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ABSTRACT

The decentralized nature of Peer-to-Peer (P2P) botnets pre-
cludes traditional takedown strategies, which target dedi-
cated command infrastructure. P2P botnets replace this
infrastructure with command channels distributed across
the full infected population. Thus, mitigation strongly re-
lies on accurate reconnaissance techniques which map the
botnet population.While prior work has studied passive dis-
turbances to reconnaissance accuracy —such as IP churn
and NAT gateways—, the same is not true of active anti-
reconnaissance attacks. This work shows that active attacks
against crawlers and sensors occur frequently in major P2P
botnets. Moreover, we show that current crawlers and sen-
sors in the Sality and Zeus botnets produce easily detectable
anomalies, making them prone to such attacks. Based on
our findings, we categorize and evaluate vectors for stealthier
and more reliable P2P botnet reconnaissance.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—In-

vasive Software; C.2.0 [Computer-Communication Net-

works]: General—Security and Protection

General Terms

Security
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1. INTRODUCTION
The decentralized nature of Peer-to-Peer (P2P) botnet

architectures eliminates the need for centralized Command-
and-Control (C2) servers. As a result, P2P botnets are im-
mune to traditional takedown strategies, designed to disrupt
centralized C2 channels. Instead, takedown efforts against
P2P botnets require large-scale distributed attacks, such as
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sinkholing, which target all bots in the network [28]. Due
to the high resilience of P2P botnet architectures, many
high-profile botnets have migrated from centralized to P2P
networks. Among the most resilient of these are Sality [10]
and P2P (GameOver) Zeus [2].
The recent takedown of GameOver Zeus underscores the

resilience of botnets like these. This notorious banking trojan
has been active since 2011, and has survived despite multiple
intensive sinkholing efforts [28, 4], until finally being crippled
in May 2014, following a massive collaboration between the
FBI, VU University Amsterdam, Saarland University, Crowd-
strike, Dell SecureWorks, and other agencies, universities and
malware analysis labs [5, 3].

Attacks against botnets like these are fundamentally based
on knowledge about the composition of the botnet [28]. For
instance, sinkholing attacks disrupt C2 connections between
bots, and thus require a view of the botnet connectivity
graph. Similarly, banks use P2P botnet mappings to identify
infected customers, and several nations are currently setting
up centralized repositories for reporting infected IPs [31].

Knowledge about the nodes in a botnet and the connections
between them is obtained using intelligence gathering (recon-
naissance/recon) techniques. Reliable recon techniques for
P2P botnets are thus crucial for both invasive attacks (e.g.,
sinkholing) and non-invasive countermeasures (e.g., infection
notifications). All recent P2P botnet takedowns required
accurate recon, including the ZeroAccess and GameOver
Zeus attacks [5, 3, 22, 35, 19]. Note that connectivity graph-
agnostic Sybil attacks, which could effectively disrupt early
DHT-based P2P botnets [6], are not effective against modern
unstructured networks like Sality and Zeus, which use dense,
dynamic connectivity graphs to propagate signed commands
between bots.

To maximize the reliability of reconnaissance results, prior
work has studied a myriad of passive disruptive factors, such
as bots behind NAT gateways and IP address aliasing [28,
17]. In contrast, very little attention has been devoted in the
literature to the hardening of recon against active disruption
by botnet operators.
We believe this issue calls for closer analysis, as botmas-

ters increasingly implement active anti-recon strategies in
P2P botnets, largely in response to recent successful take-
downs. These upcoming anti-recon strategies are aimed at
compromising the intelligence gathered by malware analysts
in P2P botnets, using attacks such as (automatic) black-
listing [2], reputation schemes [10], and even DDoS against
recon nodes [4]. Botmasters use anti-recon strategies to aug-
ment previously disabled botnets, and redeploy hardened

