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ABSTRACT
Being able to identify the groups of clients that are respon-
sible for a signi�cant portion of a Web site's requests can be
helpful to both the Web site and the clients. In a Web ap-
plication, it is bene�cial to move content closer to groups of
clients that are responsible for large subsets of requests to an
origin server. We introduce clusters|a grouping of clients
that are close together topologically and likely to be under
common administrative control. We identify clusters using
a \network-aware" method, based on information available
from BGP routing table snapshots.


Experimental results show that our entirely automated ap-
proach is able to identify clusters for 99.9% of the clients
in a wide variety of Web server logs. Sampled validation
results show that the identi�ed clusters meet the proposed
validation tests in over 90% of the cases. An e�cient self-
corrective mechanism increases the applicability and accu-
racy of our initial approach and makes it adaptive to network
dynamics. In addition to being able to detect unusual access
patterns made by spiders and (suspected) proxies, our pro-
posed method is useful for content distribution and proxy
positioning, and applicable to other problems such as server
replication and network management.


1. INTRODUCTION
With Web tra�c on the rise, Web sites have a particular
interest in being able to identify clients that send many re-
quests. For example, it is bene�cial to move content closer
to groups of clients that are responsible for large subsets
of requests to an origin server. This lowers the latency per-
ceived by the clients as well as the load on the Web server. If
a group of clients are topologically close and under common
administrative control (e.g., same department in a univer-
sity or division in a company) then the administrator could
install one or more proxy caches in front of the clients to
lower the client-perceived latency. More generally, a parti-
tioning of a set of IP addresses into non-overlapping groups,
where all the IP addresses in a group are topologically close


and under common administrative control, would be useful
for several applications. We use the term cluster to denote
such a grouping.


A complete partition of an arbitrary set of IP addresses
would require knowledge that is not available to anyone out-
side the administrative entities. Instead, we make use of in-
formation available in BGP routing table snapshots. This
paper presents an entirely automated technique for a novel
\network-aware" method of identifying client clusters start-
ing with Web server logs and using readily available routing
information.


As a primary application of our clustering, we examine Web
caching. Trace-driven simulation using Web server logs has
been widely used in designing and evaluating Web caching
systems. A proxy acts as a server to clients and as a client to
origin servers. A primary role played by a proxy is caching
frequently accessed resources to reduce latency for future
accesses. We also need to detect hosts with unusual access
patterns, such as spiders or proxies. A spider is a program
whose task is to obtain all the resources on a large number
of sites primarily for the purpose of generating an inverted
index to be used later in a search application.


A simple approach to identifying client clusters is to assume
that the clients that share the same �rst three bytes in their
IP addresses belong to the same cluster. This is one ap-
proach to cluster identi�cation if one relied solely on client
information extracted from logs. However, as we show later,
this over-simpli�ed assumption fails a validation test in over
50% of the sampled cases. Our method identi�es client clus-
ters based on routing information. We extract IP addresses
from Web server logs and cluster them using BGP rout-
ing information. The experimental results show that our
method is able to identify clusters for 99.9% of the clients.
We validate our network-aware approach by examining 1%
samples of client clusters. We use two validation techniques,
one based on nslookup and one based on traceroute. We �nd
that our method identi�es clusters that meet the proposed
test in over 90% of the cases. We also propose an e�cient
self-corrective mechanism to increase the applicability and
accuracy of our initial approach and make it adaptive to
network dynamics. Our method also detects spiders and
proxies, if any, in the logs.


Section 2 describes a simple approach to client clustering
and gives quantitative measurements on its error ratio. Our
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approach to identifying client clusters is presented in Sec-
tion 3. Section 4 addresses several applications of client
clustering. After briey examining related work in Section 5,
we conclude with possible improvements to our work in the
future.


2. SIMPLE APPROACH
A simple way to identify client clusters is to group all the
clients which share the same �rst 24 bits in their IP ad-
dresses into the same cluster based on the assumption that
the network pre�x length is 24. However, it is well-known
that IP addresses are not all organized in this fashion. Fig-
ures 1(a) and (b) show the distribution of pre�x lengths
extracted from Mae-West NAP [16] routing table snapshots
taken on July 3, 1999, and the pre�x length distribution over
time from July 3 to July 6, 1999, respectively. While around
50% of the pre�x lengths are 24 bits (see Figure 1(b)), there
are a large number of pre�xes that have either longer or
shorter lengths. Among non-24 bit pre�xes there are more
shorter pre�xes (< 24) than longer ones (> 24) mainly due
to the allocation of CIDR (Classless InterDomain Routing)
addresses 1 and route aggregation2 .


Identifying client clusters based on the �rst three bytes of IP
addresses has two main drawbacks. First, it mis-identi�es
small clusters, which share the same �rst three bytes of their
pre�xes, by considering them as one single Class C network.
For example, the hosts 151.198.194.17, 151.198.194.34, and
151.198.194.50 share the same �rst three bytes of IP ad-
dresses. The simple approach will consider them to be in
a single Class C network with pre�x 151.198.194 and net-
mask length 24. In reality they reside in three di�erent
networks with pre�xes 151.198.194.16, 151.198.194.32, and
151.198.194.48, and netmask length of 28. The names of
these hosts are client-151-198-194-17.bellatlantic.net, mail-
srv1.wakefern.com, and �rewall.commonhealthusa.com, re-
spectively, indicating that they most likely belong to dif-
ferent administrative entities. They are not likely to make
common decisions on sharing proxies for example. They may
even be located geographically far away from each other.
Secondly, it is obvious that the simple pre�x clustering tech-
nique may mis-cluster all Class A, Class B, and CIDR net-
works by dividing them into a number of Class C networks.
In this case, a trace-driven simulation may underestimate
bene�t of Web proxies due to less proxy sharing across the
mis-identi�ed clusters. In our experiments the simpli�ed as-
sumptions of the simple approach fail a validation test in
over 50% of the sampled cases.


1Internet's growth in recent years led to possible exhaustion
of Class B network address space and routers not being able
to manage the size of routing tables. CIDR was proposed as
a mechanism to slow the growth of routing tables and the
need for allocating new IP network numbers. For example,
instead of an entire block of one Class A, Class B or Class C
address being allocated to a typical network, more blocks of
Class C addresses can be allocated to a single network (i.e.,
the network pre�x lengths are not necessarily 8, 16, or 24).
The Internet address space is allocated in such a manner as
to allow aggregation of routing information along topological
lines [11, 17].
2With CIDR address allocation mechanism, the routing ta-
ble can be shrunk by aggregating routing entries with adja-
cent IP address blocks and same routing path [11, 17].


