protocol (S-BGP),” Technical report, BBN Technologies.

[21] S. KENT AND R. ATKINSON, “IP Encapsulating Security
Payload (ESP),” RFC 2406 (Nov 1998).

[22] I. LESLIE, D. MCAULEY, R. BLACK, T. ROSCOE, P.
BARHAM, D. EVERS, R. FAIRBAIRNS, AND E. HYDEN, “The
Design and Implementation of an Operating System to
Support Distributed Multimedia Applications,”IEEE
JSAC,14, 7, pp. 1280-1297 (Sep 1996).

[23] S. MCCANNE AND V. JACOBSON, “The BSD packet filter: A
new architecture for user-level packet capture,”Proc.
USENIX Technical Conference,pp. 259-269 (Jan 1993).

[24] J. MCQUILLAN , I. RICHER, AND E. ROSEN, “The new rout-
ing algorithm for the Arpanet,”IEEE Transactions on
Communications,28, 5, pp. 711-719 (May 1980).

[25] J. MOY, “OSPF version 2,” RFC 2328 (Apr 1998).

[26] S. MURPHY, M. BADGER, AND B. WELLINGTON, “OSPF
with digital signatures,” RFC 2154 (Jun 1997).

[27] G. NECULA, “Proof-carrying code,”Proc. ACM POPL ’97,
pp. 106-119 (Jan 1997).

[28] K. NICHOLS, V. JACOBSON, AND L. ZHANG, “A two-bit dif-
ferentiated services architecture for the internet,” RFC
2638 (Jul 1999).

[29] R. PERLMAN, Interconnections: Bridges and routers,Addi-
son Wesley, Reading, MA (Aug 1997).

[30] T. RODEHEFFER ANDM. SCHROEDER, “Automatic Recon-
figuration in Autonet,”Proc. ACM SOSP ’91,pp. 183-197
(Oct 1991).

[31] E. ROSEN, “Vulnerabilities of network control protocols:
An example,”CCR,11, 3, pp. 10-16 (Jul 1981).

[32] K. SKLOWER, “A tree-based routing table for Berkeley
Unix,” Technical report, UC Berkeley (1993).

[33] K. SOLLINS, “The TFTP protocol (revision 2),” RFC 1350
(Jul 1992).

[34] M. THORUP, “Undirected single-source shortest paths with
positive integer weights in linear time,”Journal of the
ACM,46, 3, pp. 362-394 (May 1999).

[35] M. WALDVOGEL, G. VARGHESE, J. TURNER, AND B. PLAT-

TNER, “Scalable high speed IP routing lookups,”Proc.
ACM SIGCOMM ’97,pp. 25-36 (Sep 1997).

[36] D. WETHERALL, J. GUTTAG, AND D. TENNENHOUSE,
“ANTS: A toolkit for building and dynamically deploying
network protocols,”Proc. IEEE OPENARCH ’98(Apr
1998).

[37] R. WHITE, A. RETANA, AND D. SLICE, EIGRP for IP,Addi-
son Wesley, Reading, MA (In press).

203

