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ABSTRACT
Content delivery networks must balance a number of trade-offs
when deciding how to direct a client to a CDN server. Whereas
DNS-based redirection requires a complex global traffic manager,
anycast depends on BGP to direct a client to a CDN front-end. Any-
cast is simple to operate, scalable, and naturally resilient to DDoS
attacks. This simplicity, however, comes at the cost of precise con-
trol of client redirection. We examine the performance implications
of using anycast in a global, latency-sensitive, CDN. We analyze
millions of client-side measurements from the Bing search service
to capture anycast versus unicast performance to nearby front-ends.
We find that anycast usually performs well despite the lack of pre-
cise control but that it directs roughly 20% of clients to a suboptimal
front-end. We also show that the performance of these clients can
be improved through a simple history-based prediction scheme.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—Internet; C.4 [Performance of Systems]: Mea-
surement techniques

Keywords
Anycast; CDN; Measurement;

1. INTRODUCTION
Content delivery networks are a critical part of Internet infras-

tructure. CDNs deploy front-end servers around the world and
direct clients to nearby, available front-ends to reduce bandwidth,
improve performance, and maintain reliability. We will focus on
a CDN architecture which directs the client to a nearby front-end,
which terminates the client’s TCP connection and relays requests to
a backend server in a data center. The key challenge for a CDN is
to map each client to the right front-end. For latency-sensitive ser-
vices such as search results, CDNs try to reduce the client-perceived
latency by mapping the client to a nearby front-end.

CDNs can use several mechanisms to direct the client to a front-
end. The two most popular mechanisms are DNS and anycast.
DNS-based redirection was pioneered by Akamai. It offers fine-
grained and near-real time control over client-front-end mapping,
but requires considerable investment in infrastructure and opera-
tions [35].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
IMC’15, October 28–30, 2015, Tokyo, Japan.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3848-6/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2815675.2815717.

Some newer CDNs like CloudFlare rely on anycast [1], announc-
ing the same IP address(es) from multiple locations, leaving the
client-front-end mapping at the mercy of Internet routing protocols.
Anycast offers only minimal control over client-front-end mapping
and is performance agnostic by design. However, it is easy and
cheap to deploy an anycast-based CDN – it requires no infrastruc-
ture investment, beyond deploying the front-ends themselves. The
anycast approach has been shown to be quite robust in practice [23].

In this paper, we aim to answer the questions: Does anycast direct
clients to nearby front-ends? What is the performance impact of
poor redirection, if any? To study these questions, we use data from
Bing’s anycast-based CDN [23]. We instrumented the search stack
so that a small fraction of search response pages carry a JavaScript
beacon. After the search results display, the JavaScript measures
latency to four front-ends– one selected by anycast, and three nearby
ones that the JavaScript targets. We compare these latencies to
understand anycast performance and determine potential gains from
deploying a DNS solution.

Our results paint a mixed picture of anycast performance. For
most clients, anycast performs well despite the lack of centralized
control. However, anycast directs around 20% of clients to a sub-
optimal front-end. When anycast does not direct a client to the best
front-end, we find that the client usually still lands on a nearby alter-
native front-end. We demonstrate that the anycast inefficiencies are
stable enough that we can use a simple prediction scheme to drive
DNS redirection for clients underserved by anycast, improving per-
formance of 15%-20% of clients. Like any such study, our specific
conclusions are closely tied to the current front-end deployment of
the CDNwemeasure. However, as the first study of this kind that we
are aware of, the results reveal important insights about CDN per-
formance, demonstrating that anycast delivers optimal performance
for most clients.

2. CLIENT REDIRECTION
A CDN can direct a client to a front-end in multiple ways.

DNS: The client will fetch a CDN-hosted resource via a hostname
that belongs to the CDN. The client’s local DNS resolver (LDNS),
typically configured by the client’s ISP, will receive the DNS request
to resolve the hostname and forward it to the CDN’s authoritative
nameserver. The CDN makes a performance-based decision about
what IP address to return based on which LDNS forwarded the
request. DNS redirection allows relatively precise control to redirect
clients on small timescales by using small DNS cache TTL values.