As an alternate approach, one could identify client clusters
based on Class A, Class B, and Class C networks. There
are a total of 128 Class A networks with 16,777,216 (224)
hosts per network and a network pre�x length of 8. There
are a total of 16,384 (214) Class B network with 65,536 (216)
hosts per network and a network pre�x length of 16. There
are a total of 2,097,152 (221) Class C networks with 256 (28)
hosts per network and a network pre�x length of 24. While
this method may give better client clusters than the simple
approach, it is clear that there will still be inaccuracies,
due both to CIDR addressing and to subnetting within the
Class A and B networks. In the rest of this paper, we use
the simple approach as a comparison.


3. OUR APPROACH
We propose a novel method to identify client clusters by us-
ing the pre�xes and netmasks information extracted from
the BGP (Border Gateway Protocol [15, 11, 17]) routing
and forwarding table snapshots. The Internet consists of
a large collection of hosts connected by networks of links
and routers. It is divided into thousands of distinct regions
of administrative control, referred to as Autonomous Sys-
tems (AS), ranging from college campuses and corporate
networks to large Internet Service Providers (ISPs). An AS
typically has very detailed knowledge of its internal topol-
ogy and limited reachability information about other ASes.
Interdomain routing protocols (such as BGP) control packet
forwarding among ASes and interdomain reachability infor-
mation is maintained at the routers of each AS that speak
BGP.


The rationale behind our approach is that the pre�xes and
corresponding netmasks identify the routes in the routing
table which are used by core routers to forward packets to
a given destination. By examining routing tables from a
collection of points in the network, we are likely to see en-
tries that approximately correspond to our notion of a clus-
ter. The most speci�c entries are most useful to us, since
they represent groups of clients that are topologically very
close together. Less speci�c entries (resulting from signi�-
cant route aggregation) are likely to produce clusters that
are too large. By examining multiple routing tables, we
hope to get a large number of speci�c entries that include
most of the IP addresses of interest Our approach makes
use of snapshots of routing tables. Although these tables
will change over time, we �nd our approach performs very
well for several tests of reasonablenes.


Figure 2 gives a graphical view of the �ve steps in our ap-
proach: (i) network pre�x/netmask extraction and extrac-
tion of IP addresses from Web server logs; (ii) client cluster
identi�cation; (iii) (optional) validation of our method by
sampling the resulting client clusters; (iv) examining e�ect
of network dynamics on client cluster identi�cation; and (v)
self-correction and adaptation. The validation step is op-
tional for most applications; we include it here to provide a
quantitative measurement of the accuracy of our approach.
We discuss each of these steps in this section and also look
at other issues a�ecting client cluster identi�cation.


3.1 Network prefix extraction
The �rst step of our approach is to generate a combined
pre�x/netmask entry table. We do this by extracting pre-
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Figure 1: Distribution of pre�x lengths extracted from mae-West NAP routing table snapshots: (a) histogram
of pre�x lengths on 7/3/1999, (b) pre�x length distribution from 7/3/1999 to 7/6/1999.
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Figure 2: The entire automated process of client cluster identi�cation.


�x/netmask entries from the routing table snapshots, uni-
fying pre�x/netmask entries into a standard format, and
inserting all the entries from di�erent routing tables into a
single, large table. Taking such a union gives us a more
complete picture of the network topology.


3.1.1 Prefix entry extraction
The BGP routing tables (Table 1) are collected automati-
cally via a simple script from AADS, MAE-EAST, MAE-
WEST, PACBELL, PAIX (all from [16]), ARIN [3], AT&T-
Forw and AT&T-BGP (from [4]), CANET [8], CERFNET [9],
NLANR [18], OREGON [19], SINGAREN [20], and VBNS [21].
We do so by downloading them from well-known Web sites
(e.g., AADS) or telnet ing to a particular host to run a script
to dump routing tables (e.g., OREGON). The size of the
table depends on the location of the BGP routers and the
AS it belongs to. We assembled a total of 391,497 unique
pre�x/netmask entries3. An example BGP routing table
snapshot is shown in Table 2. Though the routing table
also contains interdomain information such as next hop IP
address, AS number, and AS path, we have only used the
pre�x/netmask information in our experiments. The AS
number and path information can also provide hints on the
geographical location of clients.


Although ARIN and NLANR 4 are the two largest tables,
they are not directly generated from BGP information, but
from a dump of the networks registered at these two sites.


3These include pre�x entries collected from both BGP rout-
ing table and IP network dumps as explained later in this
section.
4The most recent version of NLANR's IP network dump is
from 1997, but as we only use it as a secondary source of
network pre�xes in our experiments; its lack of recency has
a very minor impact on our results (only � 0:1% of clients
are clustered by network pre�xes taken from NLANR's IP
network dump).


The di�erence between a network dump �le and a BGP
routing table dump �le is that the former usually has a
much larger collection of networks. An IP address regis-
tered/allocated at these two sites may not necessarily exist
and be a routable host on the Internet. However, since our
client IP addresses are gathered from real Web server logs,
this does not a�ect us. A network entry in a network dump
�le is usually larger than one in a BGP routing table (i.e.,
it has a shorter network pre�x length) despite the fact that
routes may be aggregated in a BGP routing table. This is
because an AS, that requests IP addresses from ARIN and
NLANR sites, may further partition and allocate these IP
addresses to smaller network entities without the knowledge
of ARIN and NLANR. This might cause an error in our ap-
proach if the network pre�x is taken from those IP network
dumps. However, less than 1% of clients are clustered by
network pre�xes taken from IP network dump �les. We use
BGP dump �les as the primary source of network pre�xes in
identifying client clusters and use IP network dump �les as
secondary source because each BGP routing table will only
have a limited view of the entire network topology. In our
experiments, this improves the proportion of the clustered
clients from 99% to 99.9%.


3.1.2 Network prefix format unification and merging
entries


The network pre�x/netmask entries extracted from the var-
ious routing tables are in one of three di�erent formats: (i)
x1:x2:x3:x4=k1:k2:k3:k4 where x1:x2:x3:x4 and k1:k2:k3:k4
are network pre�x and netmask with zeroes dropped at the
tail, (ii) x1:x2:x3:x4=l where l is the netmask length, and
(iii) x1:x2:x3:0 which is an abbreviated representation of
x1:x2:x3:0=k1:k2:k3:0 (i.e., x1:x2:x3:0 is a block of standard
Class A, Class B, or Class C addresses and the network pre-
�x length is 8, 16, or 24, respectively). We unify the di�erent
formats, arbitrarily choosing the �rst format as our standard
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Name Date Size Comments
AADS 12/7/1999 17K BGP routing table snapshots updated every 2 hours
ARIN 10/1999 300K IP network dump
AT&T-BGP 12/15/1999 74K BGP routing table snapshots
AT&T-Forw 4/28/1999 65K BGP forwarding table snapshots
CANET 12/1/1999 1.7K Real-time BGP routing table snapshots
CERFNET 9/29/1999 50K Real-time BGP routing table snapshots
MAE-EAST 12/7/1999 46K BGP routing table snapshots taken every 2 hours
MAE-WEST 12/7/1999 30K BGP routing table snapshots taken every 2 hours
NLANR 11/1997 200K IP network dump
OREGON 12/7/1999 70K Real-time BGP routing table snapshots
PACBELL 12/7/1999 25K BGP routing table snapshots updated every 2 hours
PAIX 12/7/1999 10K BGP routing table snapshots updated every 2 hours
SINGAREN 12/7/1999 68K Real-time BGP routing table snapshots
VBNS 12/7/1999 1.8K BGP routing table snapshots updated every 30 minutes


Table 1: Our collection of BGP routing tables.


