

Critical Path Analysis of TCP Transactions

Paul Barford and Mark Crovella
Computer Science Department

Boston University
111 Cummington Street

Boston, MA 02215

barford,crovella@cs.bu.edu

ABSTRACT
Improving the performance of data transfers in the Internet
(such as Web transfers) requires a detailed understanding
of when and how delays are introduced. Unfortunately, the
complexity of data transfers like those using HTTP is great
enough that identifying the precise causes of delays is dif-
�cult. In this paper we describe a method for pinpointing
where delays are introduced into applications like HTTP by
using critical path analysis. By constructing and pro�ling
the critical path, it is possible to determine what fraction
of total transfer latency is due to packet propagation, net-
work variation (e.g., queuing at routers or route uctuation),
packet losses, and delays at the server and at the client. We
have implemented our technique in a tool called tcpeval

that automates critical path analysis for Web transactions.
We show that our analysis method is robust enough to an-
alyze traces taken for two di�erent TCP implementations
(Linux and FreeBSD). To demonstrate the utility of our ap-
proach, we present the results of critical path analysis for a
set of Web transactions taken over 14 days under a variety of
server and network conditions. The results show that criti-
cal path analysis can shed considerable light on the causes
of delays in Web transfers, and can expose subtleties in the
behavior of the entire end-to-end system.

1. INTRODUCTION
Response time is one of the principal concerns of users in
the Internet. However, the root causes of delays in many
Internet applications can be hard to pin down. Even in
relatively simple settings (such as the retrieval of a single,
static Web page) the complexities are great enough to allow
room for inconclusive �nger-pointing when delays arise. All
too often, network providers are blaming the servers at the
same time server managers are blaming the network.

Considerable e�ort has gone into improving the performance

Supported in part by NSF Grant CCR-9706685 and by the
Xerox Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM '00, Stockholm, Sweden.
Copyright 2000 ACM 1-58113-224-7/00/0008...$5.00.

of servers and networks. Research into server design has led
to many advances, including highly scalable hardware con-
�gurations [4, 9] and highly optimized server implementa-
tions such as [14]. Focus on the network has led to improve-
ments in protocols such as the 1.1 version of HTTP [15].
However, to date, much of the research aimed on improv-
ing Internet application performance has focused on either
the server or the network in isolation. While all of these
improvements are valuable, future enhancements will most
likely require a more detailed understanding of the interac-
tion between networks and end systems.

In this paper we focus on methods that aid in pinpoint-
ing the sources of delays in Internet applications|allowing
conclusive, accurate assignment of delays to either the net-
work or the server. Furthermore, our methods are aimed at
studying the network and the server together, as a complete
end-to-end system. We focus in particular on Web trans-
actions, looking to understand the relative and joint con-
tribution that servers and networks make to overall transfer
latency. Our general approach is to study these transactions
using the method of critical path analysis [25].

Critical path analysis is the natural tool for understand-
ing distributed applications because it identi�es the precise
set of activities that determine an application's performance
[17, 27, 41]. The central observation of critical path anal-
ysis as applied to distributed systems is that only some of
the component activities in a distributed application are re-
sponsible for the overall response time; many other activities
may occur in parallel, so that their executions overlap each
other, and as a result do not a�ect overall response time.
In other words, reducing the execution time of any of the
activities on the critical path will certainly reduce overall re-
sponse time, while this is not necessarily true for activities
o� the critical path.

Recent work in [22] indicates that HTTP/1.0 is the domi-
nant protocol used in the World Wide Web today. In this
paper we apply critical path analysis to HTTP/1.0 transac-
tions that use TCP Reno (as speci�ed by RFC 2001 [39]) for
their transport service.1 We show how to do critical path
analysis for TCP Reno, and describe how we use the result-
ing critical path to determine the fractions of response time

1While our implementation is speci�c to TCP Reno, the
methods discussed could easily be extended to encompass
the packet loss recovery mechanisms of other versions of
TCP such as New-Reno or SACK.

127

that are due to server delays, client delays, and network
delays (including packet loss delay, propagation delay, and
delay due to network variations such as queuing at routers,
route uctuations, etc.). The analysis has the appealing
property that improvements in any of the delays we identify
would surely have improved response time. This suggests
that looking at the fraction of response time assigned to
each category can provide a guide to which part of the sys-
tem is most pro�tably improved. Despite the strengths of
our approach, there are some inherent limitations which are
described in Section 3.6.

Properly constructing the critical path depends on the de-
tails of the TCP implementation being used. However we
have been able to develop a method that we believe applies
to any TCP Reno implementation compliant with RFC 2001
for slow start, congestion avoidance, fast retransmit and fast
recovery. Our approach does not require any instrumenta-
tion of end systems; we only require passively collected net-
work traÆc traces to be taken at the end points during the
transaction. In this paper, we describe the method in de-
tail and show its implementation in a tool called tcpeval.
tcpeval takes as input endpoint traces from tcpdump along
with implementation-speci�c constants and, by tracking the
evolution of TCP's state as it controls packet ow, deter-
mines the critical path for a TCP ow. We then pro�le this
critical path, assigning delays to various categories.

We have used tcpeval in a pilot study to demonstrate its
utility. We show the results of critical path analysis for Web
transfers using both Linux and FreeBSD TCP implemen-
tations over the wide area Internet. The results show that
critical path analysis can give considerable insight to the
root causes of delays in Web transfers. In particular, we
�nd that for the systems we have measured, server load is
the major determiner of transfer time for small �les, while
network load is the major determiner for large �les; and we
are able to characterize the points in the HTTP transaction
where server delays are most often introduced. We also show
that critical path analysis can pinpoint sources of variability
in Web transfers: while packet losses are the primary con-
tributor to variability of transfer time, we also �nd that the
number of packets on the critical path can show very high
variability.

The remainder of this paper is organized as follows: Section
2 discusses related work; Section 3 describes the process
of constructing the critical path for TCP transactions in
detail; and Section 4 describes the results of applying critical
path analysis to data taken from both Linux and FreeBSD.
Finally, Section 5 summarizes and concludes.

