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ABSTRACT
For more than a decade, unsolicited traffic sent to unused regions
of the address space has provided valuable insight into malicious
Internet activities. In this paper, we explore the utility of this traf-
fic, known as Internet Background Radiation (IBR), for a differ-
ent purpose: as a data source of Internet-wide measurements. We
collect and analyze IBR from two large darknets, carefully decon-
structing its various components and characterizing them along di-
mensions applicable to Internet-wide measurements. Intuitively,
IBR can provide insight into network properties when traffic from
that network contains relevant information and is of sufficient vol-
ume. We turn this intuition into a scientific investigation, examin-
ing which networks send IBR, identifying components of IBR that
enable opportunistic network inferences, and characterizing the fre-
quency and granularity of traffic sources. We also consider the in-
fluences of time of collection and position in the address space on
our results. We leverage IBR properties in three case studies to
show that IBR can supplement existing techniques by improving
coverage and/or diversity of analyzable networks while reducing
measurement overhead. Our main contribution is a new framework
for understanding the circumstances and properties for which unso-
licited traffic is an appropriate data source for inference of macro-
scopic Internet properties, which can help other researchers assess
its utility for a given study.

Categories and Subject Descriptors
C.2.5 [Local and Wide-Area Networks]: Internet

Keywords
Internet background radiation; Network telescope; Opportunistic
network analysis

1. INTRODUCTION
Obtaining data from a diverse set of hosts and networks is a ma-

jor challenge in Internet measurement research. We explore the po-
tential for an unconventional data source, unsolicited traffic sent to
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unused regions of the address space, known as Internet Background
Radiation (IBR), to address this challenge.

Monitoring unused portions of the IPv4 address space reveals
that IBR is of considerable volume, incessant, and originates from
a variety of services [41, 48]. This unsolicited traffic is caused by
scanning (e.g., searching for hosts running a vulnerable service),
misconfigurations (e.g., a typo in the IP address for a mail server),
backscatter (responses to packets with forged source IP addresses,
including spoofed DoS attack), bugs, etc. Historically, researchers
have used this traffic to study worms, DoS attacks, and scanning.

More recently, instead of studying malicious activities, researchers
have leveraged IBR to learn about hosts and networks generating
unsolicited traffic [12,15,20,22,24,32,44]. The pervasively sourced
components of IBR make a darknet—a region of the address space
exclusively dedicated to collecting IBR—the potential recipient of
traffic from all networks connected to the global Internet: botnets
employ machines worldwide to perform scans; misconfigurations
can occur in any network; and many networks host services that
are potential victims of DoS attacks (causing backscatter). Casado
et al. [15] first proposed using IBR (and other types of “spurious”
network traffic, such as SPAM emails) to illuminate regions of the
address space where traditional techniques fail to provide visibility
(e.g., in the presence of NAT). Recent studies of censorship events,
IPv4 address space utilization, and filtering policies have verified
this benefit [22, 24, 44].

However, these studies focused on isolated events or specific
components of IBR. It is unclear if the same analysis techniques
work on similar events or with different collections of IBR (e.g.,
using different times or IBR vantage points). More broadly, these
studies do not provide insight into which properties are amenable
to analysis using IBR and whether the networks themselves must
have certain characteristics to allow IBR-based inferences.

To evaluate IBR’s utility as an Internet-wide data source, we be-
gin by evaluating properties that support opportunistically measur-
ing many networks. In Section 4, we quantify the large number and
diversity of sources, which facilitate insight into many networks. In
Section 5, we analyze the components of IBR, through which we
can glean considerable information from packet-level data (e.g., the
operating system from TCP options). In Section 6, we evaluate
IBR’s persistent nature, which permits repeated observations and
often predictable temporal behavior.

In the context of inferring global properties of Internet networks,
IBR also has fundamental limitations and challenges. Although
IBR originates from many sources, we lack control over who sends
it and when. In particular, the mix of popular applications changes
regularly [41], which reduces the predictability of IBR. Addition-
ally, IBR is unidirectional; since a darknet does not respond to un-
solicited traffic we cannot infer flow-level information. Moreover,
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packets with spoofed source addresses will lead to inaccurate infer-
ences; as a result, IBR needs to be sanitized. Section 3 provides a
summary of our sanitization technique, which we previously veri-
fied [22].

The case studies we present in Section 8 highlight the strengths
and weaknesses of using IBR as a data source for Internet-wide
measurement. Our experience suggests that IBR is useful: (1)
When the presence of a source in darknet traffic provides additional
context. For example, although we find fewer open resolvers than
active probing, we know that attackers are actively using the ones
found in IBR. (2) To obtain a large sample. We could easily cal-
culate uptime for over half-a-million sources, to determine that a
common technique for inferring uptime is invalid for certain oper-
ating systems. (3) For hosts unreachable through active probing.
We can determine the uptime for NATed clients, which are unlikely
to respond to external probes. (4) To reduce measurement over-
head. We can identify flapping and non-flapping routes without
sending packets. Such an analysis could focus active probing on
routes that have recently changed.

2. RELATED WORK
We are far from the first to analyize Internet Background Ra-

diation. Pang et al. performed the first major characterization of
IBR [41], with the aim of identifying and filtering out malicious
traffic. Brownlee detected new activities in IBR based on inter-
arrival time [14], while Wustrow et al. examined IBR from multiple
darknets over several years to discover which destination addresses
received a disproportionate amount of IBR, which is useful before
assigning IP addresses [48]. We have different goals than these
prior characterizations of IBR, however, leading us to consider dif-
ferent aspects: we ask “who sends IBR?” and “how often do we re-
ceive IBR?” instead of “why do we receive IBR?” or “where is IBR
destined?” In particular, we focus on the quantity and frequency of
sources sending IBR instead of the volume of packets or bytes. For
this reason, another difference from previous IBR characterization
studies is that we remove spoofed packets from IBR before per-
forming our analyses (spoofed source IP addresses represent fake
sources).

There have been a number papers that use IBR to provide proof-
of-concept of a measurement technique [12,20–22,24], or examine
the applicability of a certain type of traffic to Internet-wide mea-
surement [32, 44]. The primary goal of our three case studies is
not to lengthen this list, but to demonstrate the effects of IBR’s na-
ture on our ability to extract Internet-wide properties. Casado et al.
considered (but did not quantify) the nature of unsolicited traffic in
their proposal for its utilization in opportunistic measurement [15].
However, this paper provides a more comprehensive view of IBR
as a measurement data source. We put other related work into this
framework in Table 4.

3. DATASETS
Our primary datasets are collections of IBR. To assist in analyz-

ing IBR, we also use a mapping of IP addresses to prefixes, ASes
and geographic locations, and a classification of the types of Au-
tonomous Systems (ASes).

IBR Traffic. A darknet or network telescope is a collection of
routed but unused IP addresses, i.e., all traffic these addresses re-
ceive is unsolicited. Darknets capture—but do not respond to—
IBR. Both UC San Diego and Merit Network operate large dark-
nets, which we call UCSD-NT and MERIT-NT respectively. UCSD-
NT observes traffic destined to more than 99% of IP addresses in

a contiguous /8 block. MERIT-NT covers about 67% of a different
/8 block.

We study packet traces captured from July 31 to September 2,
2012 and July 23, 2013 to August 25, 2013. We choose these time
periods because they align with the ICMP-ping based census con-
duced by ISI [29]. We refer to these 34-day periods as the 2012
census and 2013 census, respectively. We label our datasets based
on the collection site and the year: UCSD-12, UCSD-13, and
MERIT-13 (which are 5.1, 4.0 and 1.5 TB of compressed data,
respectively). To perform a longitudinal analysis spanning several
years, in Section 7.1 we also use flow-level datasets—a summary
of pcap data (i.e., protocol, source IP, destination IP, source port,
destination port, flags, TTL, and number of packets)—collected by
UCSD-NT from April 2008 to January 2015.