Pre�x Pre�x description Next hop AS path Peer AS description
6.0.0.0/8 Army Information cs.ny-nap.vbns.net 7170 1455 (IGP) AT&T Government


Systems Center Markets
12.0.48.0/20 Harvard University cs.cht.vbns.net 1742 (IGP) Harvard University
12.6.208.0/20 AT&T ITS cs.cht.vbns.net 1742 (IGP) Harvard University
18.0.0.0/8 Massachusetts Institute cs.cht.vbns.net 3 (IGP) Massachusetts Institute


of Technology of Technology


Table 2: An example snapshot of BGP routing table (VBNS).


format and converting all pre�x/netmask entries to this for-
mat. As Table 1 shows, some routing tables have a better
view of network routes than others (i.e., they contain more
pre�x/netmask entries) and none of them contain complete
information of all the pre�xes and netmasks (not all routes
are visible to each router). We merge them into a single
pre�x/netmask table for clustering clients in server logs.


3.2 Client cluster identification
After extracting IP addresses from Web server logs and cre-
ating the merged pre�x table from routing table snapshots,
we identify client clusters in the logs. We now describe our
methodology of identifying client clusters and then our ex-
periments on various Web server logs to demonstrate the
applicability and generality of our approach.


3.2.1 Methodology
Clustering of clients involves three steps: (i) extract client
IP addresses from the server log; (ii) perform the longest
pre�x matching (similar to what IP routers do) on each
client IP address using the constructed pre�x/netmask ta-
ble; (iii) classify all the client IP addresses that have the
same longest matched pre�x into one client cluster, which is
identi�ed by the shared pre�x. Suppose we want to cluster
the IP addresses 12.65.147.94, 12.65.147.149, 12.65.146.207,
12.65.144.247, 24.48.3.87, and 24.48.2.166. The longest matched
pre�xes are respectively 12.65.128.0/19, 12.65.128.0/19,
12.65.128.0/19, 12.65.128.0/19, 24.48.2.0/23, and 24.48.2.0/23.
We then classify the �rst four clients into a client cluster
identi�ed by pre�x/netmask 12.65.128.0/19 and the last two
clients into another client cluster identi�ed by pre�x/netmask
24.48.2.0/23. Metrics of client clusters, such as the distri-
butions of number of clients in client clusters, number of
requests issued from within a client cluster, and number of
unique URLs accessed from within a client cluster, can be
generated for various applications (described in Section 4).


3.2.2 Experiments
We conducted our experiments on a very wide range of Web
server logs ranging in number of requests (148K to 46 Mil-
lion), number of clients (40K to 481K), number of unique
URLS (340 to 116K), duration (24 hours to 94 days), lo-
cation (various sites in North and South America), orga-
nization (governmental, non-pro�t, commercial), and na-
ture (transient event logs and popular site logs), in order
to demonstrate the applicability and generality of our ap-
proach. Here, we show the Nagano server log, a 1 day
(February 13, 1998) extract from the 1998 Winter Olympic
Games server log,5 as a primary example to illustrate our
results, with an occasional glimpse at results of other logs.
The results on over a dozen other logs (Apache, Easy World
Wide Web, Sun, Unav) are similar across all experiments [5].


The Nagano server log has a total of 11,665,713 requests
issued by 59,582 clients accessing 33,875 unique URLs. We
extract the IP addresses6 of these clients, run the cluster
identi�cation algorithm and group all of them into 9,853
client clusters. The size of client clusters varies from 1 to
1,343 clients, the number of requests issued from within each
client cluster varies from 1 to 339,632, and clusters access
anywhere from 1 to 8,095 unique URLs.


5In our approach, we use the network pre�x and netmask
information in BGP routing tables as an approximation of
the collection of IP addresses belonging to each network|
this rarely changes and most of the changes are incremental.
The e�ect of age di�erence between the BGP routing table
dumps (used in identifying client clusters) and the server
logs is �xed in the self-correction and adaptation stage of
our approach (discussed later in this section).
6Requests issued from IP address 0.0.0.0, an arbitrary ad-
dress typically used as source address in protocols such as
BOOTP when the client doesn't know its own IP address
were ignored and client 0.0.0.0 was excluded from our ex-
periments.
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Figure 3: The cumulative distribution of clients and
requests in a client cluster for the Nagano server log
(y axis is in log scale): (a) is the cumulative distri-
bution of number of clients in client clusters; (b) is
the cumulative distribution of number of requests
issued from within client clusters.


In order to get more insight on client clusters, we plot the
cumulative distribution of clients and requests in a client
cluster in Figure 3. Figure 3(a) shows the cumulative distri-
bution of the number of clients in a client cluster. We ob-
serve that, although the largest client cluster contains 1,343
clients, more than 95% of client clusters contain less than
100 clients. The cumulative distribution of requests issued
by a client cluster is shown in Figure 3(b), which is more
heavy-tailed than that of the number of clients in a client
cluster as shown in Figure 3(a), implying possible existence
of proxies and/or spiders. Around 90% of the client clusters
issued less than 1,000 requests. Only a few client clusters
are very busy, issuing up to a maximum of 339,632 requests.
We should note that such Zipf-like distributions are common
in a variety of Web measurements [7].


Figures 4(a), (b), and (c) show the distributions of number
of clients in client clusters, number of requests issued from
within client clusters, and number of URLs accessed from
within client clusters, respectively. They are plotted in re-
verse order of number of clients in a cluster (i.e., larger client
clusters are on the left side). From Figures 4(b) and (c), we
see that, while larger client clusters usually issue more re-
quests and access more URLs than smaller client clusters,
there are a number of relatively small client clusters which
issue a signi�cant number of requests (� 1% of the total)
and/or access a large fraction of URLs (� 20% of the total)
at the server. Locating such unusual clusters is useful in
identifying suspected spiders and proxies.