129



versions of them, which are more difficult to take down. For
instance, the Hlux botnet has already respawned three times,
each time with additional hardening strategies [35, 19, 11].
These patterns suggest that next-generation P2P botnets will
incorporate stronger anti-recon techniques. Because take-
down and disinfection efforts against P2P botnets hinge on
reliable reconnaissance, our work is aimed at proactively in-
vestigating the full extent of anti-recon implemented by P2P
botmasters, and the range of possible defenses to safeguard
reconnaissance in next-generation botnets.
We show that recon tools used by malware analysts to

monitor high-profile botnets suffer from serious protocol de-
ficiencies, making them easily detectable. Specifically, we
infiltrate the Sality v3 and GameOver Zeus botnets by insert-
ing passive sensors, which scan incoming traffic for anomalies
and deviations from the botnet protocol. Additionally, we
use active peer list requests to locate sensor nodes which
do not actively initiate communication. (At the time of our
analysis, the attack against GameOver Zeus had not yet
been launched.) We identify 21 Zeus crawlers, 10 distinct
Zeus sensors, and 11 Sality crawlers belonging to well-known
malware analysis laboratories, network security companies,
and CERTs. We find that all of these have shortcomings
which make them easy to identify among the bot populations
(200.000 bots for Zeus, and 900.000 for Sality) [28].

At first glance, it may seem that the situation could be
remedied by eliminating syntactic protocol deficiencies in
crawlers and sensors. We show that this is not so; even syn-
tactically sound recon tools can be detected by anomalous in-
or out-degrees. This is commonly true especially for crawlers,
as they strive to contact as many bots in as short a time span
as possible. To evaluate the magnitude of this problem, we
design and implement a novel distributed crawler detection
model, and show that it can automatically detect all crawlers
in GameOver Zeus without false positives. We illustrate that
the algorithm is applicable not only to Zeus, but also to other
P2P botnets, including Sality. Based on these results, we
propose and evaluate techniques to evade out-degree-based
detection, such as rate limiting and distributed crawling,
and we measure the impact of these techniques on crawling
accuracy and completeness.
We also discuss an alternative reconnaissance strategy

which has been widely proposed for use in P2P botnets,
namely Internet-wide scanning [9]. We show that it is applica-
ble to some P2P botnets, but is unfortunately not compatible
with all P2P botnet protocols.

Summarizing, our main contributions are:

1. We identify and classify anti-recon attacks taking place
in current P2P botnets, and generalize to potential
attacks which could be implemented in future botnets.

2. We categorize recon strategies and their susceptibility
to passive and active disruption.

3. We analyze the quality of crawlers and sensors used in
Sality and Zeus, and classify major shortcomings.

4. We design and implement a syntax-agnostic crawler
detection algorithm, and use it to analyze tradeoffs
between reconnaissance stealthiness versus speed, ac-
curacy, and completeness.

5. We discuss strategies for covert P2P botnet recon based
on our results.

a

b
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e

Figure 1: An example botnet connectivity graph. An arrow from
node a to node b indicates that a knows b. Non-routable nodes
are shaded.

2. RECON IN P2P BOTNETS
Reconnaissance methods for P2P botnets can be divided

into two classes, namely crawler-based and sensor-based
methods (though hybrids are feasible [28]). This section
introduces both of these classes, and compares their tradeoffs
and resilience to passive disruption. We discuss active recon
disruption in Section 3.
Throughout this paper, we consider a botnet to be a

digraph G = (V,E), where V is the set of vertices (e.g.
bots), and E is the set of edges (e.g. is-neighbor connections
between bots). We refer to the number of outgoing edges
from a bot v as its out-degree deg+(v), and the number of
incoming edges as in-degree deg−(v).

2.1 Crawlers
Crawler-based reconnaissance relies upon the peer list

exchange mechanism available in all P2P botnets [28, 2, 10,
13, 33, 35]. In P2P botnets, every bot maintains a list of
addresses of other peers it has been contacted by or has
learned about from other bots. To maintain connectivity
with the network despite the constant churn of bots that
join and leave the botnet, peers regularly exchange (parts
of) their peer list with their neighbors. Support for peer list
exchanges is typically implemented through special request
messages included in the botnet protocol, called peer list
requests, which each bot can use to request a set of peer
addresses from another. Crawlers abuse this mechanism
by recursively requesting peer lists from all bots they learn
about, starting from an initial bootstrap peer list (usually
obtained from a bot sample).
Due to its simplicity and ability to rapidly request peers