We use two darknets to study how position within the address
space influences our results. Comparing UCSD-NT and MERIT-
NT is not straightforward since the darknets are different sizes. For
a fair comparison, we construct the dataset partial-UCSD-13,
which is the traffic to a subset of IP addresses in UCSD’s dark-
net. Specifically, we include traffic to an IP address UCSD.B.C.D
if the IP address MERIT.B.C.D is part of MERIT-NT. As a result,
approximately the same number1 of destination IP addresses con-
tributes to partial-UCSD-13 and MERIT-13. We explore dif-
ferences between UCSD-12 and UCSD-13 to study how the time
of collection influences our results.

Including spoofed IBR traffic, i.e., traffic with a forged source
IP, in our analyses would likely lead to incorrect inferences. We
apply previously published techniques [22] to obtain a list of un-
routed networks and remove spoofed traffic from the pcap datasets.
The primary technique identifies spikes in unrouted addresses ob-
served per hour. From these spikes we develop heuristics to exclude
spoofed traffic. The heuristics also remove almost all traffic with
source IP addresses in known dark blocks, providing validation (the
validation results of “de-spoofing” in UCSD-12 and UCSD-13 are
available elsewhere [21, 22]). As a result, we reduce the number
of /24 blocks that appear to send us traffic from ≈10M to ≈3M.
As a final step, we exclude all traffic from unrouted IP addresses,
which may exist due to failed egress filtering by remote networks
or spoofed sources missed by our heuristics. We apply similar tech-
niques to the flow-level data spanning several years.
Prefixes. To analyze networks at the prefix level, we map source
IP addresses to BGP announced prefixes. We consider a prefix an-
nounced if, on the first day of the dataset, it is visible by 95% of
the ASes peering—and providing a full routing table—with Route-
views and RIPE RIS collectors, based on RIB data.2 For each IP
address we use the most-specific prefix.
Autonomous Systems. We use CAIDA’s Prefix-to-AS mapping
dataset (pfx2as) to map IPv4 addresses to AS numbers [10]. CAIDA
extracts this dataset from BGP announcements captured by Route-
views. Specifically, we use the mapping produced on the first day
of the IBR datasets. To label ASes as transit/access providers, con-
tent providers, or enterprise networks, we use a dataset provided
by CAIDA developed using a scheme similar to that proposed by
Dhamdhere and Dovrolis [25].
Geolocation. We use historical MaxMind country-level databases
to geolocate the .0 address of each /24 block in our IBR datasets.
Since MaxMind updates the database regularly (to reflect changes
in the address space), we use the databases produced on August 1,
2012 and August 16, 2013 for the 2012 census and 2013 census
periods, respectively.
1A handful of IP addresses in UCSD-NT’s /8 matching the
MERIT.B.C.D criterion are not darknet addresses.
2 We choose the same threshold as previous work [36].
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Announced UCSD-12 UCSD-13 MERIT-13
2012 2013 Partial

IP addresses 2.61B 2.66B 148M (5.7%) 133M (5.0%) 109M (4.1%) 111M (4.2%)
/24 blocks 10.2M 10.4M 3.13M (31%) 3.15M (30%) 2.65M (26%) 2.76M (27%)
Prefixes 410k 452k 198k (48%) 205k (45%) 170k (38%) 175k (39%)
ASes 44k 46k 24.3k (55%) 24.2k (54%) 19.3k (44%) 19.8k (45%)
Countries 245 236 234 (96%) 233 (99%) 231 (98%) 232 (98%)

Table 1: The number (and percentage of announced resources) of IP addresses, /24 blocks, prefixes, ASes, and countries observed in each
dataset is consistent across sites (UCSD-NT vs. MERIT-NT) and years (2012 vs. 2013).
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Figure 1: Fraction of Sources Observed Per Minute, Hour and
Day (UCSD-13). The longer one observes, the more sources one
can observe, especially at the IP address granularity.

4. WHO SENDS IBR?
We investigate how many and what type of networks send IBR.

In all our datasets we observe traffic from a non-trivial number
of IP addresses (> 100M), /24 blocks (> 2.6M) and prefixes (>
170k), and traffic from almost all countries and most large networks
(including non-enterprise ASes). As a result, we can potentially
use IBR to characterize many hosts and /24 blocks, and provide
Internet-wide analysis at the AS or country-code level.

4.1 How many sources are observed?
Table 1 reports the absolute number of sources (IP addresses,

/24 blocks, prefixes, ASes and countries) observed through our
datasets. Compared to the total address space announced in BGP,
we observe a few IP addresses, more than a quarter of /24 blocks,
close to half of all prefixes and ASes, and almost all country codes.
However, a large fraction of address space announced in BGP may
not actually be “used”, which we define as generating traffic on the
global Internet [21, 50]. Based on previous literature, we observe
about half of the inferred used /24 blocks: using seven different
data sources, Dainotti et al. found 5.3M actually used /24 blocks
in 2013 [21], while Zander et al. estimated that a total of 6.2M to
6.3M /24 blocks were used in June 2014 [50].

While the numbers in Table 1 are consistent across all four datasets,
we find considerably fewer sources (except at country-level granu-
larity) with shorter measurement intervals. Figure 1 shows statis-
tics on the fraction of sources observed in a minute, hour, or day
for UCSD-13 (the other datasets show similar values for all source
and time granularities). As expected, by lengthening the observa-
tion period, we capture additional sources. However, due to re-
peated contact, the growth in number of sources observed is less
than linear.

At the time granularities depicted in Figure 1, the number of
observed sources is highly variable. Diurnal patterns in IBR [48]
are one cause of variability, especially for small source granularity
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Figure 2: Number and percentage of observed ASes by the num-
ber of /24 blocks announced. Although we observe only half of
announced ASes in UCSD-13, most missed ASes announce few
/24 blocks.

(i.e., IP addresses and /24 blocks). The changing composition of
IBR (Section 5) contributes to the variance on longer time scales.
Section 7.1 describes this aspect, based on variations observed over
years.

4.2 What types of networks are observed?
We observe traffic from diverse locations. In the UCSD-13 dataset,

we miss only three countries that announce /24 blocks. All three
countries are small islands or collections of islands, each with a
population of under 4,000 people [18].

Many ASes do not send IBR to our darknets: we observe about
half of ASes announced in BGP. However, most missed ASes are
small. Figure 2 shows, for UCSD-13, the distribution of observed
ASes in terms of /24 blocks announced. Of the 20.6k unobserved
ASes in UCSD-13, almost half announce a single /24 block, and
90% announce the equivalent of 8 or fewer /24 blocks. Conversely,
we observe 86% of ASes that advertise the equivalent of at least a
/16 block – we call these ASes large. ASes belonging to the US De-
partment of Defense account for a fifth of unobserved large ASes,
which appears to have many routed but “unused” /24 blocks [21].
In terms of AS type, we miss 26% of large ASes classified as enter-
prise, and about 4% of the large ASes classified as transit/access or
content. The comprehensiveness of IBR’s coverage of large ASes
implies that it originates from diverse set of networks. In Section
6, we analyze how often the same ASes are observed over time.

4.3 Lessons learned
The number of sources captured by a network telescope is depen-

dent on the duration of observation, the time of day, and the size of
the network. Across our datasets, we consistently observe a sig-
nificant fraction of the observably “used” IPv4 address space, and
in particular nearly all large transit/access and content ASes. As a
result, IBR has the potential to provide an Internet-wide view.