Since a CDN must make decisions at the granularity of LDNS
rather than client, DNS-based redirection faces some challenges.
An LDNSmay be distant from the clients that it serves or may serve
clients distributed over a large geographic region, such that there
is no good single redirection choice an authoritative resolver can
make. This situation is very common with public DNS resolvers
such as Google Public DNS and OpenDNS, which serve large, ge-
ographically disparate sets of clients [17]. A proposed solution to
this issue is the EDNS client-subnet-prefix standard (ECS) which
allows a portion of the client’s actual IP address to be forwarded
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to the authoritative resolver, allowing per-prefix redirection deci-
sions [21].
Anycast: Anycast is a routing strategy where the same IP address
is announced from many locations throughout the world. Then
BGP routes clients to one front-end location based on BGP’s notion
of best path. Because anycast defers client redirection to Internet
routing, it offers operational simplicity. Anycast has an advantage
over DNS-based redirection in that each client redirection is handled
independently – avoiding the LDNS problems described above.

Anycast has some well-known challenges. First, anycast is un-
aware of network performance, just as BGP is, so it does not react
to changes in network quality along a path. Second, anycast is un-
aware of server load. If a particular front-end becomes overloaded,
it is difficult to gradually direct traffic away from that front-end,
although there has been recent progress in this area [23]. Simply
withdrawing the route to take that front-end offline can lead to cas-
cading overloading of nearby front-ends. Third, anycast routing
changes can cause ongoing TCP sessions to terminate and need to
be restarted. In the context of the Web, which is dominated by
short flows, this does not appear to be an issue in practice [31, 23].
Many companies, including Cloudflare, CacheFly, Edgecast, and
Microsoft, run successful anycast-based CDNs.
OtherRedirectionMechanisms: Whereas anycast andDNS direct
a client to a front-end before the client initiates a request, the re-
sponse from a front-end can also direct the client to a different server
for other resources, using, for example, HTTP status code 3xx or
manifest-based redirection common for video [4]. These schemes
add extra RTTs, and thus are not suitable for latency-sensitive Web
services such as search. We do not consider them further in this
paper.

3. METHODOLOGY
Our goal is to answer two questions: 1) How effective is anycast

in directing clients to nearby front-ends? And 2) How does anycast
performance compare against the more traditional DNS-based uni-
cast redirection scheme? We experiment with Bing’s anycast-based
CDN to answer these questions. The CDN has dozens of front end
locations around the world, all within the same Microsoft-operated
autonomous system. We use measurements from real clients to
Bing CDN front-ends using anycast and unicast. In § 4, we com-
pare the size of this CDN to others and show how close clients are
to the front ends.

3.1 Routing Configuration
All test front-ends locations have both anycast and unicast IP

addresses.
Anycast: Bing is currently an anycast CDN. All production search
traffic is current served using anycast from all front-ends.

Unicast: We also assign each front-end location a unique
/24 prefix which does not serve production traffic. Only the routers
at the closest peering point to that front-end announce the prefix,
forcing traffic to the prefix to ingress near the front-end rather than
entering Microsoft’s backbone at a different location and traversing
the backbone to reach the front-end. This routing configuration
allows the best head-to-head comparison between unicast and
anycast redirection, as anycast traffic ingressing at a particular
peering point will also go to the closest front-end.

3.2 Data Sets
We use both passive and active measurements in our study, as

discussed below.

3.2.1 Passive Measurements
Bing server logs provide detailed information about client re-

quests for each search query. For our analysis we use the client IP
address, location, and what front-end was used during a particular
request. This data set was collected on the first week of April 2015
and represents many millions of queries.

3.2.2 Active Measurements
To actively measure CDN performance from the client, we inject

a JavaScript beacon into a small fraction of Bing Search results.
After the results page has completely loaded, the beacon instructs
the client to fetch four test URLs. These URLs trigger a set of DNS
queries to our authoritative DNS infrastructure. The DNS query
results are randomized front-end IPs for measurement diversity,
which we discuss more in § 3.3.

The beacon measures the latency to these front-ends by down-
loading the resources pointed to by the URLs, and reports the results
to a backend infrastructure. Our authoritativeDNS servers also push
their query logs to the backend storage. Each test URL has a glob-
ally unique identifier, allowing us to join HTTP results from the
client side with DNS results from the server side [34].