We re-plot the same set of data shown in Figure 4 with
di�erent sorting of clusters (on x axis)|in reverse order of
number of requests. Figures 5(a), (b), and (c) show the dis-
tributions of number of requests issued from within client
clusters, number of clients in client clusters and number
of URLs accessed from within client clusters, respectively.
Comparing Figure 5(a) with Figure 4(a), the results fur-
ther show that the distribution of number of requests issued
from within client clusters is more heavy-tailed than that
of number of clients in client clusters. Figures 5(b) and (c)
show that busy client clusters usually have a large number


of clients and access a large fraction of URLs at the server.
We observe that some busy clusters actually have very small
number of clients and may access very few URLs|these are
also useful measures in identifying spiders and proxies.


Note that Figures 4(a), (b), and (c) are plotted in such a way
that the points at the same position on the x axis correspond
to the same client cluster. For example, cluster 10 (i.e., x
= 10) in Figures 4(a), (b), and (c) refer to the same client
cluster. The same is true for Figure 5.


Although we don't include the detailed results of other server
logs, we provide a glimpse of client cluster distributions of
Apache, EW3, Nagano, and Sun logs in Figure 6. Figures 6
(a) and (b) are the distributions of number of clients and
number of requests in client clusters in reverse order of num-
ber of clients, respectively. Figures 6 (c) and (d) are the
distributions of number of requests and number of clients
in client clusters in reverse order of number of requests, re-
spectively. All observations on client clustering made on
the Nagano server log also apply to every one of the various
other server logs we experimented with. For example, we ob-
serve suspected proxies or spiders in other logs (Figures 6(b)
and (d)).


In summary, our experimental results show that we can
group more than 99.9% of the clients into clusters, with very
few clients not clusterable (i.e., no network pre�xes in our
pre�x table matches the client IP addresses) due to the lack
of proper pre�x/netmask information in the routing table
snapshots. This is �xed in the self-correction and adapta-
tion stage of our approach (discussed in Section 3.5).


3.3 Validation
We now validate our approach of identifying client clusters.
A client cluster may be mis-identi�ed by being either too
large (i.e., containing clients that are not topologically close
or are under di�erent administrative control) or too small
(i.e., other clusters contain clients that belong to the cluster
in question). The simple approach generally errs by produc-
ing clusters that are too small. Our approach can produce
clusters that are too big, but in a lot fewer cases, as we will
see below.


Validation of clusters is fundamentally a di�cult problem,
since the de�nition of a cluster relies on the fuzzy notion
of common administrative control. We use two approaches
to validation, an nslookup-based approach and a traceroute-
based approach. In each case, we test sampled clusters to
determine whether they pass the tests that the approaches
apply.


Nslookup queries Internet domain name servers for informa-
tion about hosts. The nslookup-based validation method
is based on the observation that clients in the same clus-
ter often share a non-trivial su�x in their fully-quali�ed
domain names7. For example, macbeth.cs.wits.ac.za and


7We say that two clients share a non-trivial su�x if the last
n components of their names are same, where a component
of a name is a string separated by \." (e.g., foo.dummy.com
has 3 components: foo, dummy, and com). Suppose there
are m components in the client name, then we use n = 3 if
m � 4, else we use n = 2.
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Figure 4: The client cluster distribution for the Nagano server log plotted in reverse order of number of
clients in a cluster (both x axis and y axis are in log scale): (a) is the distribution of number of clients in
client clusters; (b) is the distribution of the number of requests issued from within client clusters; and (c) is
the distribution of the number of URLs accessed from within client clusters. Note that larger client clusters
are on the left.
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Figure 5: The client cluster distribution for the Nagano server log plotted in reverse order of number of
requests (both x axis and y axis are in log scale): (a) is the distribution of number of requests issued from
within client clusters (re-plot of Figures 4(b)); (b) is the distribution of number of clients in client clusters
(re-plot of Figure 4(a)); and (c) is the distribution of number of URLs accessed from within client clusters
(re-plot of Figure 4(c)).
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Figure 6: Comparison of client cluster distributions of Apache, EW3, Nagano, and Sun server logs (both x
axis and y axis are in log scale): (a) and (b) are the distributions of number of clients and number of requests
in client clusters in reverse order of number of clients, respectively; (c) and (d) are the distributions of number
of requests and number of clients in client clusters in reverse order of number of requests, respectively.
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macabre.cs.wits.ac.za are in the same cluster and their names
share the same su�x cs.wits.ac.za. We therefore propose a
validation method that does an nslookup on each client IP
address in an identi�ed cluster and performs su�x matching
on the names of clients. To pass the nslookup test, all the
clients in a cluster must have matching su�xes. We label a
client cluster to be incorrect if there is even one client that
does not share the same su�x with others. We take sam-
ples (1%) from client clusters of various Web server logs.
Validation results of Apache, Nagano, and Sun server logs
in Table 3 (see [5] for similar results on other server logs)
show that more than 90% of the client clusters pass the val-
idation test using nslookup su�x matching within a cluster.
Note, however, that we are only able to obtain names for
about 50% of the addresses. For the simple approach, only
about 50% of the client clusters pass this validation test.
For instance, among the 111 sampled client clusters in the
Nagano server log, 5 client clusters fail this validation test
by our method. Around 95.4% client clusters pass this vali-
dation test. However, only 57 of the total 111 client clusters
have pre�x length of 24, i.e., only 48.6% client clusters pass
this validation test using the simple approach.


Since nslookup is only done within a cluster, it is possible for
clients with similar su�xes to be present in other clusters.
That is, we do not check whether the identi�ed clusters are
too small. We are looking into merging such clusters as part
of ongoing work.


One reason for mis-identi�cation in our approach is the ex-
istence of suspected national gateways/routers on the Inter-
net (e.g., Croatia, France, Japan), which are recognizable by
the client name. In such cases, additional information about
the clients/networks behind the national gateways/routers
are not available in the routing table. Also, route aggrega-
tion in the routing table may cause mis-identi�cation in our
approach, and may account for approximately 50% of the
mis-identi�cations as observed from Table 3. However, it is
hard to further quantify its actual e�ect on client clustering.


The nslookup-based validation has some limitations. As Ta-
ble 3 shows, around 50% of clients are not locatable via
nslookup in our experiments. This is true for all the logs
and varies only very slightly from time to time with repeated
experiments over a period of time. Possible reasons include
DNS servers not giving out names of machines behind a �re-
wall, machines on the local network acquiring dynamic IP
addresses via a DHCP server (DNS server will not have the
registration record for the dynamic addresses which do not
have a one-to-one mapping to a machine), or an ISP not
having registered any names for its customers. We use an
optimized traceroute to resolve the clients which are not lo-
catable by nslookup in our experiments. We describe the
optimized traceroute next.