425



0%

20%

40%

60%

80%

100%

UDP TCP ICMP 6in4

F
ra

c
ti
o

n
 O

b
s
e

rv
e

d

UCSD-12
UCSD-13

partial-UCSD-13
MERIT-13

(a) IP

0%

20%

40%

60%

80%

100%

UDP TCP ICMP 6in4

F
ra

c
ti
o

n
 O

b
s
e

rv
e

d

UCSD-12
UCSD-13

partial-UCSD-13
MERIT-13

(b) /24 block

0%

20%

40%

60%

80%

100%

UDP TCP ICMP 6in4

F
ra

c
ti
o

n
 O

b
s
e

rv
e

d

UCSD-12
UCSD-13

partial-UCSD-13
MERIT-13

(c) Prefix

0%

20%

40%

60%

80%

100%

UDP TCP ICMP 6in4

F
ra

c
ti
o

n
 O

b
s
e

rv
e

d

UCSD-12
UCSD-13

partial-UCSD-13
MERIT-13

(d) AS

0%

20%

40%

60%

80%

100%

UDP TCP ICMP 6in4

F
ra

c
ti
o

n
 O

b
s
e

rv
e

d

UCSD-12
UCSD-13

partial-UCSD-13
MERIT-13

(e) Country

0%

20%

40%

60%

80%

100%

UDP TCP ICMP 6in4

O
b

s
e

rv
e

d
 P

a
c
k
e

ts

UCSD-12
UCSD-13

partial-UCSD-13
MERIT-13

(f) Packets

Figure 3: Top protocols. Most IP addresses send UDP traffic. At the /24 block, prefix, AS and country levels we observe a similar percentage
of sources sending TCP and UDP. TCP accounts for most packets.

5. WHAT IS IBR MADE OF?
Most often, only a certain type of traffic is helpful in inferring

a property of a network. For example, the authors of a previous
study [12] use the retransmission behavior of TCP to infer packet-
loss. It is thus important to understand the composition of IBR with
respect to its potential information content. Enumerating all types
of IBR-derivable information is a daunting, and probably impossi-
ble task. Instead, we characterize IBR along two basic dimensions:
transport layer protocol and application, since the information en-
coded in IBR is a function of them.

5.1 How many sources use TCP vs. UDP?
Figure 3 reports the fraction (out of the total observed in the re-

spective dataset) of IP addresses, /24 blocks, prefixes, ASes, and
country codes observed through the most popular transport layer
protocols. We observe most IP addresses via UDP traffic. Both
TCP and UDP packets provide high visibility into /24 blocks and
ASes, although neither provides complete coverage. All transport
layer protocols provide excellent coverage of countries.

Wustrow et al. [48] characterize IBR based on the volume of
packets, and not the number of sources. They find that from 2006–
2010 TCP was the dominant protocol (above 75% of packets) for all
years except 2008. Although our datasets are not directly compa-
rable (they do not remove spoofed packets), we also find that TCP
is the dominant protocol by number of packets (Figure 3f). Since
UDP is the dominant protocol in terms of source IP addresses and
TCP is the dominant protocol in terms of packets, the protocols
may have different strengths when inferring network properties:
UDP is more likely to provide wide coverage, while TCP is more
likely to support analyses requiring repeated contact (Section 6).

5.2 Which applications contribute the most?
Here we classify IBR in terms of the process that generates the

traffic. Port-based analysis, used in previous characterizations of

IBR [48], is insufficient to analyze application-layer data [23]. For
example, Qihoo 360 Safe traffic is the dominant application for all
top-10 UDP destination ports.

Unlike Pang et al. who responded to unsolicited traffic [41], we
passively collect IBR. With limited information, we perform a best-
effort classification of IBR into components (that is, classes of phe-
nomena responsible for different traffic) based on observations of
initial communication attempts. For well-studied phenomena, we
leverage known properties (e.g., the ranges of addresses of Con-
ficker targets and the decryption algorithm for Sality’s command-
and-control packets [17,27]). The “Bro Scanner” category is based
on Bro’s definition of a scanner: contacting at least 25 unique des-
tinations on the same port within 5 minutes [46]. We assign to the
“Encrypted” category traffic with packets where entropy(payload) ≈
log2(len(payload)). We then manually look for abnormalities in
the number of observed source /24 blocks and derive a packet or
flow-level filter matching the responsible traffic. We investigate and
identify new phenomena based on TCP/UDP ports, UDP payloads,
packet lengths, TCP flags, and number of packets. We complete the
analysis in time (e.g., why a certain hour captures many /24 blocks)
and space (e.g., why a darknet /16 block receives many /24 blocks).
We perform this analysis iteratively: once we identify a component,
we remove it from our data and find additional components causing
abnormalities.

Table 2 reports the components that contribute a significant num-
ber of source /24 blocks. We aggregate some small components and
all unclassified components into the “Other” category. We group
the components based on the reason they appear in IBR: acciden-
tally (i.e., due to bugs or misconfigurations), as part of a scan, as
a by-product of spoofed traffic, such as DoS attacks, received by a
network (which sends backscatter to the darknet), and for unknown
reasons. Our classification process discovers some interesting large
Internet phenomena. For example, most BitTorrent traffic appears
to be the result of index-poisoning attacks that pollute the DHT
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Component UCSD-12 UCSD-13 MERIT-13
Partial

Total Unique Total Unique Total Total Unique ∩ UCSD-13
Bugs & Misconfigurations
File Sharing (BitTorrent, eMule, QQLive) [34, 35, 40] 2,640k 284k 2,490k 344k 1,910k 2,090k 377k 1,980k
Qihoo 360 Safe Bug [1] 1,450k 98.5k 1,340k 117k 1,110k 1,110k 138k 1,050k
Encapsulated IPv6 (6in4, Teredo) [5] 1,080k 9.48k 744k 11.5k 392k 368k 5.94k 312k
Gaming (Xbox, Steam) [3, 4] 503k 4.50k 490k 14.3k 258k 185k 11.9k 131k
Botnet C&C (ZeroAccess, Sality) [27, 38] 551k 17.3k 184k 4.97k 51.7k 51.6k 2.37k 25.7k
Scanning
Conficker [17] 642k 24.4k 579k 58.1k 573k 568k 96.9k 563k
Bro Scanner [46] 597k 8.48k 197k 4.57k 104k 99.1k 4.06k 91.8k
Backscatter
Backscatter [39] 394k 45.3k 392k 51.6k 247k 246k 21.3k 219k
Unclassified
Encrypted [28] 1,450k 98.5k 1,340k 117k 819k 755k 29.8k 667k
Other 1,980k 73.8k 1,910k 127k 1,440k 1,70k 135k 1,410k
All Components 3,130k 3,150k 2,650k 2,760k 2,670k

Table 2: /24 blocks observed by IBR component. IBR is composed of many different types of traffic. File-sharing traffic con-
tributes the highest number of /24 blocks in all datasets, but there are variations based on time (UCSD-13 vs UCSD-12) and position
(partial-UCSD-13 vs MERIT-13). We observe most /24 blocks through multiple IBR components, implying that insight into a network
is not dependent on a single type of traffic.

with bogus IP addresses. We determine a UDP payload was sent
from Qihoo 360 Safe by investigating some live hosts at UC San
Diego responsible for it. A byte-order bug, triggered when a host
receives updates via a P2P network, causes this traffic. In Section
7, we link trends of the individual components to changes in IBR
properties over time.

When studying 2010-era IBR reaching four /8 networks, Wus-
trow et al. find that scanning accounts for the majority of packets in
all but 1.0.0.0/8 [48]. In our datasets, many well-studied, malicious
IBR phenomena—scanning (including Conficker), backscatter—
also account for most of the packets (collectively contributing about
83% of all packets in UCSD-13). But, surprisingly, malicious traf-
fic is not the largest component of IBR in terms of sources. Packets
with a P2P file-sharing payload contribute over 1.9M /24 blocks
in all datasets, accounting for over two-thirds of all /24 blocks ob-
served; Qihoo 360 Safe traffic alone contributes about 100M IP
addresses.

We observe most /24 blocks through multiple IBR components,
implying that many types of IBR can provide insight into the same
networks. In particular, even without the top IBR components,
the “Other” component alone, contributes with 1.4M /24 blocks.
The “Unique” column of Table 2 reports the number of /24 blocks
observed through a single IBR component. For each component,
the number of unique /24 blocks is at least an order of magnitude
smaller than the total number of /24 blocks observed through that
component. As a result, if the composition of IBR changes slightly
we would still observe many of the same networks.