The JavaScript beacon implements two techniques to improve
quality ofmeasurements. First, to remove the impact ofDNS lookup
from our measurements, we first issue a warm-up request so that
the subsequent test will use the cached DNS response. While DNS
latency may be responsible for some aspects of poor Web-browsing
performance [5], in this work we are focusing on the performance
of paths between client and front-ends. We set TTLs longer than
the duration of the beacon. Second, using JavaScript to measure
the elapsed time between the start and end of a fetch is known to not
be a precise measurement of performance [32], whereas the W3C
Resource Timing API [29] provides access to accurate resource
download timing information from compliant Web browsers. The
beacon first records latency using the primitive timings. Upon
completion, if the browser supports the resource timing API, then
the beacon substitutes the more accurate values.

We study measurements collected from many millions of search
queries over March and April 2015. We aggregated client IP ad-
dresses from measurements into /24 prefixes because they tend to
be localized [27]. To reflect that the number of queries per /24 is
heavily skewed across prefixes [35], for both the passive and ac-
tive measurements, we present some of our results weighting the
/24s by the number of queries from the prefix in our corresponding
measurements.

3.3 Choice of Front-ends to Measure
The main goal of our measurements is to compare the perfor-

mance achieved by anycast with the performance achieved by di-
recting clients to their best performing front-end. Measuring from
each client to every front-end would introduce too much overhead,
but we cannot know a priori which front-end is the best choice for
a given client at a given point in time.

We use three mechanisms to balance measurement overhead with
measurement accuracy in terms of uncovering the best performing
choices and obtaining sufficient measurements to them. First, for
each LDNS,we consider only the ten closest front-ends to the LDNS
(based on geolocation data) as candidates to consider returning to
the clients of that LDNS. Recent work has show that LDNS is a
good approximation of client location: excluding 8% of demand
from public resolvers, only 11-12% of demand comes from clients
who are further than 500km from their LDNS [17]. In Figure 1, we
will show that our geolocation data is sufficiently accurate that the
best front-ends for the clients are generally within that set. Second,

532



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200

C
D

F 
of

 /
2
4
s

Min Latency (ms)

9 front-ends
7 front-ends
5 front-ends
3 front-ends
1 front-end

Figure 1: Diminishing returns of measuring to additional front-ends.
The close grouping of lines for the 5th+ closest front-ends suggests that
measuring to additional front-ends provides negligible benefit.

to further reduce overhead, each beacon only makes four measure-
ments to front-ends: (a) a measurement to the front-end selected
by anycast routing; (b) a measurement to the front-end judged to be
geographically closest to the LDNS; and (c-d) measurements to two
front-ends randomly selected from the other nine candidates, with
the likelihood of a front-end being selected weighted by distance
from the client LDNS (e.g. we return the 3rd closest front-end with
higher probability than the 4th closest front-end). Third, for most
of our analysis, we aggregate measurements by /24 and consider
distributions of performance to a front-end, so our analysis is robust
even if not every client measures to the best front-end every time.

To partially validate our approach, Figure 1 shows the distribution
of minimum observed latency from a client /24 to a front-end. The
labeled N th line includes latency measurements from the nearest
N front-ends to the LDNS. The results show decreasing latency
as we initially include more front-ends, but we see little decrease
after adding five front-ends per prefix, for example. So, we do not
expect that minimum latencies would improve for many prefixes if
we measured to more than the nearest ten front-ends that we include
in our beacon measurements.

4. CDN SIZE AND GEO-DISTRIBUTION
The results in this paper are specific to Bing’s anycast CDN de-

ployment. In this sectionwe characterize the size of the deployment,
showing that our deployment is of a similar scale–a few dozens of
front-end server locations–to most other CDNs and in particular
most anycast CDNs, although it is one of the largest deployments
within that rough scale. We then measure what the distribution of
these dozens of front-end locations yields in terms of the distance
from clients to the nearest front-ends. Our characterization of the
performance of this CDN is an important first step towards under-
standing anycast performance. An interesting direction for future
work is to understand how to extend these performance results to
CDNs with different numbers and locations of servers and with
different interdomain connectivity [18].