2. RELATED WORK
Previous work in the performance analysis and improve-
ment of Web transactions falls into two categories: work
on servers, and work on networks/protocols.

Work on servers has emphasized techniques for improving
their performance, for example [2, 6, 8]. Such studies show
how Web servers behave under a range of loads (including
overload conditions) and have suggested enhancements to
application implementations and the operating systems on
which the servers run. However, unlike this paper, such

studies have not to date considered how interactions with
networks and clients in the wide area a�ects performance.

On the networking side, considerable previous work has fo-
cused on improving performance of the network infrastruc-
ture for Internet applications. Studies of network dynamics
[10, 34] and improvements to the transport layer [11, 21, 32]
have focused on application-independent issues. There has
been some work studying TCP behavior within the context
of Web transactions [5, 16, 29, 30]; such studies have resulted
in a variety of enhancements to HTTP including data com-
pression, persistent connections and pipelining which are all
part of the HTTP/1.1 speci�cation [15]. However none of
these studies looks at how end system behavior interacts
with network and protocol performance.

Recently, analytic models for steady-state TCP throughput
and latency have been developed in [12, 26, 31]. However
such models assume that no delays are introduced in the
end systems; our approach speci�cally attempts to assess
the e�ects of such delays on overall response time.

Our work depends on packet trace analysis, and extends the
set of tools available to work with packet traces. The most
basic problem with packet trace analysis is that traces are
usually large and complex, so it can be diÆcult to iden-
tify key information in a trace. The most simple analysis
techniques are graphical such as time line plots or sequence
plots [21, 38] which enable one to understand the data and
acknowledgment sequences of a transaction. In [11], Brakmo
et al. developed a sophisticated graphical tool which enables
multiple details of a TCP transaction to be followed simulta-
neously. In [33], Paxson describes the tool tcpanaly which
he used to document a wide variety of unusual behaviors
from a number of di�erent TCP implementations. Paxson's
work is also signi�cant for our study because it points out the
pitfalls of packet traces which we had to address in the de-
velopment of tcpeval. While we have found no references to
\critical path" analysis of TCP, in [35] Paxson discusses the
notion of \cause-e�ect" issues in TCP transactions, which is
an idea that also underlies our approach. However, Paxson
had diÆculty fully developing this notion because he was
interested in establishing this relationship by measuring at
a single point along the end-to-end path. Finally, while they
do not explicitly use the term \critical path", Schroeder and
Burrows essentially do critical path analysis of the Firey
RPC mechanism in [37]. In this work the authors de�ne a
static set of events which make up the fast path. They ei-
ther estimate or measure the performance of each event in
a local area environment. They then suggest a series of im-
provements to the fast path which they estimate can speed
up the RPC mechanism by a factor of three.

Broadly, our work provides signi�cant insight to the ques-
tion: \Why is my Web transfer so slow? Is it the network
or the server?" This question is at the heart of a number of
other studies and commercial products. The Keynote sys-
tem [19] measures response time by timing overall delay from
the perspective of the client; as a result it has a hard time ac-
curately di�erentiating between server and network delays.
A more accurate approach is used in net.Medic [20] which
infers server delays from packet-level measurements. More
recently, Huitema [18] presents measurements that di�eren-

128

tiate between network and server delay by equating server
delay with the time between HTTP GET and receipt of the
�rst data packet. Results we present in Section 5 support
this idea as a good �rst-order approximation | we show
that in many cases (e.g., for small transfers) the majority
of server-induced delay occurs at precisely this point in the
transaction. However, for large transfers when the server is
under heavy load, we also show that there can be signi�cant
server delays long after connection start up. The work in
[18] also points out the fact that DNS lookups can also be a
signi�cant cause of delay; since we are mainly interested in
network/server interaction, we do not consider these sources
of delays in this paper.

3. MECHANICS OF CRITICAL PATH
ANALYSIS

In this section we describe how to discover the critical path
for TCP ows; details of the algorithm we use; how crit-
ical path discovery can be employed in an HTTP setting;
and how we pro�le the critical path to accurately assess the
causes of transfer delays. We also describe the tool tcpeval
which performs these analyses.

3.1 Discovering the Critical Path for a Unidi-
rectional TCP Flow

We start by restricting our attention to the heart of our
approach, the analysis of the data transfer portion of a uni-
directional TCP ow; in the next section we will discuss
bidirectional ows and application-level protocols. Critical
path analysis of unidirectional ows is based on an examina-
tion of the packet dependence graph (PDG) for a particular
TCP ow.

We de�ne the packet dependence graph as a weighted, di-
rected graph (in fact, a tree) in which each node represents
the arrival or departure of a single packet at either endpoint.
Thus, each packet that is not dropped en route corresponds
to two nodes in the PDG. An illustration of the tree struc-
ture of the PDG's is shown in in Figure 1. This �gure shows
an idealization of the slow start portion of TCP. On the left
is a traditional time line diagram where the dependencies
between data and ACK packets are not explicit. On the
right we draw the PDG where dependencies are explicit.

Arcs in the PDG represent a dependence relation corre-
sponding to Lamport's happened-before relation [23]; each
arc is weighted by the elapsed time between the events that
form its start and end points. In this case, the dependence
relation is that de�ned by the semantics of reliable data
transport using TCP Reno. There are four kinds of arcs in
the graph: �rst, for each distinct packet that is not dropped,
we construct an arc from its departure at one endpoint to
its arrival at the other endpoint. Second, for each acknowl-
edgment packet (ACK), we �nd the data packet containing
the last byte being acknowledged by the ACK. We construct
an arc from the arrival of that data packet to the departure
of that ACK packet, reecting the fact that the ACK could
not have been emitted before the corresponding data packet
was received. The third type of arc is from ACK packets
to data packets. For each ACK packet, we determine the
data packets that it \liberated", and construct an arc from
the arrival of the ACK to the departure of each liberated

Client Server

D

D
D

D
D
D
D

D
D
D
D
D
D
D
D

A

A
A

A
A
A
A

Time Line Diagram

D

A

D D

A A

D D D D

A A A A

D D D D D D D D

Packet Dependence Graph

Figure 1: A time line diagram of a TCP ow and
its reection in a Packet Dependence Graph (PDG).
The PDG shows which data packets (D) are liber-
ated by individual ACKs (A).

data packet. By \liberating" a data packet, we mean that
the arrival of the ACK caused TCP to open its congestion
window suÆciently to allow the transmission of the data
packet. Tracking the liberation of data packets is central to
our approach, and must be done carefully; we discuss it in
detail in Section 3.3.