5.3 Lessons learned
Some IBR-based inferences require a certain type of traffic; other

network properties can be inferred regardless of the underlying ap-
plication, but their success is dependent on the composition of IBR.
Fortunately, IBR is made up of many components, each of which
contributes relatively few unique /24 blocks (implying some anal-
yses may be robust to fluctuations in IBR composition). While
most packets are TCP (due to scanning and backscatter), we ob-
serve more IP addresses from UDP traffic (due to P2P and bugs).
IBR is commonly known as malicious traffic. However, we find
that the phenomena that contribute the highest number of sources
(over 1M /24 blocks) appear to be of benign nature.

6. HOW OFTEN DO WE RECEIVE IBR?
In this section, we consider inferences that require multiple ob-

servations of a given host/network. For example, Benson et al. [12]
determine that the path from hosts in an AS to a darknet changed
by observing the behavior of the TTL field. In addition to look-
ing for changes in given fields, we can leverage the timing between
packets (e.g., to infer uptime [32]) and the predictability of repeated
contacts (e.g., to infer outages [24]).

To study repeated contact from IBR sources, we report (1) how
often a host/network is observed, (2) the length of time between the
first and last observation of a source, and (3) the timing between
contacts. Our approach is to partition our dataset into 1-minute,
1-hour, and 1-day time bins and record the sources sending IBR
in each bin. In mathematical notation, let S and T be the set of
all sources and time bins at given granularities, and Is(t) be an
indicator function for a source s for a time bin t that is 1 if the
source is observed, and 0 otherwise. For property (1) we compute,
for each s ∈ S: ∑

{t∈T}

Is(t);

for property (2) we determine, for each s ∈ S:

max
t
{t ∈ T |Is(t) = 1} −min

t′
{t′ ∈ T |Is(t′) = 1};

and property (3) can be expressed as a multiset, where we include
for each s ∈ S and {t ∈ T |Is(t) = 1} the value (if it exists)

t−max
t′
{t′ ∈ T |Is(t′) = 1 ∧ t′ < t}.

Communication attempts may span multiple time bins, which
could lead to inadvertently skewing properties (1), (2) and (3). In
Table 3, we report statistics on communication attempts (packets
with the same {source ip, destination ip, protocol, source port, des-
tination port} observed in one hour of data) by IBR component
from UCSD-13. The number of communication attempts varies
depending on the IBR component, as does the behavior of the hosts
sending each type of traffic (as evidenced by the median number
of attempts per source IP address). However, for all components,
the average number of packets per communication attempt is small.
Manual investigation reveals that the timing between packets is also
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Component Communication Avg. Pkts Median Attempts
Attempts per Attempt per Source IP

File Sharing 1,120M 6.13 2
360 Safe 1,520M 1.62 11
Encap. IPv6 108M 4.49 2
Gaming 95.4M 1.04 1
Botnet C&C 13.3M 2.95 3
Conficker 13,800M 1.98 109
Bro Scanner 27,400M 1.10 684
Backscatter 20,700M 1.23 6
Encrypted 137M 2.33 1
Other 1,740M 3.33 3
Total 66,700M 1.50 11

Table 3: Communication attempts by IBR component for
UCSD-13. IBR components vary in the number of communica-
tion attempts made, and the median attempts made per source IP
addresses. But, all components have a low number of packets per
attempt, which suggests binning the data will not result in signifi-
cant double counting.
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Figure 4: CDF of fraction of sources observed using 1-hour time
bins(UCSD-13). We observe most countries and some ASes in
nearly every time bin, which means we should be able to make
repeated inferences at these source granularities.

small (e.g., 3 seconds between retransmission of Conficker pack-
ets). As a result, our partitioning approach confines most attempts
to a single time bin, implying that binning does not significantly
skew our calculations in the following sections.

6.1 How often do sources send IBR?
The frequency with which we can infer properties of a remote

network depends on how often we receive traffic from that network.
Figure 4 shows the cumulative distribution function of sources ob-
served using 1-hour time bins in UCSD-13. The other datasets
exhibit similar distributions. We observe frequent contact at coarse
source granularities, i.e., countries and some ASes. The values on
the far right of Figure 4 indicate the number of networks that we
observed in every hour UCSD-13, which suggest that inferences
requiring near-constant traffic samples are only possible for ≈80%
of countries and ≈20% of ASes. We also explore (not shown here)
the distribution of number of contacts with time bins of 1-minute
and 1-day. As expected, the CDF curves shift towards more fre-
quent contact as we move to larger time bins.

Approximately 12% of IP addresses are unsuited for repeated
measurements because we observe them in only one 1-minute time
bin, and we observe most IP addresses in less than 11 1-minute time
bins. But as the size of the time bin increases to hours or days, the
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Figure 5: CDF of contact duration (UCSD-13). At all source
granularities the contact duration is long, which is desirable for
analysis throughout the datasets.

number of contacts per source increases. For example, we observe
traffic from over 75% of IP addresses, /24 blocks, prefixes ASes
and countries in multiple days.

6.2 What is the total duration of contact?
To conclude if our observations are the result of a single bursty

event, or if sources are visible throughout the 2012 or 2013 census
periods, we investigate the range of times that we observe a source.
We calculate each source’s duration of contact (time of last contact
minus time of first contact). Figure 5 shows the CDF of this dis-
tribution. The total duration of contact is long (over 29 days out
of 34) for most /24 blocks, prefixes, ASes, and countries. Despite
observing most IP addresses in only a few 1-minute or 1-hour time
bins, the duration of contact is also long for IP addresses (50% IP
addresses had a duration of contact longer than 22.5 days), imply-
ing that there is a long time between consecutive observations of a
source (Section 6.3).

We attribute the long duration of contact at the IP level to Qihoo
360 Safe traffic, which has a diurnal cycle. Since about 70% of IP
addresses send Qihoo 360 Safe traffic in UCSD-13, it strongly in-
fluences the overall duration at the IP address granularity. Without
Qihoo 360 Safe traffic, 80% of IP addresses have a contact duration
of less than one day. However, there is only a small influence on the
duration of contact at the /24 block, prefix, AS, and country granu-
larities. The signal for these aggregated granularities is comprised
of a mix of traffic components and is not dependent on Qihoo 360
Safe.

This analysis shows the potential to make IBR-based inferences
at the /24 blocks, prefixes, ASes and countries granularities for the
duration of the datasets. At the IP-address granularity, we observe
the sources throughout the datasets, but this is mostly due to Qihoo
360 Safe traffic.

6.3 Frequency of communication attempts?
To evaluate our ability to perform fine-grained analysis with IBR,

we study the time between observations of traffic from a source.
Figure 6a shows the median time between all sources that we ob-
serve in at least two 1-minute time bins. We observe most countries
all the time: the median time between observations is 1 minute for
92% of countries. At the /24 block and AS levels, the time between
observations is often longer, although the time between contacts at
these granularities is often within 10 minutes. There is a longer
period of time between observations of an IP address: half of IP
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Figure 6: Median time between observations (UCSD-13). Most /24 blocks, prefixes, ASes, and countries observed multiple times have a
short time between observations (less than 10 minutes), which is desirable for fine-grained analysis. By component, scanning traffic has the
shortest median time between observations.

addresses have a median inter-observation time of more than 13.7
hours. However, for some IP addresses the inter-observation time
is still short (27% of IP addresses have a median inter-observation
time of less then 1 hour).

Figure 6b shows the breakdown of median time between obser-
vations for IP addresses by IBR component. 360 Safe traffic heav-
ily influences the overall behavior of IP addresses: 50% of IP ad-
dresses associated with 360 Safe have a median time between ob-
servations of greater than 21.2 hours (presumably because they re-
ceive updates about once per day). The median time between obser-
vations is substantially shorter for the other IBR components. As a
result, our ability to conduct fine-grained analysis comes from IBR
components other than Qihoo 360 Safe. Scanning traffic has the
shortest time between observations: for over 90% of IP addresses
the median time between observations is less than 4 minutes. One
type of misconfiguration causes hosts infected by a botnet to send
C&C traffic to the UCSD darknet and wait either 15 minutes or 1
hour between communication attempts. 360 Safe traffic does not
heavily influence the time between observations at the /24 block,
AS or country levels.