from many bots, crawling is a highly popular intelligence
gathering method used by malware analysts [15, 28]. Never-
theless, crawlers have been reported to suffer from a myriad
of inaccuracy problems. For instance, address aliasing can
occur with bots that use dynamic IP addresses, leading to
significant botnet size overestimations if the crawling period
is too long [17]. In addition, crawlers cannot contact and
verify the liveness of non-externally reachable (non-routable)
bots, such as bots protected by a firewall or NAT gateway [17,
28]. This is a significant shortcoming, since the percentage
of non-routable bots can range up to 60–87% [28].
Figure 1 shows the inaccuracy that may result from the

inability of crawlers to verify non-routable bots. The figure
depicts a connectivity graph containing bots a, . . . , e, of which
bots c, . . . , e are non-routable (shaded). A crawler can only
directly contact the externally reachable (routable) bots a
and b; non-routable bots are only discoverable if they actively
advertise themselves.
The only way for a crawler to learn about bots c, . . . , e

is by relying on the peer lists returned by a and b. The
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addresses returned in these peer lists may be outdated, and
the lists may include multiple aliases for bots with dynamic
IPs. The crawler cannot be sure of this, and cannot actively
establish contact with bots c, . . . , e to verify their existence.
On the other extreme of the scale, the botnet protocol may
not allow non-routable bots to push themselves into the peer
lists of other bots at all, making it impossible for crawlers to
find non-routable bots. As an example, node e in Figure 1
has no incoming edges from any routable bot, making it
undetectable to crawlers regardless of the protocol.

2.2 Sensors
In contrast to crawlers, sensors are largely passive. When

injecting a new sensor node into a botnet, its address is
actively announced (as is done for new bots joining the
network) until a sufficient number of bots learn about the
existence of the sensor. After that, the active announcement
is ceased, and the sensor relies upon peer list exchanges
between bots to propagate its address. Sensors map the
network by waiting for bots to contact them, instead of
actively contacting bots.
Compared to crawlers, sensors achieve better coverage of

routable bots [28]. In addition, sensors can find and verify
all non-routable bots which contact them after learning the
sensor addresses from other bots. This allows sensors to
more precisely and reliably map the nodes in the botnet than
crawlers [28].
Sensors are currently not as widely used by malware an-

alysts as crawlers are. In part, this is due to the larger
implementation and reverse engineering effort required to
build and maintain a sensor. Since most botnets have mech-
anisms to evict unresponsive or incorrectly responding peers
from peer lists, sensors must implement most or all of the bot-
net protocol to avoid being evicted. In contrast, crawlers only
need support for peer list requests and responses. Further-
more, sensor injection can be complicated by botnet resilience
measures like reputation schemes [10] and non-persistent peer
list entries [36].
In contrast to crawlers, sensors map only the nodes in a

botnet, but not the connectivity information. However, since
sinkholing attacks overwrite peer list entries, they require
connectivity information to determine which entries to target.
To obtain this information, sensors must be expanded to
request peer lists from bots which contact them. Compared
to crawlers, sensors which are augmented with active peer
list requests have the advantage that they can even reach
the majority of non-routable bots through NAT punch holes.

3. ANTI-RECON ATTACKS
Recon tools like crawlers and sensors are open to a range

of attacks which impair intelligence gathering. This section
categorizes the anti-recon measures which we have observed
in the wild in all major P2P botnets since 2007 [28]. We
summarize these in Table 1, and categorize anti-recon into
four categories: (1) deterrence, (2) passive attacks (i.e., black-
listing), (3) active disinformation, and (4) retaliation attacks.

3.1 Deterrence
Deterrence encompasses P2P botnet protocol characteris-

tics designed to complicate recon. This includes measures
meant to deter crawling or sensor injection.
As shown in Table 1, deterrence is currently the most

common class of anti-recon: all major P2P botnets include

some form of recon deterrence. Specifically, all botnets except
Storm include an IP filter which prevents the injection of
multiple sensors on a single IP [10, 25, 35, 19, 6, 13, 34, 33].
Zeus goes further than this, disallowing more than a single
peer list entry per /20 subnet [2].
All botnets also include a form of information limiting