We compare our CDN to others based on the number of server
locations, which is one factor impacting CDN and anycast per-
formance. We examine 21 CDNs and content providers for which
there is publicly available data [3]. Four CDNs are extreme outliers.
ChinaNetCenter and ChinaCache each have over 100 locations in
China. Previous research found Google to have over 1000 locations
worldwide [16], and Akamai is generally known to have over 1000
as well [17]. While this scale of deployment is often the popular
image of a CDN, it is in fact the exception. Ignoring the large Chi-
nese deployments, the next largest CDNs we found public data for
are CDNetworks (161 locations) and SkyparkCDN (119 locations).
The remaining 17 CDNs we examined (including ChinaNetCenter’s
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Figure 2: Distances in kilometers (log scale) from volume-weighted
clients to nearest front-ends.

and ChinaCache’s deployments outside of China) have between 17
locations (CDNify) and 62 locations (Level3). In terms of number
of locations and regional coverage, the Bing CDN is most similar
to Level3 and MaxCDN. Well-known CDNs with smaller deploy-
ments include Amazon CloudFront (37 locations), CacheFly (41
locations), CloudFlare (43 locations) and EdgeCast (31 locations).
CloudFlare, CacheFly, and EdgeCast are anycast CDNs.

To give some perspective on the density of front-end distribu-
tion, Figure 2 shows the distance from clients to nearest front-ends,
weighted by client Bing query volumes. The median distance of the
nearest front-end is 280 km, of the second nearest is 700 km, and
of fourth nearest is 1300 km.

5. ANYCAST PERFORMANCE
We use measurements to estimate the performance penalty any-

cast pays in exchange for simple operation. Figure 3 is based on
millions of measurements, collected over a period of a few days,
and inspired us to take on this project.

As explained in § 3, each execution of the JavaScript beacon
yields four measurements, one to the front-end that anycast selects,
and three to nearby unicast front-ends. For each request, we find the
latency difference between anycast and the lowest-latency unicast
front-end. Figure 3 shows the fraction of requests where anycast
performance is slower than the best of the three unicast front-ends.
Most of the time, in most regions, anycast does well, performing as
well as the best of the three nearby unicast front-ends. However,
anycast is at least 25ms slower for 20% of requests, and just below
10% of anycast measurements are 100ms or more slower than the
best unicast for the client.

This graph suggests possible benefits in using DNS-based redi-
rection for some clients, with anycast for the rest. Note that this
is not an upper bound: to derive that, we would have to poll all
front-ends in each beacon execution, which is too much overhead.
There is also no guarantee that a deployed DNS-based redirection
systemwill be able to achieve the performance improvement seen in
Figure 3 – to do so the DNS-based redirection system would have to
be practically clairvoyant. Nonetheless, this result was sufficiently
tantalizing for us to study anycast performance in more detail, and
seek ways to improve it.
Examples of poor anycast routes: A challenge in understanding
anycast performance is figuring out why clients are being directed
to distant or poor performing edges front-ends. To troubleshoot,
we used the RIPE Atlas [2] testbed, a network of over 8000 probes
predominantly hosted in home networks. We issued traceroutes
from Atlas probes hosted within the same ISP-metro area pairs
where we have observed clients with poor performance. We observe
in our analysis that many instances fall into one of two cases. 1)
BGP’s lack of insight into the underlying topology causes anycast
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Figure 3: The fraction of requests where the best of three different
unicast front-ends out-performed anycast.

to make suboptimal choices and 2) intradomain routing policies of
ISPs select remote peering points with our network.

In one interesting example, a client was roughly the same distance
from two border routers announcing the anycast route. Anycast
chose to route towards router A. However, internally in our network,
router B is very close to a front-end C, whereas router A has a
longer intradomain route to the nearest front-end, front-endD. With
anycast, there is no way to communicate [39] this internal topology
information in a BGP announcement.

Several other examples included cases where a client is nearby a
front-end but the ISP’s internal policy chooses to hand off traffic at a
distant peering point. Microsoft intradomain policy then directs the
client’s request to the front-end nearest to the peering point, not to
the client. Some examples we observed of this was an ISP carrying
traffic from a client in Denver to Phoenix and another carrying
traffic from Moscow to Stockholm. In both cases, direct peering
was present at each source city.