6.4 Lessons learned
We find that many sources repeatedly contact our darknets. We

almost always observe traffic from most countries and many ASes,
e.g., we observe them in nearly all time bins, throughout the entire
observation period, and with a short time between observations. We
continually, but not constantly, observe most /24 blocks and pre-
fixes, e.g., they have a long contact duration but the median time
between observations is often over an hour. At the IP level, a diur-
nal bug in Qihoo 360 Safe generates traffic that heavily influences
the contact duration and time between intervals. When we exclude
the Qihoo 360 Safe traffic, three-quarters of IP addresses have a
contact duration of less than one day (i.e., we observe the source in
a single day of our 34-day observation period). As a result, IBR is
not well suited for long-term inferences at the IP address granular-
ity.

7. SENSITIVITY ANALYSIS
In this section, we examine the dependence of IBR on the time

and site of data collection. We discover a number of differences,
which can be attributed to the properties of influential IBR com-
ponents. These results (1) confirm that the findings presented in
the previous sections are representative in terms of number of IBR
sources, the mix of components and visibility, (2) identify aspects
of IBR that limit its ability to make inferences about remote net-
works, and (3) set expectations for the performance of other dark-
nets.

7.1 Dependence on time of collection
Over time, IBR evolves. Not just in terms of its constituent pack-

ets and bytes, as studied by Wustrow et al. [48], but also in terms of
the number of sources sending IBR. To identify times when signifi-
cant changes occurred, we consider: (1) the number of IP addresses
observed per hour for most of 2008–2015 (Figure 7a); (2) the per-
day contribution of the major components3 over the 28-month pe-
riod from January 2012 to April 2014 (Figure 7b); and (3) the total
number of /24 blocks per component during the 2012 and 2013
census (Table 2). Our ability to make network inferences is influ-
enced by both the trends and erratic nature of IBR, including the
following events:

• November 2008: Conficker worm outbreak
• March 2010: Significant BitTorrent traffic observed
• October 2010: Start of traffic from 360 Safe bug
• March 2013: A spike in Backscatter traffic as the result of a

DoS on Spamhaus
• February 2014: Increase in backscatter containing responses

to DNS queries
• 2012 census vs 2013 census: Due to activity by the Carna

Botnet in 2012, the number of /24 blocks labeled as Bro
Scanners in UCSD-12 is three times the amount in UCSD-13

3 We extract some IBR components with a pcap signature. When
operating on flow-level data, we use heuristics instead. E.g., for
BitTorrent traffic we use popular message lengths (with low false
positive rate) instead of examining the payload.
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Figure 7: Section 7 reviews interesting events represented in these plots.

In particular, we can attribute the increased number of sources in
recent years to bugs and misconfigurations in P2P networks (Qihoo
360 Safe and BitTorrent). However, sources sending P2P traffic
generally produce few connection attempts at irregular intervals.
Combined with the decrease in Conficker traffic, this means that
fine-grained analysis (repeated analysis on a short time scale, e.g.,
minutes) is becoming more difficult. To extract a predictable signal,
we may need to analyze only specific components of IBR [12, 32].
On the other hand, erratic events may serve as an opportunity to
increase visibility. For example, using IBR to assess IPv4 utiliza-
tion during the Spamhaus event yielded more used /24 blocks [21];
locating open resolvers is possible with IBR as the result of an in-
crease in DNS traffic. We group the events above into scanning ac-
tivities (Conficker and Carna), P2P misconfigurations or bugs (Bit-
Torrent and Qihoo 360 Safe), and backscatter (DNS responses and
Spamhaus) and discuss each below.

Scanning activities. Both Conficker and Carna increased the
number of sources scanning the darknet. Hosts participating in
scans send many packets to the darknet—which we can leverage
for repeated measurements. However, the Carna scans were a tem-
porary phenomenon and Conficker is slowly declining. This de-
crease, combined with the emergence of BitTorrent and 360 Safe
traffic (generated by sources which make relatively few connection
attempts) results in fewer packets observed per IBR-visible host.

P2P misconfigurations/bugs. As a result of misconfigurations
or bugs in P2P networks, we observe many sources, though these
sources generally send few packets. We do not receive BitTorrent
traffic consistently, and BitTorrent’s erratic nature correlates with
the total number of /24 blocks observed per day. In aggregate, 360
Safe traffic is diurnal: in UCSD-13, the average number of source
IP addresses sending this traffic per hour varies between 165k at
20:00 UTC to 2.31M at 0:00 UTC. However, we do not observe
clients using the software at predictable intervals. Thus P2P mis-
configurations and bugs provide excellent coverage, but only when
we do not need many packets per source or high predictability.

Backscatter. Normally, we think of backscatter from spoofed
DoS attacks as coming from a small number of attacked machines
or networks. Both the Spamhaus attack and the increase in DNS
traffic show that the number of sources sending backscatter can
actually be large. The Spamhaus attack [43] targeted Spamhaus’
network, the networks carrying Spamhaus’ traffic and strategically
selected Internet exchange points. The increase in DNS traffic is
caused by responses to spoofed queries — from many open re-
solvers simultaneously.

Backscatter events provide a period of increased visibility of re-
mote networks, and it may be advantageous to infer network prop-
erties during these events. This window of opportunity may vary:
the Spamhaus attack lasted a couple days, while DNS backscatter
is an on-going phenomenon.

7.2 Dependence on position in IPv4 space
Wustrow et al. [48] find significant non-uniformity in the num-

ber of bytes and packets received by four /8 darknets in March
2010. However, we find more uniformity when considering the
number of sources sending non-spoofed traffic to our /8 darknets.
Intuitively, filtering out spoofed traffic removes some irregularities,
and many IBR components target UCSD-NT and MERIT-NT with
equal probability (e.g., scanning, backscatter, P2P misconfigura-
tions).

In particular, we observe a similar number of /24 blocks through
partial-UCSD-13 and MERIT-13 (2.65M and 2.76M respec-
tively). Table 2 shows that partial-UCSD-13 and MERIT-13
also have a similar traffic composition. All components, except
Gaming and Other, contribute approximately the same number of
/24 blocks to each dataset. The Gaming difference can be ex-
plained by a misconfiguration: a single UCSD-NT IP observes
115k /24 blocks sending Steam traffic. In the Other category, 10
times as many /24 networks send TCP traffic destined to IP ad-
dresses matching {A.B.C.D | A=MERIT & C=13} than {A.B.C.D
| A=UCSD & C=13}.

Additionally, many source /24 blocks send traffic to both UCSD-
NT and MERIT-NT. The ∩UCSD-13 column of Table 2 shows the
overlap—the number of /24 blocks observed in both MERIT-13
and UCSD-13 accounts for more than 84% of /24 blocks. We also
observe an overlap of at least 49% in individual IBR components
(Conficker produces the highest overlap, 99%) which implies that
sources sending IBR likely target multiple /8 networks. Thus, it is
likely that other portions of the address space receive packets from
these sources.

However, we cannot examine all /8 darknets to understand the
full effect of position. The non-uniform nature of IBR may cause
variance when examining other darknets. Wustrow et al. find that
many misconfigurations affect only the 1.0.0.0/8 block (e.g., traf-
fic to 1.2.3.4) [48]; these misconfigurations may also influence the
number of sources sending traffic to 1.0.0.0/8, in addition to bytes
and packets. Additionally, we show in the next section that sources
often do not target all subnets within a /8 darknet.
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7.3 Dependence on darknet size
With smaller darknets, we expect to observe fewer sources and

observe those sources less frequently. To study the effect of us-
ing a smaller darknet, we vary darknet size, from a /16 to a /8, by
considering contiguous subnets of UCSD-NT as their own mini-
darknet. Figure 8a reports for each darknet size, the range of source
/24 blocks captured by these contiguous subnets in UCSD-13. We
find, due to the non-uniform nature of IBR, significant differences
in the number of sources captured by subnets of the same size.