In the cases where no packet loss occurs, these three arc
types are suÆcient. However, when a packet is lost, eventu-
ally the packet is retransmitted, and there is a dependence
relation between the two events. In this case, we construct
an arc from the departure of the dropped packet to the de-
parture of the earliest subsequent retransmission.

Having constructed the weighted tree described by this pro-
cess, we de�ne the critical path in the usual way; that is, the
longest path in the tree starting from the root. Since we are
considering a unidirectional ow, the root is the �rst data
packet sent. The result is a (weighted) chain of dependence
relations running from the connection's �rst data packet to
its last data packet sent.

3.2 Discovering the Critical Path for an HTTP
Transaction

The discussion so far has assumed that there are no ap-
plication level dependencies among events. This is not the
case in general; for example, it may be that the departure
of data packets sent in one direction may depend on the
arrival of data packets traveling in the other direction, due
to application-level semantics. In this study we focus on
HTTP/1.0 retrievals of static �les (without persistent con-
nections), for which this dependence only exists between
the last packet comprising the HTTP GET and the �rst
data packet sent in response. Nevertheless, to properly
construct the critical path, this dependence must be taken
into account. Nothing in our methods precludes the analy-

129

SYN j

SYN k, ack j+1

ack k+1

Client Server

HTTP GET

FIN x

ack x+1

FIN y

ack y+1

Connection
Establishment

Application
Protocol

Bulk
Transfer

Connection
Tear Down

Network Delay

Network Delay

Network Delay

Network Delay

Network Delay

Network Delay

Server Delay

Client Delay

Client Delay

Server Delay

Critical Path Profile

Figure 2: Critical path analysis for TCP connection
setup, HTTP GET and TCP connection tear down.

sis of HTTP/1.1 however our implementation is speci�c to
HTTP/1.0.

Since we do not want to restrict the applicability of our
methods to any particular application, we do not attempt
to explicitly incorporate application-level dependence into
the PDG. Instead, we construct the complete critical path
by breaking the entire HTTP transaction into four parts:
1) connection establishment | the SYN, SYN-ACK, ACK
sequence; 2) the packet sequence delivering the HTTP GET
and associated parameters; 3) the returning bulk data trans-
fer; and 4) connection tear-down | the FIN, ACK, FIN,
ACK sequence. This breakdown is shown in Figure 2 (de-
tails of the bulk transfer portion of the critical path are
discussed in Section 3.3).

The advantage of this decomposition is that the parts do not
overlap; the dependence between each part is clear; and that
parts 1, 2, and 4 do not depend on the size of the �le, and
so can be easily analyzed with special-purpose code. Each
of parts 1, 2, and 4 follows one of a small set of patterns,
and the patterns only vary when packets are lost, which is
easily accounted for. Thus, discovering the critical path for
HTTP/1.0 transactions requires relatively straightforward
analysis of the connection setup, �le request, and connection
tear down sequences, combined with the unidirectional-ow
algorithm described in the previous section for bulk data
transfer.

3.3 Implementing Critical Path Discovery for
Bulk Data Transport in TCP Reno

The critical path discovery algorithm for TCP Reno de-
scribed in Section 3.1 can be implemented in two stages:
a forward pass over the packet trace and a backward pass
up the critical path.

The purpose of the forward pass is to construct a round for

each ACK. Each round consists of the ACK and the data
bytes which are liberated by that ACK. The data bytes lib-
erated by a speci�c ACK are determined by the state of
the receive and congestion windows on the server when the
ACK was received. We identify the data bytes liberated
by each ACK by simulating the receive and congestion win-
dow states based using the TCP Reno slow start/congestion
avoidance/fast retransmit/fast recovery algorithms as spec-
i�ed in RFC 2001 [39] and described in [40]. The reason
for this accounting is that an ACK may be received at the
server before it has had a chance to transmit all of the pack-
ets permitted by the current window state; thus it is not safe
to assume that each data packet was liberated by the most
recent arriving ACK. After establishing the bytes liberated
by an ACK, we determine the data packet that triggered
the ACK (by comparing sequence numbers) and maintain
a pointer to that data packet with the round for the ACK.
The result is a tree of rounds.

After the forward-pass construction of all rounds, the critical
path is determined by tracing back up the tree, starting from
the last data packet (before the FIN is sent, or containing the
FIN). At each round, we accumulate arcs onto the critical
path, and then move to the parent round. This continues
until reaching the �rst round, which will contain the �rst
data packet.

An example bulk transfer for a Linux TCP stack is shown in
Figure 3. Key steps in critical path analysis are left-to-right:
capture of packet traces, analysis of rounds, construction of
critical path, and pro�ling of the critical path. In this �gure,
rounds 1, 2, and 3 progressively consist of two, three, and
four data packets, since the connection is in slow start [21].
The ACK for round 4 only acknowledges two of the four
packets transmitted in round 3. Thus, round 4 is respon-
sible for the release of only three more data packets|since
from the server's perspective, there are still two data pack-
ets in ight and the current size of the congestion window
is �ve|which illustrates the need to maintain the correct
receiver and congestion window state to properly construct
dependence arcs.