Intrigued by these sorts of case studies, we sought to understand
anycast performance quantitatively. The first question we ask is
whether anycast performance is poor simply because it occasionally
directs clients to front-ends that are geographically far away, as was
the case when clients in Moscow went to Stockholm.
Does anycast direct clients to nearby front-ends? In a large
CDN with presence in major metro areas around the world, most
ISPs will see BGP announcements for front-ends from a number of
different locations. If peering among these points is uniform, then
the ISP’s least cost path from a client to a front-end will often be the
geographically closest. Since anycast is not load or latency aware,
geographic proximity is a good indicator of expected performance.

Figure 4 shows the distribution of the distance from client to
anycast front-end for all clients in one day of production Bing traffic.
One line weights clients by query volume. Anycast is shown to
perform 5-10% better at all percentiles when accounting for more
active clients. We see that about 82% of clients are directed to a
front-end within 2000 km while 87% of client volume is within
2000 km.

The second pair of lines in Figure 4, labeled “Past Closest”,
shows the distribution of the difference between the distance from
a client to its closest front-end and the distance from the client to
the front-end anycast directs to. About 55% of clients and weighted
clients have distance 0, meaning they are directed to the nearest
front-end. Further, 75% of clients are directed to a front-end within
around 400 km and 90% are within 1375 km of their closest. This
supports the idea that, with a dense front-end deployment such as
is achievable in North America and Europe, anycast directs most
clients to a relatively nearby front-end that should be expected to
deliver good performance, even if it is not the closest.

From a geographic view, we found that around 10-15% of /24s
are directed to distant front-ends, a likely explanation for poor per-
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Figure 5: Daily poor-path prevalence during April 2015 showing what
fraction of client /24s see different levels of latency improvement over
anycast when directed to their best performing unicast front-end.

formance.1 Next we examine how common these issues are from
day-to-day and how long issues with individual networks persist.
Is anycast performance consistently poor? We first consider
whether significant fractions of clients see consistently poor per-
formance with anycast. At the end of each day, we analyzed all
collected client measurements to find prefixes with room for im-
provement over anycast performance. For each client /24, we cal-
culate the median latency between the prefix and each measured
unicast front-end and anycast.

Figure 5 shows the prevalence of poor anycast performance each
day during April 2015. Each line specifies a particular minimum
latency improvement, and the figure shows the fraction of client
/24s each day for which some unicast front-end yields at least that
improvement over anycast. On average, we find that 19% of prefixes
see some performance benefit from going to a specific unicast front-
end instead of using anycast. We see 12% of clients with 10ms or
more improvement, but only 4% see 50ms or more.

Poor performance is not limited to a few days–it is a daily con-
cern. We next examinewhether the same client networks experience
recurring poor performance. How long does poor performance per-
sist? Are the problems seen in Figure 5 always due to the same
problematic clients?

Figure 6 shows the duration of poor anycast performance dur-
ing April 2015. For the majority of /24s categorized as having
poor-performing paths, those poor-performing paths are short-lived.
Around 60% appear for only one day over the month. Around 10%
of /24s show poor performance for 5 days or more. These days
are not necessarily consecutive. We see that only 5% of /24s see
continuous poor performance over 5 days or more.

These results show that while there is a persistent amount of poor
anycast performance over time, the majority of problems only last

1No geolocation database is perfect. A fraction of very long client-to-front-end dis-
tances may be attributable to bad client geolocation data.
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Figure 7: The cumulative fraction of clients that have changed front-
ends at least once by different points in a week

for a single day. Next we look at how much of poor performance
can be attributed to clients frequently switching between good and
poor performing front-ends.
Front-end Affinity: Recurrent front-end selection changes for user
over time may indicate route stability issues which can lead to any-
cast performance problems. We refer to how “attached" particular
clients are to a front-end as front-end affinity. In this section, we
analyze our passive logs.