Figure 8b shows for each /16 within UCSD-NT the number of
/24 blocks captured during 2013 census. In UCSD-NT, most vari-
ations can be attributed to: (1) the bug in Conficker’s PRNG, (2)
BitTorrent’s RPC mechanism, KRPC, and (3) Encapsulated IPv6
traffic. Individual IP hotspots are observed as little spikes in Fig-
ure 8b, but create small discrepancies compared to the differences
caused by the Conficker, BitTorrent and IPv6 components (for /16
or larger darknets).

Despite these discrepancies, based on median observations, the
marginal utility of a single darknet IP address decreases as the size
of the darknet increases (e.g., doubling the size of the darknet re-
sults in fewer than a 2x increase in the number of /24 blocks ob-
served). In the /8 to /16 range, we observe a power-law relation-
ship between the median number of /24 blocks observed and the
number of darknet IP addresses monitored. Specifically, in the /8
to /16 range of UCSD-NT, reducing darknet size by a factor of two
should yield about 89% of the original /24 blocks. As a result, we
expect small darknets to also observe many /24 blocks. But this
power-law relationship does not hold for all darknet sizes: the me-
dian number of /24 blocks observed by an IP in UCSD-13 is an
order of magnitude less than the number implied by the power law
relationship.

8. CASE STUDIES
The previous sections identify and characterize aspects of IBR

relevant to conducting opportunistic network analysis. In this sec-
tion, we examine how these aspects influence network inferences
with IBR. Table 4 shows 13 types of IBR-based inferences, which
vary along the dimensions of packet-level information (Section 5)
and number of required observations of the source (Section 6). Not
all sources with the specified dimensions of (packet-level, number
of observations) will be analyzable. For example, to calculate up-
time with two TCP packets, the source needs to send packets with
TCP timestamps from an operating system where the technique is
valid.

The inferences in Table 4 include previous studies where the au-
thors applied their method Internet-wide, previous studies where a
technique used on a small scale may be usable for Internet-wide
analysis, techniques used with measurement data other than IBR
that may be applicable to IBR, and novel uses of IBR. While not
exhaustive, Table 4 suggests that IBR is versatile in terms of the
number and range of inferences it may be able to support, includ-
ing existence (or active use) of a network resource, host attributes,
and network behavior.

We consider three case studies in detail: locating open resolvers
(Section 8.1), determining uptime (Section 8.2), and identifying
path changes (Section 8.3). The goal of these case studies is to
highlight some strengths and weaknesses of using IBR. The open
resolver case study uses erratic but information-rich traffic; the up-
time case study applies a common technique to a diverse set of
hosts, but we need to take steps to ensure its accuracy; the path
change case study takes advantage of repeated contact at the AS-
level, but is not as accurate as the standard active technique (tracer-

Open
UCSD-12 UCSD-13 MERIT-13 UCSD-14-DNS Resolver

Project [9]
Unique IPs 49,111 3,401 835 1,561,324 37,607,402
Recursion-Avail. 42,312 2,298 835 1,518,360 32,917,724
OK 48,746 2,991 329 1,437,310 32,595,867
FORMERR 43 7 7 1,422 841
SERVFAIL 317 148 43 1,445,276 919,899
NAMEFAIL 215 200 518 1,349,092 153,466
NOTIMP 7 8 7 64 166
REFUSED 173 241 35 136,328 4,433,126

Table 5: Recursive DNS resolvers. DNS responses reaching the
darknet with the Recursion-Available bit set indicate an open re-
solver. The number of open resolvers sending IBR increased in
2014 (thirty-fold over UCSD-12), allowing us to infer their exis-
tence and provide insight into traffic reaching authoritative name
servers.

oute). Through these case studies we extend our knowledge of the
state of the Internet and we identify some situations where IBR
can assist in Internet-wide measurement: (1) when the presence of
a source in IBR provides additional context; (2) to obtain a large
sample; (3) for hosts unreachable through active probing; and (4)
to reduce measurement overhead.

8.1 Locating open DNS resolvers
In a reflective amplification attack, the attacker sends a small,

spoofed packet to a node that responds with a much larger packet
to the spoofed source IP address. These attacks often use DNS re-
cursive queries. As a security mechanism, many DNS servers only
answer recursive queries within their administrative domain. DNS
servers not implementing this security mechanism are known as
“open resolvers.” Locating open resolvers is a first step in improv-
ing DNS security.

Our objectives with this case study are: (1) to show that the
changing composition of IBR can provide an opportunity to learn
about the Internet; (2) to show that IBR can supplement active prob-
ing techniques by providing additional information; (3) to expose
limitations in IBR’s ability to determine the existence of network
components.
Method. If a darknet receives a DNS response, the most likely
scenario is that a DNS server is responding to a spoofed query. In
this section, we consider all UDP source port 53 traffic. We label
an IP address as an open resolver if the Recursion-Available flag
is set, as it indicates the willingness to resolve recursive queries.
This way, we actually locate either a machine that accepts recursive
queries from any IP address or that recursively resolves domains on
behalf of a forwarding open DNS server [45]. We do not check the
correctness or consistency of responses reaching the darknet, but
we include response codes in our analysis.
Results. Table 5 shows that we observe few open resolvers in
UCSD-12,13 and MERIT-13. However, starting around Febru-
ary 2014, we observe a sustained increase in DNS responses (also
visible as an increase in backscatter in Figure 7b). Van Nice reports
that this type of attack is responsible for 3% of global ISP DNS
traffic, which may result in DoS to (a) the resolvers, (b) authori-
tative name servers, and (c) web sites hosted by the authoritative
servers [47]. To show the magnitude of open resolvers during this
time period, we create a dataset, UCSD-14-DNS, between January
20, 2014 and March 1, 2014.

The Open Resolver Project (ORP) sends DNS queries to the
entire IPv4 address space over a period of 6.5 hours, once per
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Figure 8: Effect of size and position on number of /24 blocks observed. There is a power-law relationship between number of /24 blocks
observed and size of the darknet (Figure 8a), but significant variance based on position in the darknet (Figure 8b).

Number of Packet Layer
Observations (Section 5)
(Section 6) Internet (IP) Transport (TCP/UDP) Application
One Ascertaining IPv4 Utilization † Discovering Services † Locating Open Resolvers † Determining Filtering Policy †

(through source IP) (through TCP flags) (through DNS responses) (through Conficker)
see: [21, 22] similar to: [39] see: [44]

Two Identifying Path Changes ♦ Determining Uptime � Evaluating Security Improvements ♦
(through TTL) (through TCP timestamp) (through Conficker traffic reduction)

extend: [12] apply: [37]; other: [32]
Many Deducing Packet Sending Rate � Detecting NAT Usage � Assessing BitTorrent Client Popularity �

(through IPID) (through TCP options and TTL) (through uTP handshake messages)
apply: [16, 33]; other: [26, 32] apply: [49]; other: [11, 13]

Predictable Detecting Outages ♦ Recognizing Packet-loss ♦ Determining Number of Disks �
(through number sources) (through pkts/connection attempt) (through re-seeding of Witty’s PRNG)

extend: [20, 24] extend: [12] see: [32]
† = Existence of Resource � = Attributes of End Hosts ♦ = Network Changes

Table 4: Example inferences. Inferences made through IBR require various numbers of packets and types of packet-level information.
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Figure 9: Open resolvers in UCSD-14-DNS

week [9]. For comparison, we consider all open resolvers4 in ORP
data in the same time period of UCSD-14-DNS. Table 5 shows that
the 1.5M open resolvers found in UCSD-14-DNS are about 4% of
the total found by ORP.