Maintaining the proper receiver and congestion window size
in our simulation is complicated when packets are dropped,
since the retransmissions signaled by coarse-grained time-
outs and fast retransmits call for di�erent congestion win-
dow size adjustments. Fortunately, we can distinguish be-
tween drops that are recognized by coarse-grained time outs
and those which are recognized by the fast retransmit mech-
anism as follows: all retransmissions are visible (since we
have traces from the sender's endpoint) and all duplicate
ACK's are also visible; thus when a packet is retransmitted,
we know whether it was in response to a coarse-grained time-
out or in response to the receipt of 3 duplicate ACKs. We
note that this means it is not necessary to simulate TCP's re-
transmission timer to determine when coarse-grained time-
outs occur, which would be very diÆcult to reconstruct after
the fact, and would introduce a number of TCP implementa-
tion dependent issues. One potential issue is that there may
be rare instances where coarse-grained timeouts are the ac-
tual trigger of a retransmitted packet even though a third
duplicate ACK has been received. We call these instances
hidden timeouts. Our mechanism does not currently dis-

130

tinguish hidden timeouts. If they were to occur, our TCP
simulation would have larger congestion windows leading to
obviously incorrect client delays which can be detected by
our critical path analysis tool, tcpeval. In the analysis of
our sample data, we found no instances of hidden timeouts.

The strength of the critical path as an analytic tool is also
evident from the �gure. Consider once again the data trans-
fer shown in Figure 3. The last packet (before the FIN)
was released by the ACK in round 7, which is therefore
on the critical path. The data which triggered the ACK for
round 7 was released by round 6, which is also on the critical
path. The ACK in round 6 was triggered by a retransmit-
ted packet, which was originally liberated by round 4. This
shows that none of the packets in round 5 are on the critical
path, and indeed, even considerable variations in the deliv-
ery times of packets in round 5 would have had no e�ect on
the eventual completion time of the overall transfer.

3.4 Profiling the Critical Path
Once the critical path has been constructed, we can use it
to identify the sources of delays in the data transfer. To do
so we assign a natural category to each arc type; the critical
path pro�le is then the total contribution to each category
made by arc weights on the critical path. We map arcs to
categories as follows: arcs between di�erently-typed nodes
(data ! ACK or ACK ! data) on the same endpoint are
assigned to that endpoint (i.e., server or client); arcs be-
tween equivalently-typed nodes (data ! data or ACK !
ACK) on opposite endpoints are assigned to the network;
and arcs between data nodes on the same endpoint are as-
signed to packet loss.2 These correspond to the intuitive
sources of delay in each case. Sample delay assignments can
be seen at the far right side of Figure 3.

We can re�ne this classi�cation somewhat. First, it is possi-
ble to distinguish between packet losses recognized by coarse-
grained timeouts, and those signaled by the receipt of 3 du-
plicate ACKs from the receiver (fast retransmits). Second,
each network delay can be decomposed into two parts: prop-
agation delay and network variation delay. We de�ne prop-
agation delay to be the minimum observed delay in each
direction over all experiments in which the path did not
change. Delay due to network variation is de�ned as the
di�erence between network delay and propagation delay. It
can be caused by a number of things including queuing at
the routers along the end-to-end path and route uctuation.

The result is a six-part taxonomy of delays in HTTP trans-
fers, measured along the critical path: 1) server delays, 2)
client delays, 3) propagation delays, 4) network variation
delays, 5) losses recognized by coarse-grained timeouts, and
6) losses signaled by the fast retransmit mechanism.

3.5 Realization of Critical Path Analysis in
tcpeval

The critical path construction method described in Sections
3.1 and 3.3 is general in the sense that it only depends on

2Some server delay is included in what we call delay due
to packet loss since upon either coarse-grained timeout or
receipt of a third duplicate ACK, a heavily loaded server
could take some time to generate a retransmitted packet.

accurate tracking of TCP receiver and congestion window
size|so the method works for any implementation that is
compliant with RFC 2001. This robustness is evident in
Section 4 which shows results from two di�erent TCP im-
plementations (Linux 2.0.30 and FreeBSD 3.3). In addition,
while we focus on HTTP/1.0 in this paper, other protocols
could be evaluated, given accurate modeling of application-
level packet dependences.

We have implemented the entire critical path analysis pro-
cess (path construction and pro�ling) in the tool tcpeval
consisting of approximately 4,000 lines of C code. In addi-
tion to critical path analysis, it provides statistics for higher
level HTTP transaction study (such as �le and packet trans-
fer delay statistics) and produces time line and sequence
plots for visual analysis.

The principal inputs to tcpeval are tcpdump traces taken at
the client and the server. In addition to the packet traces,
the only other inputs to tcpeval are the initial values for
the congestion window (CWND) and the slow start thresh-
old (SSTHRESH) since these can vary between TCP imple-
mentations.

A number of implementation issues arise due to our use
of tcpdump traces and due to our need to accurately mea-
sure one-way packet transit times. These are discussed in
the context of automated packet trace analysis by Paxson
[33]. Speci�cally, these are the problems which can occur in
packet �lters such as the Linux Packet Filter (LPF) or the
Berkeley Packet Filter (BPF) which are used by tcpdump

to extract packet traces. First, packets can dropped by
the �lter. If tcpeval sees an ACK or other response for
a packet which was supposedly lost, tcpeval concludes it
was dropped in the �lter rather than the network. Second,
packets can be added to the trace by the �lter. To address
this, if tcpeval sees the same packet twice and it was not a
retransmit, it simply discards the second copy of the packet.
Third, packet �lter can report packets in a di�erent order
than the occurred in reality. tcpeval insures the correct or-
der by sorting packets by time stamp in a number of places
during the analysis. Last, packet �lters can incorrectly time
stamp packets which causes a di�erent type of reordering in
the packet trace. At present, tcpeval does not account for
this. The e�ect will be that packets will appear to be sent
beyond the congestion window which is agged as an error
by tcpeval.

With respect to accurate measurements of one-way delays,
we have carefully con�gured NTP [28] (using frequent hard
resets and syncing with multiple servers where needed) in
our experimental setup to obtain the closest possible clock
synchronization. In this way we have found that for the two
experimental con�gurations in Section 4, the resulting dif-
ference in time between nodes was on the order of 1 ms as
reported by NTP. Nonetheless, the nature of our approach
demands highly synchronized clocks, so we will con�gured
our systems with GPS-synchronized clocks (enabling syn-
chronization on the order of microseconds) for future exper-
iments.