Figure 7 shows the cumulative fraction of clients that have
switched front-ends at least once by that time of the week. Within
the first day, 7% of clients landed on multiple front-ends. An
additional 2-4% clients see a front-end change each day until the
weekend, where there is very little churn, less than .5%. This
could be from network operators not pushing out changes during
the weekend unless they have to. From the weekend to the begin-
ning of the week, the amount of churn increases again to 2-4% each
day. Across the entire week, 21% of clients landed on multiple
front-ends, but the vast majority of clients were stable. We discuss
potential solutions to this more at the end of §6. We observe that
the number of client front-end switches is slightly higher in a one
day snapshot compared to the 1.1-4.7% reported in previous work
on DNS instance-switches in anycast root nameservers [20, 33]. A
likely contributing factor is that our anycast deployment is around
10 times larger than the number of instances present in K root name
server at the time of that work.

Figure 8 shows the change in the client-to-front-end distance
when the front-end changes. This shows that when the majority of
clients switch front-ends, it is to a nearby front-end. This makes
sense given the CDN front-end density in North America and Eu-
rope. The median change in distance from front-end switches is
483 km while 83% are within 2000 km.

We saw in this section that most clients show high front-end-
affinity, that is, they continue going to the same front-end over time.
For the clients that do switch front-ends, there is a long tail of
distance between a client and switched pairs of front-ends.
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change front-end throughout a day.

6. ADDRESSING POOR PERFORMANCE
The previous section showed that anycast often achieves good

performance, but sometimes suffers significantly compared to uni-
cast beacon measurements. However, the ability for unicast to beat
anycast in a single measurement does not guarantee that this per-
formance is predictable enough to be achievable if a system has to
return a single unicast front-end to a DNS query. If a particular
front-end outperformed anycast in the past for a client, will it still
if the system returns that front-end next time? Additionally, be-
cause of DNS’s design, the system does not know which client it
is responding to, and so its response applies either to all clients of
an LDNS or all clients in a prefix (if using ECS). Can the system
reliably determine front-ends that will perform well for the set of
clients?

We evaluate to what degree schemes using DNS and ECS can
improve performance for clients with poor anycast performance.
We evaluate (in emulation based on our real user measurements)
a prediction scheme that maps from a client group (clients of an
LDNS or clients within an ECS prefix) to its predicted best front-
end. It updates its mapping every prediction interval, set to one
day in our experiment.2 The scheme chooses to map a client group
to the lowest latency front-end across the measurements for that
group, picking either the anycast address or one of the unicast front-
ends. We evaluate two prediction metrics to determine the latency
of a front-end, 25th percentile and median latency from that client
group to that front-end. We choose lower percentiles, as analysis
of client data showed that higher percentiles of latency distribu-
tions are very noisy (we omit detailed results due to lack of space).
This noise makes prediction difficult, as it can result in overlap-
ping performance between two front-ends. The 25th percentile and
median have lower coefficient of variation, indicating less variation
and more stability. Our initial evaluation showed that both 25th
percentile and median show very similar performance as prediction
metrics, so we only present results for 25th percentile.

We emulate the performance of such a prediction scheme using
our existing beacon measurements. We base the predictions on one
day’s beacon measurements. For a given client group, we select
among the front-ends with 20+ measurements from the clients.

We evaluate the performance of the prediction scheme by com-
paring against the performance observed in next day’s beacon mea-
surements. We compare 50th and 75th anycast performance for the
group to 50th and 75th performance for the predicted front-end.
The Bing team routinely uses 75% percentile latency as an inter-
nal benchmarks for a variety of comparisons. Next, we evaluate
prediction using both ECS and LDNS client grouping.

2We cannot make predictions at finer timescales, as our sampling rate was limited due
to engineering issues.
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Figure 9: Improvement over anycast frommaking LDNS or ECS-based
decisions with prediction using 25th percentile prediction metric. Neg-
ative x-axis values show where anycast was better than our prediction.
Values at 0 show when we predicted anycast was the best performing.
Positive x-axis values show our improvement.

Prediction using EDNS client-subnet-prefix: The ECS exten-
sion [21] enables precise client redirection by including the client’s
prefix in a DNS request. Our prediction scheme is straightforward:
we consider all beacon measurements for a /24 client network and
choose the front-end according to the prediction metrics.