The second approach to validating client cluster identi�ca-
tion results is traceroute-based. This test �rst attempts to
resolve the address to a name and if successful, tests for
su�x match as before. If the client name is not resolv-
able, it tests to see whether the clients in the same cluster
share the same routing path su�x. Traceroute attempts
to trace the route an IP packet follows to an Internet host
by launching UDP probe packets with a small maximum


time-to-live (Max ttl variable), and then listening for an
ICMP TIME EXCEEDED response from gateways along
the way. Probes are started with a Max ttl value of one
hop, which is increased one hop at a time until an ICMP
PORT UNREACHABLE message is returned. The ICMP
PORT UNREACHABLE message indicates either that the
host has been located or the maximum hop count has been
reached. By running traceroute on each client, a path to-
wards the designated client is discovered. If two clients sit
in the same network, then it is very likely that packets routed
to them will traverse paths sharing the same su�x, and vice
versa. Traceroute imposes more tra�c load on the Internet
and takes more time to discover routes, but yields more in-
formation on clients (such as RTT and hop count). We are
more interested in either the name of the client or the last
few hops (two in our experiments) on the path towards the
client. For faster path resolution and to reduce the tra�c
load imposed on the Internet, we implemented an optimized
traceroute (in Linux Red Hat 6.0) with two improvements:


� Instead of having a �xed number (q) of probes sent
for each time-to-live (ttl) value independent of ICMP
replies returned, we send only one probe for each ttl
value. If the �rst ICMP reply doesn't provide proper
information, we send out the second probe, continuing
until we get the proper information or the number of
probes reaches q. Thus we send out � q probes for
each ttl.


� The initial value of ttl, does not necessarily have to be
the default of 1. In fact, we can set the initial value of
ttl =Max ttl (we setMax ttl = 30). As such, we only
send one probe with ttl of Max ttl. If the destination
is less than max ttl hops away, traceroute returns the
destination IP address, name (if available), and round
trip time (RTT). Interestingly enough, around 50% of
clients can be resolved in this way, which is consis-
tent with our observation on nslookup results. This
is because traceroute doesn't get a ICMP reply packet
from the designated router which is either unreachable
or unwilling to give out the required information due
to �rewalls.


The advantage of using the optimized traceroute8 on vali-
dation is that we are able to resolve the name and, if that
fails, the path towards the designated client. The resolvabil-
ity (either name or path) on clients is improved from 50%
to 100% in our applications. In addition, the extra tra�c
imposed on network and time spent on resolving clients has
been signi�cantly reduced by our optimized traceroute. We
estimate that we can save 90% of the probes and 80% of
the waiting time by our modi�ed traceroute. The time con-
sumed by sending one probe in the optimized traceroute is
about the same as that of a DNS nslookup.


We run our optimized traceroute on 1% of the sampled client
clusters. After resolving all the sampled clients, we apply
su�x matching on either the name of the client or on the
path towards the client if the client name is not available


8Note that our optimized traceroute is not the same as ping.
Ping does not provide the information we need to validate
client clustering results (e.g., the name of clients).
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Server log Apache Nagano Sun
Total number of client clusters 35563 9853 33468
Number of sampled client clusters 382 111 365
Number of sampled clients 2437 307 2217
Pre�x length range 8 - 29 8 - 28 8 - 29
Number of client clusters of pre�x length 24 191 57 186


DNS nslookup validation
Number of nslookup reachable clients 1470 172 1116
Number of mis-identi�ed client clusters 34 5 22
Number of mis-identi�ed non-US client clusters 21 3 15


Optimized traceroute validation
Number of traceroute reachable clients 2437 307 2217
Number of mis-identi�ed client clusters 35 12 33
Number of mis-identi�ed non-US client clusters 20 7 28


Table 3: Client cluster validation of Apache, Nagano, and Sun logs using DNS nslookup and optimized
traceroute.


(as mentioned earlier, we use either the client's name if it
was resolved or the last few hops on the path towards the
client for validating a cluster). We show validation results
of Apache, Nagano, and Sun server logs in Table 3 (the
results on other server logs are in [5]). Our results show
that 90% of the client clusters pass the traceroute-based
test. Moreover, we use the validation information to improve
the applicability and accuracy of the cluster identi�cation
results. We will discuss this in detail in Section 3.5.


Many real applications will be tolerant to a certain degree
of inaccuracy and an alternative way to validate is to set
a threshold (say 5%) and selectively sample clients. For
example, if 95% of the clients inside the cluster are correctly
identi�ed, we could consider this cluster to be correct. This
selective sampling can be performed in either a client-based
or a request-based manner depending on the application's
criteria. We plan to study selective sampling techniques in
our future work.


Given that the simple approach and our approach pass the
validation tests in 50% and 90% of the samples cases, re-
spectively, we compare the client cluster distributions of the
Nagano server log obtained by the two approaches to illus-
trate the e�ect of cluster mis-identi�cation. The number of
client clusters identi�ed by our approach is 9,853 as com-
pared to 23,523 of the simple approach. The largest client
cluster identi�ed by our approach contains 1,343 hosts (is-
suing 134,963 requests or 1.15%). However, there are only
63 hosts in the largest client cluster identi�ed by the simple
approach (issuing 9,662 requests or 0.08%). We further plot
client cluster distributions of the Nagano server log obtained
by our approach (as dotted curves) and by the simple ap-
proach (as solid curves) in Figure 7. Figures 7(a) and (b)
show the distributions of number of clients in client clusters
in reverse order of number of clients and in reverse order of
number of requests. We observe that the number of client
clusters identi�ed by the simple approach is much larger
than that of our approach. Note that the maximum number
of clients in a client cluster is 256 because of its assumption
of pre�x length of 24. The average size of client clusters
identi�ed by the simple approach is smaller than that of our
approach, as is the variance of the size of client clusters. Fig-
ures 7(c) and (d) show the distribution of number of requests
issued from within client clusters in reverse order of number


of requests and in reverse order of number of clients. The
average number of requests issued from within client clusters
identi�ed by the simple approach is smaller than that of our
approach. The signi�cant di�erences in the client cluster
distributions obtained by our approach and the simple ap-
proach implies that the simulation results based on di�erent
client cluster identi�cation methods may vary a lot.


3.4 Effect of BGP dynamics on client cluster
identification


An update of BGP routing table is triggered by changes in
network reachability and topology, as well as policy changes.
BGP dynamics is a well-known phenomenon which a�ects
the performance of Internet applications [14]. We examine
the impact of BGP dynamics on client cluster identi�cation
results. The experiments are conducted on a timescale of
days. We download routing table snapshots daily. In our
measurements, we de�ne the dynamic pre�x set to be the
set of pre�xes that change during the entire testing period,
i.e., the set of pre�xes which are not in the intersection of
pre�xes of all the routing tables we obtained over the entire
testing period. We further de�ne the maximum e�ect to be
the size of the dynamic pre�x set. The changes from day to
day will typically be much smaller than the maximum e�ect.