131

20441:24821

Client Server

Rounds Critical Path

1

2

3

4

5

6

7

1461:2921

ack 2921

5841:7301

ack 10221

11681:13141

drop 17521

ack 16061

17521:20441

ack 16061

ack 16061

ack 24821

24821:27741

ack 27741

27741:29201

Network Delay

Network Delay

Network Delay

Network Delay

Network Delay

Network Delay

Network Delay

Network Delay

Network Delay

Network Delay

Network Delay

Server Delay

Server Delay

Server Delay

Server Delay

Client Delay

Client Delay

Client Delay

Drop Delay

1461:2921

ack 2921

5841:7301

ack 10221

11681:13141

drop 17521

ack 24821

24821:27741

ack 27741

27741:29201

Client Server
number bytes liberated

Original Data Flow

1:2920

2921:7300

7301:13140

13141:17520

17521:24820

24821:27740

27741:30660

ack7301 ack7301

16061:17521 16061:17521

Profile

Time Out

Figure 3: Details of critical path analysis for the bulk transfer portion of a unidirectional Linux TCP ow.

3.6 Limitations
There are a number of limitations to the use of critical path
analysis in this setting. First, there are some details of the
web transactions which we do not take into account. The
most obvious is that we do not consider the delay due to
domain name server (DNS) resolution. tcpeval easily could
be enhanced to do this by tracking DNS packets. We also do
not consider client browser parse times in our experiments
since we simply transfer �les as is explained in Section 4.

There are also some aspects of our application of CPA to
TCP transactions that limit our ability to use the strengths
of CPA. The most fundamental is the inability to do \what
if" analysis after establishing the CPA for a TCP trans-
action. Although one could explore the e�ects of chang-
ing delays or drops on a particular critical path, in reality,
changing delays or drop events can change the dependence
structure of the entire transaction, (i.e., the PDG). For ex-
ample, when a drop occurs, it changes the congestion win-
dow size and thus the number of packets which are liber-
ated by subsequent ACKs. This fact limits the extent of
\what-if" analysis to simulating what would happen in the
remainder of a transaction instead of actually being able to
know exactly what would have happened.

4. CRITICAL PATH ANALYSIS APPLIED
TO HTTP TRANSACTIONS

In this section we apply critical path analysis to measure-
ments of HTTP transactions taken in the Internet.

4.1 Experimental Setup
The experiments presented here use a distributed infrastruc-
ture consisting of nodes at Boston University, University
of Denver and Harvard University. At Boston University
is a cluster consisting of a set of six PCs on a 100 Mbps
switched Ethernet, connected to the Internet via a 10Mbps
bridge. One of the PCs runs the Web server itself (Apache
version 1.3 [36] running on either Linux v2.0.30 or FreeBSD
v3.3) as well as operating system performance monitoring
software. Two more PCs are used to generate local load
using the Surge Web workload generator [7], which gen-
erates HTTP requests to the server that follow empirically
measured properties of Web workloads. The requests gen-
erated by Surge are used only to create background load
on the server. The fourth PC collects TCP packet traces
using tcpdump, the �fth makes active measurements of net-
work conditions (route, propagation delay and loss measure-
ments) 3 during tests and the last system is used to manage
the tests.

O�-site locations hold client systems which generate the
monitored requests to the server. Client 1 (running Linux
v2.0.30) was located at University of Denver, 20 hops from
the server cluster at Boston University; the path to that
site includes two commercial backbone providers (AlterNet
and Qwest). Client 2 (running FreeBSD v3.3) was located at
Harvard University, 8 hops from the server cluster at Boston
University. The path to the Harvard client travels over the

3Route measurements were taken in each direction at �ve
minute intervals during tests. Only one instance of a route
change during a test was observed.

132

vBNS.

In our experiments we explore variations in network load
conditions, server load conditions, �le size, and network
path length. To explore a range of di�erent network condi-
tions, we performed experiments during busy daytime hours
as well as relatively less busy nighttime hours. To study
the e�ects of server load, we used the local load generators
to generate either light or heavy load on the server during
tests. We used settings similar to those explored in [8] to
place servers under light load (40 Surge user equivalents)
or heavy load (520 Surge user equivalents). The work in
[8] shows that 520 user equivalents places systems like ours
in near-overload conditions. The local load generators re-
quested �les from a �le set of 2000 distinct �le ranging in
size from 80 bytes to 3.2MB. Main memory on the server is
large enough to cache all of the �les in the �le set so after the
initial request (which is fetched from disk), all subsequent
requests for a �le are served from main memory.

To explore variations in �le size, the monitored transactions
(generated at the remote clients) were restricted to three
�les of size 1KB, 20KB, or 500KB. In choosing these sizes,
we were guided by empirical measurements [3, 13]. The 1KB
�le was selected to be representative of the most common
transmissions, small �les that can �t within a single TCP
packet. The 20KB �le was selected to be representative of
the median sized �le transferred in the Web. The 500KB
�le was selected to be representative of large �les, which are
much less common but account for the majority of the bytes
transferred in the Web.

The combinations of network load (light or heavy), server
load (light or heavy) and downloaded �le size result in 12
separate tests per day. Each test consisted of downloading
�les of a given size for one hour. Traces were gathered over
10 weekdays from Client 1 (Linux, long path) and 4 days
from Client 2 (FreeBSD, short path). For each client, we
pro�led the critical path of each HTTP transaction, and
within a given test type (�le size, network load, network
path, and server load) we averaged the resulting critical
paths for analysis.

4.2 Results
We �rst examine the resulting critical path pro�les for trans-
fers to Client 1. These results are shown in Figure 4. Figure
4(a), (b), and (c) show small (1KB), medium (20KB), and
large (500KB) �le sizes respectively; within each chart the
particular experiments are denoted by H or L for high or
low load and N or S for network and server.