The “EDNS-0” lines in Figure 9 depict, as a distribution across
clients weighted by query volume, the difference between perfor-
mance to the predicted front-end (at the 50th and 75th percentile)
and the performance to the anycast-routed front-end (at the same
percentiles). Most clients see no difference in performance, in most
cases because prediction selected the anycast address. For the nearly
40% of queries-weighted prefixes we predict to see improvement
over anycast, only 30% see a performance improvement over any-
cast, while 10% of weighted prefixes see worse performance than
they would with anycast.
LDNS-based prediction: Traditionally, DNS-based redirection
can only make decisions based on a client’s LDNS. In this sec-
tion, we estimate to what degree LDNS granularity can achieve
optimal performance when anycast routing sends clients to subop-
timal servers. We construct a latency mapping from LDNS to each
measured edge by assigning each front-end measurement made by
a client to the client’s LDNS, which we can identify by joining our
DNS and HTTP logs based on the unique hostname for the mea-
surement. We then consider all beacon measurements assigned to
an LDNS and select the LDNS’s best front-end using the prediction
metrics. In the page loads in our experiment, public DNS resolvers
made up a negligible fraction of total LDNS traffic so their wide
user base have an insignificant impact on results.

The “LDNS” lines in Figure 9 show the fraction of /24 client
networks that can be improved fromusing prediction of performance
based on an LDNS-based mapping. While we see improvement for
around 27% of weighted /24s, we also pay a penalty where our
prediction did poorly for around 17% of /24s.

Our results demonstrate that traditional and recent DNS tech-
niques can improve performance for many of the clients who expe-
rience suboptimal anycast routing. We are also considering a hybrid
approach that combines anycast with DNS-based redirection. The
key idea is to use DNS-based redirection for a small subset of poor
performing clients, while leaving others to anycast. Such a hy-
brid approach may outperform DNS redirection for clients not well
represented by their LDNS, and it may be more scalable.

7. RELATED WORK
Most closely related to our work is from Alzoubi et al. [9, 8].

They describe a load-aware anycast CDN architecture where ingress
routes from a CDN to a large ISP are managed by an ISP’s cen-

tralized route controller. Unlike our work, they do not examine
the end-to-end application performance comparison between DNS
redirection and anycast. Follow up work focuses on handling any-
cast TCP session disruption due to BGP path changes [7]. Our work
is also closely related to FastRoute [23], a system for load balanc-
ing within an anycast CDN, but it does not address performance
issues around redirection. There has been a good deal of work on
improving and evaluating general CDN performance [37, 24, 36,
6, 35, 25]. The majority of previous work on anycast performance
has focused on DNS. There has been significant attention to anycast
DNS from the network operations community [13, 15, 14, 28, 19,
12, 20] but less so for TCP and anycast [31]. Sarat et al. examined
the performance impact of anycast on DNS across different anycast
configurations [38]. Fan et al. [22] present new methods to identify
and characterize anycast nodes. There are several pieces of work
describing deployment of anycast services [30, 10, 11, 26].

Akamai recently published a study on DNS-based redirec-
tion [17]. The authors showed that the majority of clients are nearby
their LDNS, enablingDNS-based redirection to performwell. How-
ever, they also show that a significant number of clients are far from
their LDNS, and that some LDNS serve clients spread over large
geographic regions. The paper describes Akamai’s adoption of
ECS-based redirection for clients of public DNS resolvers, show-
ing impressive performance improvements for these clients versus
LDNS-based redirection. However, public resolvers only make up a
small fraction of global DNS traffic. Clients using their ISPs’ LDNS
cannot benefit unless the ISPs enable ECS and the CDN supports
ECS requests from the LDNS. Since anycast works well for many
clients, we see benefit in a hybrid approach that chooses whether
to use DNS redirection or anycast based on measurements of which
works better for the LDNS and whether the LDNS supports ECS.

8. CONCLUSION
In this paper we studied the performance of a large anycast-

based CDN, and evaluated whether it could be improved by using
a centralized, DNS-based solution. We found that anycast usually
performs well despite the lack of precise control, but that it directs
≈ 20% of clients to a suboptimal front-end. We demonstrated
that a simple prediction scheme may allow DNS redirection to
improve performance for some of the clients that see poor anycast
performance.
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