We use AADS routing table (Table 4) as an example to illus-
trate the e�ect of BGP dynamics (results for other routing
tables are in [5]). We show measurement results for 1, 4,
7, and 14 day periods on Apache, EW3, Nagano, and Sun
server logs. The AADS routing table entries vary between
16,595 and 17,288 on those days, among which the number
of pre�xes (maximum e�ect) that are not in the intersection
of the routing tables on those days vary between 711 and
1,404. The number of pre�xes used to identify client clus-
ters in the Apache server logs on those days vary from 3,932
to 4,035, and the corresponding maximum e�ects vary from
124 to 227. There are 2,869 client clusters issuing a large
number of requests, among which between 605 and 614 client
clusters are identi�ed using the network pre�xes in AADS
routing table. The maximum e�ects for these busy clusters
vary from 22 to 31. We observe that overall BGP dynam-
ics a�ects less than 3% of client clusters. This result holds
across all the routing tables and all the Web server logs.
Therefore, we believe that, although the BGP routing table
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Figure 7: Comparison of the client cluster distributions of the Nagano server log obtained by our approach
and the simple approach (both x axis and y axis are in log scale): (a) and (b) are the distributions of number
of clients in client clusters in reverse order of number of clients and number of requests, respectively; (c) and
(d) are the distributions of number of requests issued from within client clusters in reverse order of number
of clients and number of requests, respectively.


changes dynamically according to the network environment,
its impact on client cluster identi�cation is very minor, and
�xed in the self-correction and adaptation process (discussed
next).


3.5 Self-correction and adaptation
Besides validating the client cluster results, we use tracer-
oute for two other purposes. In Section 3.2.2, we showed
that more than 99.9% clients in the Web server logs can be
clustered using our method. We have also shown in Sec-
tion 3.3 that both nslookup and traceroute validation results
show that our method passes validation tests in 90% of the
cases. Periodic traceroute results on sampled clients can
be used to further improve the applicability (i.e., identify
the unidenti�ed clients) and accuracy (i.e., correct the mis-
identi�cations) of cluster identi�cation. Periodic sampling
can also be used to make client cluster identifying adaptive
to network dynamics (i.e., changes of IP address allocations
and network topology). For the purpose of identifying un-
identi�ed clients (� 0:1%), we �rst consider each individual
un-identi�ed client to be a single client cluster. Then we
merge them into bigger client clusters gradually according to
traceroute sampling information. Self-correction and adap-
tation is also very important to generate client clusters using
real-time routing information and producing real-time client
cluster identi�cation results. By real-time cluster identify-
ing we mean application of cluster identifying techniques to
very recent server log data (within the last few minutes).


We consider two cases in the self-correction and adaptation
process: (i) if there is more than one cluster which belongs
to the same network, we merge them into one big cluster and
the network pre�x and netmask will be recomputed accord-
ingly; (ii) if there is a cluster which contains clients belong-
ing to more than one network, we partition the cluster into
several clusters based on the traceroute sampling results.


3.6 Other issues
We examine three related issues: partitioning a session into
time periods, identifying server clusters in client and proxy
logs, and clustering client clusters themselves.


To examine how requests issued and unique URLs accessed


from within each client cluster vary during di�erent time
periods, we partition the Nagano server log into four 6-hour
sessions. Although the �rst two sessions are less busy than
the last two ones, all of them show similar patterns in terms
of both the number of requests issued and number of unique
URLs accessed by each client cluster. The observations on
client cluster distributions obtained from the entire server
log still hold for each session indicating that simulations
on a sample of server logs might su�ce. Time partitioning
result details are in [5].


Our method can also be used to identify server clusters in
proxy logs. In a set of servers accessed over a 11-day period
in a large ISP's client trace we found 69,192 unique server IP
addresses, with only 153 (� 0.2% of the total) that were not
clusterable (due to lack of proper network pre�x/netmask
information). Roughly 4% (729 out of 17,192) of the server
clusters received 70% of the 12.4 Million requests. Identi-
fying client and server clusters can aid in engineering and
shaping tra�c in a content distribution application.


After identifying client clusters based on the BGP routing
table information, we can further cluster nearby client clus-
ters into network clusters. We use traceroute to do the higher
level clustering. Typically, we run traceroute on a number
of (r � 1) randomly selected clients in each cluster and do
su�x matching on the path towards each destination net-
work. The second level clustering is useful in applications
such as selective content distribution, proxy placement, and
load balancing.


4. APPLICATIONS OF CLIENT CLUSTER-
ING


The client cluster identi�cation mechanism is applicable to
Web caching, server replication, content distribution, server-
based access prediction, and network management. The
real-time client clustering information (i.e., the client clus-
ters results identi�ed from recent data logs using real-time
routing information) gives the service provider a global view
of where their customers are located and how their demands
change from time to time. This is crucial information for
service providers to enhance their services, reduce costs,
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Period (days) 0 1 4 7 14
AADS pre�x 16595 16669 16704 16792 17288
Maximum e�ect 711 785 820 908 1404


Apache pre�x (total 35563) 3932 3935 3929 3950 4035
Maximum e�ect 124 127 121 142 227
Apache busy clusters (total 2869) 605 603 603 605 614
Maximum e�ect 22 20 20 22 31


EW3 pre�x (total 24921) 2592 2588 2582 2604 2682
Maximum e�ect 75 71 65 87 165
EW3 busy clusters (total 2062) 385 386 388 390 412
Maximum e�ect 4 5 7 9 31


Nagano pre�x (total 9853) 663 665 663 673 726
Maximum e�ect 22 24 22 32 85
Nagano busy clusters (total 717) 93 94 93 93 105
Maximum e�ect 2 3 2 2 14


Sun pre�x (total 33468) 3646 3651 3640 3669 3756
Maximum e�ect 124 129 118 147 234
Sun busy clusters (total 2536) 527 525 529 530 542
Maximum e�ect 15 13 17 18 30


Table 4: The e�ect of AADS dynamics on client cluster identifying.


and extend global presence. We present one application of
clustering|Web caching. While it is clearly more likely for
site administrators to know the need for placing proxies, the
general question of moving content closer to users and the
positioning of proxies is an interesting one to address. Our
techniques are equally likely to apply to positioning content
distribution servers closer to the busy client clusters.


4.1 Web caching simulation
We examine the usefulness of network aware clustering in
a Web caching simulation and contrast it with the simple
approach. We present our approach to identifying spiders
and proxies and then describe proper placement of proxies
between clients and servers.