A number of observations are immediately evident from the
�gure. At the highest level, it is clear that the category that
is the most important contributor to transaction delay de-
pends on a number of factors, including �le size and server
load. This shows that no single aspect of the system is gen-
erally to blame for long transfer times, and that the answer
is rather more complicated.

In addition, the �gure shows that propagation delay is of-
ten the most important overall contributor to transaction
delay (e.g., for large �les, and for all �le sizes when server
load is low). This is an encouraging statement about the de-

(a)

(b)

(c)

Figure 4: Aggregate mean contributions to transfer
delay from Client 1 for (a) small �le, (b) medium
�le and (c) large �le. LNLS = low network load,
low server load, HNHS = high network load, high
server load.

133

sign of the end-to-end system, since this component of the
data transport process is rather hard to avoid. When prop-
agation delay dominates transfer time it would seem that
only by opening the congestion window more aggressively
could overall end-to-end response time be signi�cantly re-
duced (while recognizing the diÆculty of doing so without
contributing to congestion) [32].

Overall, we note that when server load is low, the delays on
the client side and the server side are roughly comparable.
Client delays throughout tend to be quite low; since the
remote site consists of a PC simply transferring a single �le,
this is consistent with expectations. In addition, this data
con�rms that there are many more retransmissions triggered
by time-outs than by the fast retransmit mechanism in all
our cases. This situation has been observed in other studies
[5, 24, 31].

4.2.1 Effect of File Size.
Comparing critical path pro�les across �le sizes, we can
make the following observations from Figure 4.

Small �les are dramatically a�ected by load on the server.
When server load is low, network delays (network variation
and propagation) dominate. However, when server load is
high, server delays can be responsible for more than 80%
of overall response time. Since small �les are so common
in the Web, this suggests that performance improvements
quite noticeable to end users should be possible by improv-
ing servers' delivery of small �les. For medium sized �les,
network delays also dominate when server load is low; but
when server load is high, the contribution to delay from the
network (network variation and propagation) and the server
are comparable. So for these �les, neither component is prin-
cipally to blame. Finally, for large �les, delays due to the
network dominate transfer time, regardless of server load.

4.2.2 Effect of Server Load.
By examining individual critical paths, we can observe that
the delays due to server load are not spread uniformly through-
out the transfer. In fact, for small and medium �les, nearly
all of the server delay measured in our HTTP transactions
occurs between the receipt of the HTTP GET at the server
and the generation of the �rst data packet from the server.
In Figure 5 we plot some typical critical paths for small and
medium �les, comparing the cases of low and high server
load (network load is high throughout).

Each diagram in the �gure shows the critical path for the
transfer of a single �le, with time progressing downward
from the top, and lines representing dependence arcs in the
PDG. In each diagram, the client is on the left (sending the
�rst packet, a SYN) and the server is on the right. The �gure
shows that when server load is high, there is a characteristic
delay introduced between the moment when the HTTP GET
arrives at the server (which is in the second packet from the
client, because the second handshake ACK is piggybacked),
and when the �rst data packet is sent out in response. We
note that this server start-up delay may be speci�c to the
Apache 1.3.0 architecture; we are currently investigating the
case for other servers and versions of Apache.

Although these �gures clearly show that substantial server

1.2

1.0

0.8

0.6

0.4

0.2

0

T
i
m
e

(
s
e
c
o
n
d
s
)

(a)

1.2

1.0

0.8

0.6

0.4

0.2

0

T
i
m
e

(
s
e
c
o
n
d
s
)

(b)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

T
i
m
e

(
s
e
c
o
n
d
s
)

(c)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

T
i
m
e

(
s
e
c
o
n
d
s
)

(d)

Figure 5: Critical path diagrams for the transfer of
(a) small �le, light server load, (b) small �le, heavy
server load, (c) medium �le, light server load, (d)
medium �le, heavy server load.

134

(a) (b)

Figure 6: Aggregate mean contributions to transfer delay (a) from Client 2 (short path, FreeBSD) and (b)
from Client 1 (long path, Linux) for medium sized �le.

delay is introduced at connection start-up, we can also de-
termine that for large �les, a busy server introduces con-
siderable delays later in the transfer as well. This can be
seen from Figure 4 comparing (a) or (b) with (c); the total
server-induced delay is twice as large in (c), although the
startup delay is independent of �le size.

Taken together, these results on the �le size and server load
indicate that while both servers and networks show startup
costs at the beginning of transfers, the startup cost on our
server (when under load) is much higher. On the other hand,
when approaching steady-state (i.e., during long transfers)
the network introduces more delays than does the server.

4.2.3 Effect of Network Load.
Propagation delay as we have de�ned it is proportional to
number of round-trips on the critical path. For small �les,
there are 6 packets on the critical path; for medium �les,
there are typically 14 packets on the critical path; and for
large �les, there are typically close to 56 packets on the
critical path (all of these values are in the absence of losses).
One-way delay in both directions between our site and Client
1 was determined (using minimum �ltering) to be about
32ms.

Figure 4 shows that for small and medium sized �les, prop-
agation delay is independent of network load or server load,
which agrees with intuition. However, for large �les, propa-
gation delays are higher under high network load. On �rst
glance one might assume this is because of a di�erence in
routes used during tests. This however is not the case. Upon
detailed examination of the critical paths, it is apparent that
there are actually more round-trips on the critical path on
average in the cases of heavy network load. This is be-
cause TCP reduces its congestion window dramatically af-
ter coarse-grained timeouts. If coarse-grained timeout drops
are rare, the e�ect will be that the congestion window will
have time to grow large between drops. If however coarse-
grained timeouts are frequent, the congestion window has
less chance to open fully, and so more round-trips appear on

the critical path.

In contrast to propagation delay, delay due to network varia-
tion generally increases when the network is heavily loaded.
However, network variation delay overall is a less important
contributor to transfer delay than is propagation delay; and
between network variation delay and packet loss (both ef-
fects of congestion) neither is generally more signi�cant than
the other.