Figure 9 shows the number of open resolvers observed each hour,
as well as the cumulative number, observed in UCSD-14-DNS.
After an initial spike, the cumulative number of open resolvers

4 Specifically, the IP address of the responding DNS server, which
is not necessarily the queried IP address.

grows slowly, despite observing over 200k open resolvers in many
hour bins. Since we observe only a fraction of the known lower
bound for open resolvers [9], this behavior indicates reuse, i.e., the
phenomenon generating the DNS responses is repeatedly sending
spoofed packets to the same set of open resolvers. Due to this rep-
etition, smaller subnets of UCSD-NT capture a similar number of
open resolvers (at least 89% of all open resolvers in UCSD-14-DNS
with /16 subnets).
Validation. We verify that the open resolvers we include in
UCSD-14-DNS are actually open resolvers by examining overlap
with the ORP data in the same time period. Almost all (84%) of
IP addresses observed in UCSD-14-DNS also appear as open re-
solvers in the ORP dataset. The remaining 16% are likely due to
hosts intermittently online or were affected by Internet middleware
(e.g., firewalls may drop packets from the ORP scan).
Comparison to other data sources. Although ORP has better cov-
erage, active probing cannot reveal which open resolvers are actu-
ally used in attacks. The open resolvers ORP missed may include
DNS servers that respond to packets from any source IP address,
but only on certain interfaces (e.g., behind a firewall).

Through IBR, we can add to the knowledge of the phenomenon
starting around February 2014. Specifically, we considered the “at-
tack” traffic from the 462 second-level domains in UCSD-14-DNS
that resulted in over 50k open resolvers sending traffic to UCSD-
NT.

• baidu.com was the first second-level domain used in the at-
tack – six days prior the second domain reaching our “attack”
threshold. This was likely a testing phase.
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• The attacks reused name servers (e.g., 36 domains had a
nameserver matching *.dnspod.net), suggesting victims are
repeatedly targeted.
• UCSD-14-DNS observes more sources with errors (e.g., SERV-

FAIL or NAMEFAIL) than ORP. Many of the open resolvers
discovered in UCSD-14-DNS responded with non-errors and
errors for queries for the same second-level domain, imply-
ing that the attack successfully inundated authoritative name
servers with queries.

Discussion. IBR can supplement other measurement techniques,
Dainotti et al. leveraged IBR to discover hosts that are intermit-
tently used or behind firewalls in a study of IPv4 address space
utilization [21, 22]. For similar reasons, we find additional open
resolvers through IBR. Additionally, the observation in IBR or the
differences between datasets may reveal additional information about
our inferences, e.g., that an open resolver is being used maliciously,
or that port filtering is used [44].

We observe more open resolvers due to a change in the com-
position of IBR. It is possible that this phenomenon could halt, in
which case our coverage of open resolvers would decrease signif-
icantly. This variability is, in part, due to our dependence on a
specific application. When many types of traffic contribute to a
signal, we expect our ability to make inferences to improve. For
example, in IPv4 address space utilization, any type of traffic can
imply usage [21].

8.2 Determining uptime
We explore inferring end host uptime. Studying uptime can help

understand human behavior, identify machines that have not ap-
plied security updates, and select resources with better availability.

Our objectives in this case study are: (1) to explore an inference
requiring repeated contact; (2) to highlight the benefit of relying
on information from the transport layer over upper-layer informa-
tion from a specific application; (3) to show how IBR can provide
unique insights, unavailable through other data sources.

Method. We use TCP timestamps to calculate uptime [37], a
technique already implemented in Nmap [2] and p0f [49]. RFC
1323 specifies that TCP timestamps should be obtained from a
clock that is approximately proportional to the real time [30]. Un-
der the assumptions that (1) the OS zeros the counter at boot time,
(2) the timestamp has not wrapped, and (3) network speeds are
about constant, we can compute the frequency of the timestamp
increments and total uptime. Specifically, for two packets j and k
received at times rj and rk respectively with TCP timestamps tj
and tk, the frequency of the timestamp increments is f =

tk−tj
rk−rj

,

and the uptime (when packet k is sent) is tk
f

.
For each hour of data, we calculate frequency and uptime for

each source IP sending TCP timestamps, and use p0f to determine
the operating system that sent the packets. We then aggregate over
all hours of data, excluding sources when either p0f reports con-
flicting OSes, or we determine that the OS violates assumption (1),
or we receive packets that reveal conflicting uptimes (e.g., from two
hosts behind a NAT). Additionally, we verify that the uptime is less
than a year and that the frequency is close to a typically used value
(e.g., one-third of IP addresses have a clock rate of 1000Hz) before
including an IP address in our analysis.

Validation. To validate this technique, we analyze the accuracy
of assumptions (1) and (2). Table 6 summarizes our findings in
ensuring that the TCP timestamp is set to zero at boot time. First,
we verify the accuracy of TCP timestamps on our own machines
using p0f. We found inconsistencies for iOS and Mac OS, and
exclude IP addresses with these OSes from analysis. Additionally,

OS (from p0f) # Srcs Verified Distribution Include?
Linux 2.4.x 217,989 Wraps @27 hours no
Windows 7 or 8 102,097 70% up for less than 1 day yes
Linux 3.x 52,200 Longer uptimes less likely yes
iOS iPhone/iPad 48,360 × Most uptimes 3 to 13 days no
Mac OS X 10.x 32,721 × Most uptimes 3 to 13 days no
Linux 2.2.x-3.x 28,034 Wraps @27 hours no
FreeBSD 21,717 Reboots for patch [8] yes
Linux 2.6.x 17,290 Longer uptimes less likely yes
Linux 2.4.x-2.6.x 14,800 Longer uptimes less likely yes

Table 6: We verify that the uptime inferred by TCP timestamp
method matches the actual uptime of a machine, and by examining
the distribution of suspected uptimes observed in UCSD-13.
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Figure 10: Distribution of uptime in days for IP addresses with TCP
timestamps.

we examine the distribution of uptimes in UCSD-13 for each OS
individually. We exclude two OSes, Linux 2.4.x and Linux 2.2.x-
3.x, because the TCP timestamps appear to reset when the counter
reaches 100M (at approximately 27 hours). We include Windows
7/8, which has a similar distribution from hour 0 to 24; but there is
no evidence of a reset, implying that Windows 7/8 users generally
turn off their machines every day.

Another concern is that the TCP timestamp will wrap once it
meets its maximal value. The fastest timestamps we observe show
clocks with frequencies on the order of 1000Hz, which will wrap
about every 49 days. In Figure 10, about 0.1% percent of hosts
have an uptime of 49 days, which suggest the impact of a wrapping
timestamp is minimal.

Results. In UCSD-12, UCSD-13, partial-UCSD-13, and
MERIT-13, we were able to infer uptimes associated with 290,697,
208,104, 57,990, and 47,122 IP addresses respectively. Both
partial-UCSD-13 and MERIT-13 reveal significantly fewer
uptimes than UCSD-12 and UCSD-13, showing the influence of
darknet size and temporal fluctuations (Section 7). Despite the dif-
ferences in coverage, the data sets provide a consistent picture of
uptime. Figure 10 shows that most hosts have short uptimes in all
datasets, and a significant fraction have an uptime of less than 1
day. For the next three weeks, the fraction of up hosts decays ex-
ponentially, consistent with a constant probability of being turned
off/rebooted. In UCSD-12, we observe many hosts with an uptime
of about 35 days, many of which run Linux. The boot times of
these machines are consistent with applying a newly released ker-
nel security fix [7]. Similarly, in 2013, FreeBSD required a reboot
after an update to BIND [8], but the influence on our aggregated
data is smaller.

Discussion. The main benefit of using IBR to infer uptime is
the diversity in end hosts analyzed. To the best of our knowledge,
this is the first study to provide an Internet-wide analysis of up-
time. Nmap and p0f both use the TCP timestamp technique, but
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measurements from a single vantage point (and not based on IBR)
are limited in the sources they can evaluate. Active probing will not
reach end hosts behind a firewall or NAT, whereas passive obser-
vation will be biased based on the population observed. Our study
used over a half a million sources to validate the approach; but we
could only determine uptime for 40k to 200k hosts (our analysis
could improve, if instead of discarding all traffic from IP addresses
used by multiple hosts, we isolated the timestamps for each host).