4.1.1 Client classification
We classify clients into visible clients (visible to the Web
server, representing a majority), hidden clients (hidden be-
hind proxies and thus not visible to the server), and spiders.
All visible clients belonging to the same client cluster will
share one set of proxies in the Web caching system. The
goal of our Web caching system is to improve the Web ac-
cess quality perceived by both visible and hidden clients.
First, we identify spiders and eliminate them from server
logs. Spiders blindly visit (almost) every resource in a Web
site. Clients in the same cluster with a spider will not bene�t
from a proxy in front of the cluster (as shown in Figure 8(a))
since the spider will issue most of the requests and a majority
of the URLs accessed by it will not be accessed repeatedly.
Next, we locate existing proxies since (Figure 8(b)) hidden
clients behind them may su�er longer latencies due to being
an additional hop away from the origin server. These hid-
den clients will only bene�t from a new proxy when most of
their requested pages, which are not available at the exist-
ing proxy, are cached at the new proxy (i.e., those pages are
also requested by normal clients in the same cluster as the
existing proxy).


4.1.2 Identifying spiders/proxies


A spider cluster often issues a very large amount of requests
within a short period and the host(s) within that client clus-
ter issuing a large percentage of the requests is suspected to
be a spider. The overall access pattern of clients (consisting
of the number of unique URLs accessed, the arrival time
of the requests, and the request distribution inside a client
cluster) is shared by a proxy but not by a spider.


The number of unique URLs accessed can identify some
spiders, but may not be enough to identify all of them.
The spider in the Sun server log, which is in a cluster of
27 hosts, issued 692,453 requests and accessed 4,426 out
of 116,274 unique URLs. We can distinguish spiders from
clients/proxies by examining the request arrival time. From
Figure 9(c), we don't see any similarity between the access
pattern of the spider and that of the entire server log shown
in Figure 9(a). There are certain correspondences between
the access pattern of the proxy shown in Figure 9(b) and
that of the entire server log. Each spike observed in the
proxy access pattern matches the daily spike in the access
pattern of the entire log.


If a client cluster contains both spiders and normal clients,
the requests issued by hosts within the cluster will have an
uneven distribution among them and can help identify a
spider. The request distribution of the cluster containing a
spider is shown in Figure 10. Almost all the requests are
issued by the spider. We thus need to combine examina-
tion of request arrival time and the distribution of requests
within a cluster to identify spiders. There are no spiders in
the Nagano server log|unsurprising given that it is a single
day's log of a transient event site.


Unlike di�erentiating a spider from a proxy and a client, it
is harder to identify proxies among a group of clients. A
proxy will mimic the access pattern of clients behind it (see
Figure 9). One di�erence between a proxy and a client is
that the proxy may issue more requests and have a shorter
\think" time between requests than a client does. For ex-
ample, we identi�ed a client cluster in the Sun server log
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Figure 8: Eliminating spiders and existing proxies from the server logs: (a) spiders; (b) existing proxies.
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Figure 9: Histogram of the requests in the Sun server log: (a) the entire server log, (b) a client cluster
containing a proxy, (c) a client cluster containing a spider.
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Figure 10: The client requests distribution of a
client cluster containing a spider in the Sun server
log which issues 692,453 requests (99.79% of all re-
quests in the cluster).


issuing 326,566 requests. It had only two clients in it is-
suing 2,699 and 323,867 requests, respectively. We suspect
that the second client is a proxy. In the Nagano server log
a client cluster containing only one client issued 77,311 re-
quests. Proxies can also be seen in Figures 4(b) and 5(b)
in Section 3. Our method depends on the number of clients
sharing the proxy and their access pattern. We have not
found a solution guaranteed to locate all proxies correctly.


Besides using access patterns, the User-Agent �eld of the
request, if present in a server log, is also useful in di�eren-
tiating proxies. The User-Agent �eld includes information
about the particular browser, Operating System version and
hardware used by the client initiating the request. If there
are a lot of di�erent User-Agent �elds from the same host
responsible for a lot of requests, then it is very likely that
the host is a proxy.


4.1.3 Thresholding client clusters
After identifying and eliminating possible spiders and prox-
ies from the server log, we �lter out uninteresting client
clusters by thresholding on the number of requests issued
from within a client cluster. After reverse sorting based
on the number of requests issued from within client clus-
ters, we retain busy client clusters|clusters whose total re-
quests added up to at least 70% of the total requests in
the server log. Such a thresholding reduced the number of
client clusters dramatically with the smallest client cluster
included issuing at least 2,744 requests. In the Nagano log
there were only 717 busy client clusters out of 9,853 (see
Table 5). These busy client clusters have 32,691 clients and
issue 8,167,590 requests. The size of busy client clusters
ranges from 1 to 1,343 clients and the number of requests
issued by busy client clusters ranges from 2,744 to 339,632.
The size of less-busy client clusters, �ltered out, ranges from
1 to 46 clients and the number of requests issued by less-busy
client clusters ranges from 1 to 2,741. The results of thresh-
olding client clusters of other server logs are similar to the
Nagano log and are provided in [5].


Similar thresholding on clusters identi�ed using the simple
approach leads 3,242 busy client clusters (out of 23,523)
in the Nagano log, with the smallest cluster issuing 696
requests. The busy clusters have 30,774 clients, issuing
8,167,335 requests (70% of the total). The size of busy client
clusters ranges from 4 to 63 clients and the number of re-
quests issued by them ranges from 696 to 339,632. The size
of less-busy client clusters ranges from 1 to 4 clients and the
number of requests issued by less-busy client clusters ranges
from 1 to 695. The results are very di�erent from that of the
network-aware approach, which implies the simple approach
does not do a good job on grouping clients.
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Approach Network-aware Simple
Total number of client clusters 9853 23523
Threshold (requests per client cluster) 2744 696
Number of busy client clusters 717 (32691 clients, 8167590 requests) 3242 (30774 clients, 8167335 requests)
Busy client clusters (requests) 2744 - 339632 (1 - 1343 clients) 696 - 339632 (4 - 63 clients)
Less-busy client clusters (requests) 1 - 2741 (1 - 46 clients) 1 - 695 (1 - 4 clients)


Table 5: Experimental results of thresholding client clusters on the Nagano server log.


4.1.4 Proxy placement
One way to place proxies is to assign one or more proxies for
each client cluster based on metrics such as the number of
clients, number of requests issued, the URLs accessed, or the
number of bytes fetched from server. The proxies assigned
to clients in the same client cluster form a proxy cluster
and would co-operate with each other. Alternatively, we can
place a proxy in front of each client cluster and further group
proxies into proxy clusters according to their AS numbers
and geographical locations. All proxies belonging to the
same AS and located geographically nearby will be grouped
together to form a proxy cluster. The �rst approach is easier
to implement while the second one, though more practical,
is complicated. Here, we only address the �rst approach in
our experiments.