4.2.4 Effect of Path Length.
To study the e�ect of path length on the critical path pro�le,
we ran experiments to Client 2. Results for medium sized
�les only are shown in Figure 6; on the left of the Figure
we show results for Client 2; on the right of the Figure we
repeat the results for Client 1 (from Figure 4) for comparison
purposes.

The �gure shows that �le transfers occurred almost an order
of magnitude faster over the much-shorter path to Client
2. In general this increases the importance of server delays
to overall transfer time; for example, for the LNLS case,
transfers to Client 2 were a�ected equally by propagation
delay and by server delay, while the same transfers to client
1 were dominated by propagation delays.

Interestingly, we �nd that server delays are also radically
reduced in the Client 2 setting; this may be due to the dif-
ferent systems software used. We are currently investigating
the cause of this e�ect.

4.2.5 Causes of Variability in Transfer Duration.
Finally, while Internet users are typically interested in mean
transfer duration, variability in transaction duration is also
a source of frustration. Our results so far have presented
only mean statistics; however by studying the variability of
each category in our critical path pro�le we can also shed
light on the root causes of variability in transfer duration.
Figure 7 plots the standard deviation of each category of

135

delay, for all three �le sizes transferring to Client 1 (i.e.,
this �gure is analogous to Figure 4).

This �gure exposes a number of important aspects of trans-
fer time variability. First, coarse-grained timeout losses are
the overwhelming contributor to the variability of transfer
delay for small and medium sized �les. This is because the
duration of even a single timeout is often much larger than
the typical total transfer time in the absence of timeouts for
these �le sizes; thus when coarse-grained timeouts occur,
they are very noticeable.

A surprising result is that for large �les, when the network
is heavily loaded, a signi�cant cause of transfer time vari-
ability is propagation delay. This means that the number of
packets on the critical path is showing high variability under
heavily loaded network conditions. This can be con�rmed by
examining the distribution of critical path lengths for large
�les, comparing conditions of low network load with high
network load. These histograms (along with each distribu-
tion's minimum, mode, and mean) are shown in Figure 8.

This Figure helps explain why mean propagation delay un-
der high network load is larger (as discussed above); the
summary statistics show that the common cases (the distri-
butional modes) are the same, but that under heavy network
load the critical path length distribution shows much longer
tails.

5. CONCLUSIONS
In this paper we have described methods and a tool for crit-
ical path analysis of Internet ows. We have shown how to
construct the critical path for unidirectional TCP ows, and
how to extend this method to HTTP transactions. Further-
more, we have developed a taxonomy of kinds of delays that
can occur in TCP ows and used this taxonomy to pro�le
the critical path.

An important goal of traÆc analysis tools is wide applica-
bility, and we have shown that the method we use for con-
structing the critical path applies to a wide range of TCP im-
plementations, i.e., those that conform to TCP Reno. Our
tool does not require any intrusive instrumentation of end
systems, only passively collected packet traces from both
endpoints.

Applying this method to HTTP transfers in the Internet
helps answer questions like \What are the causes of long
Web response times?" We have shown that for the systems
we have measured, server load is the major determiner of
transfer time for small �les, while network load is the major
determiner for large �les. If found to be general, this would
lend support to the development of server enhancements to
speed the transfer of small �les. Furthermore, critical path
analysis uncovers a number of more subtle points. For ex-
ample, the contribution of propagation delay to the criti-
cal path is often greater than that network variability (e.g.,
queuing); this suggests that it may be diÆcult to improve
transfer latency in some cases without more aggressive win-
dow opening schemes such as those discussed in [1, 32] or
that better retransmission algorithms which avoid timeouts
and slow start [11]. In addition, the dominant cause of vari-
ability in transfer time is packet loss; but surprisingly, even

(a)

(b)

(c)

Figure 7: Standard deviations of delay components
for (a) small �le, (b) medium �le and (c) large �le.

136

40 60 80 100 120

0.
0

0.
05

0.
10

0.
15

0.
20

No. of Pkts on Critical Path
50 100 150 200 250

0.
0

0.
02

0.
06

No. of Pkts on Critical Path

(a: min: 47, mode: 55; mean: 58) (b: min: 48 mode: 54; mean: 76)

Figure 8: Histograms of Number of Packets on Critical Path for large �le: (a) Low network load (b) High
network load (both are for Client 1, high server load).

the number of packets on the critical path for a constant-
sized �le can show a very long distributional tail.

6. ACKNOWLEDGEMENTS
The authors would like to thank Vern Paxson and Anja
Feldmann for their input on various aspects of this work.
The authors would like to thank Lars Kellogg-Stedman for
his assistance with experimental systems used in this work.
Many thanks also to David Martin and Peg Sha�er for host-
ing client systems used to collect data in this study. Thanks
also to the anonymous reviewers of this paper.

7. REFERENCES
[1] M. Allman, S. Floyd, and C. Partridge. Increasing

TCP's initial window. IETF RFC 2414, September
1998.

[2] J. Almeida, V. Almeida, and D. Yates. Measuring the
behavior of a world wide web server. In Proceedings of
the Seventh IFIP Conference on High Performance
Networking (HPN), White Plains, NY, April 1997.

[3] M. Arlitt and C. Williamson. Internet web servers:
workload characterization and performance
implications. IEEE/ACM Transactions on
Networking, 5(5):631{645, October 1997.

[4] M. Aron, D. Sanders, P. Druschel, and
W. Zwaenepoel. Scalable content-aware request
distribution in cluster-based network servers. In
Proceedings of the USENIX 2000 Conference, San
Diego, CA, June 2000.

[5] H. Balakrishnan, V. Padmanabhan, S. Seshan,
M. Stemm, and R. Katz. Tcp behavior of a busy
internet server: Analysis and improvements. In
Proceedings of IEEE INFOCOM '98, San Francisco,
CA, March 1998.

[6] G. Banga and J. Mogul. Scalable kernel performance
for internet servers under realistic loads. In
Proceedings of the USENIX Annual Technical
Conference, New Orleans, LA, June 1998.