Kumar et al. examined IBR from the Witty worm to extract host
uptimes. However, since Witty targeted a buffer overflow in net-
work security products, the number of networks they could analyze
was limited (inferring uptime for only about 800 machines) and not
diverse (about a quarter of the machines were from only two insti-
tutions) [32]. Inferring properties from information extracted at the
transport layer expands our coverage.

8.3 Identifying path changes
Detecting and analyzing path changes provides insight into Inter-

net path stability [19, 42], and outages [12, 31, 51]. Our goals with
this case study are to explore an inference that: (1) requires succes-
sive measurements; (2) has an element of predictability (although
IBR composition is erratic, TTL is predictable); and (3) shows how
to use IBR to reduce the active probing required to infer changes
(similar to [31, 51]).
Method. We extend the technique of [12] to identify path changes
from remote ASes to the darknet, which relies on the insight that
the TTL of a received packet reflects the number of hops on the
path to the darknet. If the path is unchanged, all packets from a
host will have the same TTL. We calculate the number of hops by
subtracting the TTL from the next highest power of 2 (a technique
used in [13]), excluding any packets with a TTL less than 3 since
they likely originate from traceroute and are not a predictable mea-
sure of hop count. When the number of hops from a source to the
darknet increases or decreases, we infer a likely path change (sim-
ilar to a previous technique for monitoring traffic at a CDN [51]).
Note this method will not detect changes that result in the same
length path (but through different routers).

For each IP address, we calculate for each 5-minute time bin,
t, maxt and mint−1, the most and least number of hops taken at
time t respectively. We consider a path to have changed if maxt

> maxt−1 or if mint < mint−1. We expect most path changes to
occur during a 5-minute bin, and not at time bin boundaries; our
requirement for a change will identify changes that occur during a
5-minute bin (the time bin includes packets with the old TTL and
the new TTL). This method should also account for a change in
load balancing paths (the whole distribution shifts). The method
will have some false positives due to NAT (when a new host, with
a longer/short path starts transmitting) as well as false negatives.

To study changes affecting larger source granularities, e.g., a pre-
fix or AS, for each time bin we also calculate the percentage of IP
addresses that sent packets in that time bin as well as the previous
one, and also indicated a path change. Using multiple sources from
a prefix or AS increases our confidence that an event occurred. In
particular, we can identify path changes affecting large portions of
the address space (as opposed to the Internet edge).
Results. We are interested in paths that we can continually moni-
tor, which we call always-analyzable. Section 6 showed that only
countries and a few ASes send IBR to our darknets every minute.
Table 7 confirms that few sources are always-analyzable; not shown
is the significant overlap of such sources across datasets: 1300
ASes are in both UCSD-13 and MERIT-13, and 1000 ASes are
in both UCSD-13 and UCSD-12. The UCSD-13 data yields the
best insight into path changes for transit/access ASes. Although

UCSD-12 UCSD-13 MERIT-13
Partial

IP addresses 2.5k 2.8k 2.4k 2.2k
/24 blocks 2.3k 2.6k 2.1k 2.0k
Prefixes 3.3k 3.6k 2.7k 2.9k
ASes 1.6k 1.7k 1.4k 1.4k
Countries 146 155 145 148

Table 7: Number of sources for which we can detect path changes
throughout our measurement periods is consistent across datasets.

large ASes (announcing a /16 or more) are more likely always-
analyzable, half of the always-analyzable sources are small (an-
nounce less than a /16 block).
Validation. We validate our method using historical traceroutes
from Ark nodes [6] located in always-detectable ASes in UCSD-13.
The Ark infrastructure uses teams of about 20 nodes to send tracer-
outes to every routed /24 block over a span of 2-3 days [6]; thus, we
can expect about one traceroute per minute from each Ark node to
reach the darknet. Nine Ark nodes are in 8 always-detectable ASes,
including five educational networks, two large transit providers,
and a Regional Internet Registry.

We cannot validate all path changes from the hosts sending IBR,
as we do not know when these hosts start sharing links to the dark-
net. However, AS-level path changes should be observable in both
Ark data and IBR. We find our analysis of other IBR-transmitting
IP addresses frequently corroborates path changes in traceroute data.
Figure 11 reports, for events in KIST (ASN1237) and Purdue (AS17),
the percentage of hosts in darknet data signaling a path change, and
the periods of time (the colored) periods that a path change was ob-
served from IPs in both darknet and traceroute data.

KIST had very few path changes (in both types of data). Fig-
ure 11a includes all traceroute-inferred path changes for KIST, and
all but one path change in UCSD-13. Most traceroute-inferred
path changes occur around the same time as the darknet-inferred
changes. Traceroute reveals that the path change occurred in the
core of the network. Further investigation of the KIST sources sug-
gests that traffic from the darknet sources used multiple paths in
the 8:00 to 8:10 time bins (during these time bins the hop count
was 16 or 17; outside of the time bins the hop count was 16). For
one of the IP addresses, it is possible to look at a 1-minute time
bins. With this granularity all darknet-inferred changes align with
traceroute-inferred changes.

Figure 11b shows many path changes over a six-day period for
Purdue in both Ark (8.9k changes), and darknet data (1.3k 5 minute
bins with changes). Several IP addresses produce evidence of fre-
quent path changes. Before August 4, 2013, traceroutes sent by the
Ark monitor to UCSD-NT used the same route out of Purdue, but
after this date, traffic from the Ark node traversed multiple routes
out of Purdue’s network. A likely explanation is that some Purdue
sources used stable routes, while others used flapping routes; on
August 4, 2013 the Ark node switched to using the flapping routes.

It is future work to fully validate our method; but from these
examples, we suspect our technique can provide strong evidence
of paths changes to the darknet. At a high level, our results for
path-change detectable ASes are consistent with previous studies
of route persistence [19, 42].
Discussion. Although IBR is an erratic data source, this example
shows that it can provide insight into abnormal events and macro-
scopic dynamics. Our success with this case study is partially due
to the aspect of IBR we are evaluating: the expectation that the
initial TTL value remains the same is true regardless of the num-
ber of sources sending IBR or the volume of IBR, although in-
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Figure 11: Identifying path changes with IBR. The top portion of each figure shows our validation data from Ark. The middle portion of
each figure shades, for each source, the periods it inferred a path change. The bottom portion of each figure shows the percentage of darknet
IP addresses signaling a path change. We identify the start of path change events at KIST, and route-flapping at Purdue.

creases in either would likely improve our coverage and accuracy.
This path change detection method would work best in conjunction
with other data sources. Like PlanetSeer and Hubble, passive traffic
measurements such as IBR can help inform when and where active
measurements would be most useful [31, 51]. IBR also provides
features that traceroute and BGP data lack, e.g., no injected traffic
required, and intra-AS visibility, respectively.

9. SUMMARY
We create a framework, and use case studies to apply the frame-

work, to investigate the utility of Internet Background Radiation to
support inference of a range of properties of networks across the
global Internet. Using traffic from two large darknets, we care-
fully characterize it along dimensions applicable to macroscopic
Internet measurements. We examine which networks send IBR,
identify components that enable opportunistic network inferences,
characterize the frequency and granularity of traffic sources, and
analyze sensitivity to time of collection and position in the address
space. Three case studies highlight the range of inferences pos-
sible with IBR, and show that IBR can supplement existing tech-
niques by improving coverage and/or diversity of analyzable net-
works, and reducing measurement overhead. We also taxonomize
10 other potential inferences, and hope that our framework encour-
ages additional consideration of the circumstances and properties
for which unsolicited traffic is an appropriate data source for Inter-
net research. This work demonstrates the applicability of IBR to
many types of Internet measurement studies. More generally, this
framework can serve as a template for evaluating the utility of other
Internet measurement data sources.
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