4.1.5 Experimental results
We use the client cluster results in the trace-driven simu-
lation to evaluate the bene�t of proxy caching. We place
proxies in front of each client cluster. We implement the
Piggyback Cache Validation [12] scheme with a �xed ttl
(time-to-live) expiration period at each proxy cache. By
default, a cached resource is considered stale once a pe-
riod of one hour has elapsed. When the expiration time is
reached for this resource, a validation check is piggybacked
on a subsequent request to its server. If the resource is
accessed after its expiration, but before validation, then a
GET If-Modified-Since request is sent to the server for this
resource. We use LRU as the cache replacement policy. Our
purpose is not to evaluate the PCV scheme, but to illustrate
the applicability of client clustering on Web caching simu-
lation and to determine the e�ect of di�erent client cluster
identi�cation approaches on simulation results.


In our simulation, we set ttl to be 1 hour, vary cache size at
each proxy and examine two performance metrics: hit ratio
and byte hit ratio. Varying ttl to 5, 10, and 15 minutes yields
similar results. We compare the results of simulations on
the client clusters obtained by our approach and the simple
approach. Our simulations are conducted on several logs [5]
though we only show the results on the Nagano server log9.


Our evaluation of simulation results consists of two parts:
server performance and proxy performance. To evaluate
server performance, we vary the cache size at each proxy
from 100 KB to 100 MB and examine total hit ratio and
byte hit ratio observed at server. Figure 11 shows the sim-
ulation results of server performance on the Nagano server
log. The curve with a '*' marker shows the results of our
approach and the curve with a '+' marker shows the results


9Requests to resources accessed by clients less than 10 times
are ignored.
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Figure 11: Simulation results on Web server perfor-
mance vs proxy cache size of the Nagano server log
(x axis is in log scale): (a) is the total hit-ratio, (b)
is the total byte hit ratio.


of the simple approach. Figures 11(a) and (b) show the to-
tal hit ratio and byte hit ratio observed at server (i.e., the
ratio and byte ratio of requests served by local proxies), re-
spectively. Both hit ratio and byte hit ratio increase as the
proxy cache size increases. The results show that the simple
approach under-estimate (around 10%) both hit ratio and
byte hit ratio observed at server when local proxy cache size
is large (e.g., > 700KB). The hit ratio (i.e., up to 60 � 75%)
obtained from our simulation is greater than typical cache
hit rates of around 40% [2] due to the proxies in our simula-
tion being dedicated to one typical server. The client access
and resource updating pattern of the Nagano event log are
di�erent than other logs. We didn't observe a high hit ratio
on all the logs.


To evaluate proxy performance, we �x the cache size as in-
�nite and examine the hit ratio and byte hit ratio at each
proxy (Figure 12). The solid curves show the results of our
approach and the dotted curves show the results of the sim-
ple approach. We only show the results of top 100 client
clusters in the reverse order of number of requests (i.e., the
�rst 100 client cluster if we ordered them in the reverse or-
der of number of requests issued). Figures 12(a) and (b)
show the number of requests and size (in KB) of requests is-
sued in client clusters in reverse order of number of requests,
respectively. Figures 12(c) and (d) show the hit ratio and
byte hit ratio observed at each proxy. The great di�erences
of the client requests and proxy hit ratio results got from
our approach and those obtained from the simple approach
demonstrate that the simple approach fails to properly eval-
uate potential bene�t of proxy caching.


To summarize, the signi�cant di�erences shown in simula-
tion results demonstrate that the simple approach is not
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Figure 12: Simulation results on proxy cache performance of the top 100 client clusters in the Nagano server
log (x axis is in log scale): (a) and (b) are the number of requests and size of requested resources in client
clusters in reverse order of number of requests, respectively; (c) and (d) are the proxy cache hit ratio and
byte hit ratio of client clusters in reverse order of number of requests, respectively.


able to evaluate bene�ts of Web caching schemes or the cor-
responding overhead (both at server and at proxies) well,
and hence, fails to serve as a guide on solving problems
such as proxy placement. The simulation results from our
network-aware approach are more realistic, and is useful for
designing and evaluating Web caching systems. For exam-
ple, knowing the location of clients and their demands, a
Web site can better provision its service. While we only
address simulation of Web caching system with one server
and multiple proxies, we can also simulate multiple servers
and multiple proxies by merging more server logs collected
at the same time.


4.2 Other applications of client clustering
Besides Web caching, client clustering is also useful in sev-
eral other applications. Real-time clustering enables content
distribution service providers to deliver the right content to
the right customer at the right time. As a service replica-
tion mechanism, better service can be provided by placing
replicated servers (e.g., mirror sites) at hot spots to accom-
modate customers' demands. Also, with the knowledge of
customer's location and the tra�c load origination, the ser-
vice providers can to do better load balancing by provision-
ing in advance.


5. RELATED WORK
We are not aware of any work that uses BGP routing in-
formation to do clustering of clients for the range of ap-
plications we have examined. Simply using nslookup to do
clustering is both expensive and unlikely to yield full results.
A clustering model based on distance between servers and
clients [6] was used to lower the cost of document dissemina-
tion; the implementation used traceroute. Using traceroute
along the lines of [13] (although they use it for a di�erent
purpose) or [6] is also more expensive than using routing
table information. In particular it is not feasible for using
it under real-time considerations, e.g., when a Web event is
in progress. Several e�orts are underway at research and
product levels in improving Web caching and content distri-
bution. At the DNS layer some companies (e.g., Akamai [1],
Digital Island [10]) use client's location to serve content from
a nearby site to lower load on the server and user perceived
latency. The clustering methodology could be used by such
companies.


6. CONCLUSION AND FUTURE WORK
We have proposed a novel way to identify client clusters us-
ing BGP routing information. Experimental results show
that our method is able to group more than 99.9% of the
clients captured in a wide variety of server logs into clusters.
Sampling validation results demonstrate that our method
passes validation tests in over 90% of the sampled cases. A
self-correction and adaptation mechanism was also proposed
to improve the applicability and accuracy of the initial clus-
ter identi�cation results. The entire cluster identi�cation
process can be done in an automated fashion|moving from
a server log to a set of interesting client clusters. The cluster
information can be used in applications such as content dis-
tribution, caching, and network management. A useful by-
product is identi�cation of spiders and proxies among Web
clients by examining the access patterns of corresponding
client clusters. Our methodology is immune to BGP dy-
namics, independent of the range and diversity of server
logs, and computationally non-intensive. Ongoing work in-
cludes using information on ASes to reduce the error ratio
of client cluster identi�cation.
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