[7] P. Barford and M. Crovella. Generating representative
workloads for network and server performance

evaluation. In Proceedings of ACM SIGMETRICS '98,
pages 151{160, Madison, WI, June 1998.

[8] P. Barford and M. Crovella. A performance evaluation
of hyper text transfer protocols. In Proceedings of
ACM SIGMETRICS '99, Atlanta, GA, May 1999.

[9] A. Bestavros, M. Crovella, J. Liu, and D. Martin.
Distributed packet rewriting and its application to
scalable server architectures. In Proceedings of the
1998 International Conference on Network Protocols
(ICNP '98), October 1998.

[10] J. Bolot. End-to-end packet delay and loss behavior in
the Internet. In Proceedings of ACM SIGCOMM '93,
San Francisco, September 1993.

[11] L. Brakmo, S. O'Malley, and L. Peterson. TCP Vegas:
New techniques for congestion detection and
avoidance. In Proceedings of ACM SIGMETRICS '96,
Philadelphia, PA, May 1996.

[12] N. Cardwell, S. Savage, and T. Anderson. Modeling
TCP latency. In Proceedings of the 2000 IEEE
Infocom Conference, Tel-Aviv, Israel, March 2000.

[13] Mark E. Crovella and Azer Bestavros. Self-similarity
in World Wide Web traÆc: Evidence and possible
causes. IEEE/ACM Transactions on Networking,
5(6):835{846, December 1997.

[14] P. Druschel, V. Pai, and W. Zwaenepoel. Flash: An
eÆcient and portable web server. In Proceedings of the
USENIX 1999 Annual Technical Conference,
Monterey, CA, June 1999.

[15] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext transfer protocol {
HTTP/1.1. IETF RFC 2068, January 1997.

[16] H. Frystyk-Nielsen, J. Gettys, A. Baird-Smith,
E. Prud'hommeaux, H. Wium-Lie, and C. Lilley.
Network performance e�ects of HTTP/1.1, CSS1 and
PNG. In Proceedings of ACM SIGCOMM '97, Cannes,
France, Setpember 1997.

[17] J. K. Hollingsworth and B. P. Miller. Parallel program
performance metrics: A comparison and validation. In
Proceedings of Supercomputing '92, November 1992.

137

[18] C. Huitema. Internet quality of service assessment.
ftp.telcordia.com/pub/huitema/stats/quality today.html,
2000.

[19] Keynote Systems Inc. http://www.keynote.com, 1998.

[20] Lucent NetCare Inc. net.medic.
http://www.ins.com/software/medic/datasheet/index.asp,
1997.

[21] V. Jacobson. Congestion avoidance and control. In In
Proceedings of ACM SIGCOMM '88, pages 314{332,
August 1988.

[22] B. Krishnamurthy and C. Willis. Analyzing factors
that inuence end-to-end web performance. In
Proceedings of the Ninth International World Wide
Web Conference, Amsterdam, Netherlands, May 2000.

[23] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558{565, July 1978.

[24] D. Lin and H.T. Kung. TCP fast recovery strategies:
Analysis and improvements. In Proceedings of IEEE
INFOCOM '98, San Francisco, CA, March 1998.

[25] K. G. Lockyer. Introduction to Critical Path Analysis.
Pitman Publishing Co., New York, N.Y., 1964.

[26] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
macroscopic behavior of the TCP congestion
avoidance algorithm. Computer Communications
Review, 27(3), July 1997.

[27] B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead,
S. Lim, and T. Torzewski. IPS-2: The second
generation of a parallel program measurement system.
IEEE Transactions on Parallel and Distributed
Systems, 1(2):206{217, April 1990.

[28] D. Mills. Network time protocol (version 3):
Speci�cation, implementation and analysis. Technical
Report RFC 1305, Network Information Center, SRI
International, Menlo Park, CA, 1992.

[29] J. Mogul. The case for persistent-connection HTTP.
Technical Report WRL 95/4, DEC Western Research
Laboratory, Palo Alto, CA, 1995.

[30] J. Mogul, F. Douglis, A. Feldmann, and
B. Krishnamurthy. Potential bene�ts of delta encoding
and data compression for HTTP. In Proceedings of
ACM SIGCOMM '97, Cannes, France, Setpember
1997.

[31] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.
Modeling TCP throughput: A simple model and its
empirical validation. In Proceedings of ACM
SIGCOMM '98, Vancouver, Canada, Setpember 1998.

[32] V. Padmanabhan and R. Katz. TCP fast start: A
technique for speeding up web transfers. In
Proceedings of the IEEE GLOBECOM '98, November
1998.

[33] V. Paxson. Automated packet trace analysis of TCP
implementations. In Proceedings of ACM SIGCOMM
'97, Cannes, France, September 1997.

[34] V. Paxson. End-to-end internet packet dynamics. In
Proceedings of ACM SIGCOMM '97, Cannes, France,
September 1997.

[35] V. Paxson. Measurements and Analysis of End-to-End
Internet Dynamics. PhD thesis, University of
California Berkeley, 1997.

[36] Apache HTTP Server Project.
http://www.apache.org, 1998.

[37] M. Schroeder and M. Burrows. Performance of �rey
rpc. In Proceedings of the Twelfth ACM Symposium
on Operating System Principles, Litch�eld Park, AZ,
December 1989.

[38] T. Shepard. TCP packet trace analysis. Master's
thesis, Massachusetts Institute of Technology, 1990.

[39] W. Stevens. TCP slow start, congestion avoidance,
fast retransmit, and fast recovery algorithms. RFC
2001, January 1997.

[40] W.R. Stevens. TCP/IP Illustrated, Volume 1: The
Protocols. Addison-Wesley, 1994.

[41] C.-Q. Yang and B. Miller. Critical path analysis for
the execution of parallel and distributed programs. In
Proceedings of 8th International Conference on
Distributed Computing Systems, San Jose, CA, June
1997.

138