designed to slow crawling, usually by returning only a small
set of peer list entries at once. This is most extreme in Hlux,
where at any moment there is only a small list of around
500 relay nodes (externally reachable bots) circulating in
the network [19]. Another form of information limiting is
clustering, observed in Zeus, Storm, and Hlux [2, 13, 35].
Zeus and Storm restrict the returned peer list entries based on
a (Kademlia-like) XOR metric, returning only entries “close”
to the requester according to this metric. Hlux clusters the
bot population around a small core of relay bots shared in
peer lists.
Finally, some bots also feature more specialized recon

deterrence. For instance, Sality actively tries to prevent
sensor injection by using a reputation scheme based on a
goodcount, which reflects how well-behaved peers have been
in the past [10]. Sensors are only propagated to other bots if
they achieve a high goodcount first. Additionally, ZeroAccess
prevents injection of persistent links to sensors by pushing a
continuous flux of peer list updates, constantly overwriting
the full peer list of each routable bot [25].

3.2 Blacklisting
Blacklisting is a passive attack, designed to starve crawlers

and sensors of information by prohibiting bots from commu-
nicating with them. It is already used in ZeroAccess, and
in particular also in GameOver Zeus, which features two
distinct blacklisting mechanisms [2]. (1) Each bot binary is
shipped and periodically updated with a hardcoded blacklist
of IPs which the botmasters identified on the network due
to anomalous behavior. (2) In recent versions of Zeus, an
automatic blacklisting mechanism was introduced, which is
a rudimentary approach to identify and block crawlers and
nodes attempting to poison the network. Each bot tracks
the request frequencies of its peers, and blocks peers send-
ing many requests in quick succession. To prevent blocking
of multiple NATed bots using the same IP, the maximum
frequency is high enough to be circumventable by relatively
efficient crawlers. Nevertheless, this mechanism is sufficient
to thwart naive crawlers, and could be more finely tuned.
Blocked IPs become unusable for malware analysis not only
on the botnet in question, but also on other botnets, as
(hardcoded) blacklists are often publicly visible.

3.3 Disinformation
Disinformation attacks actively supply crawlers and sensors

with spurious peer list entries containing forged addresses,
in order to divert them from the main bot population. This
is problematic especially for crawlers, as they lack the ability
to verify non-routable bot addresses. The attack can be
expanded to thwart sensors by leading them into a “shadow
botnet”, containing a set of responsive peers which are iso-
lated from the main bot population. Disinformation attacks
can cause collateral damage by polluting lists of infected
addresses reported to ISPs, and even rerouting sinkholing
attacks to shadow nodes or uninfected hosts.
We have observed (possibly unintended) disinformation

in ZeroAccess, where peer lists frequently include junk ad-
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Deterrence Blacklisting Disinformation Retaliation

IP filter Reputation Info limit Flux Clustering Auto Static Spurious IPs DDoS

Zeus By /20 - Peer list - XOR metric By rate Manual - After attack
Sality By IP Goodcount Peer list - - - - - -
ZeroAccess By IP - Peer list Peer push - - Manual Junk -
Kelihos/Hlux By IP - Relay list - Relay core - - - -
Waledac By IP - Relay list - - - - - -
Storm - - Proximity - XOR metric - - Rogue After attack

Table 1: Anti-recon measures observed in P2P botnets.

dresses, such as reserved or unused IP addresses. In addition,
Storm is known to have contained many rogue nodes, which
also served to pollute exchanged peer lists [6]. Overall, cur-
rent P2P botnets do not yet engage in disinformation on a
large scale, but there is a real risk that future P2P botnets
may engage in this strategy, especially as it has already been
explored in detail in prior work [37]. We believe recon tools
should implement measures to prevent this kind of attack,
as it is quite difficult to detect once deployed in full-scale.

3.4 Retaliation
Retaliation is another category of active attack, in which

botmasters take action to disable or compromise hosts used
for reconnaissance. Retaliatory actions include denial-of-
service attacks, as used by the GameOver Zeus botmasters
in response to sinkholing attempts [4], and active infiltration
or exploitation of hosts used for recon. Repeated denial-of-
service attacks have also been observed in the Storm botnet,
in response to takedown/infiltration attempts [6].

4. RECON ANOMALIES
This section analyzes the stealthiness of crawlers and sen-

sors used in GameOver Zeus and Sality v3. Unstealthy re-
connaissance tools expose themselves to an increased risk of
the attacks discussed in Section 3. Section 4.1 discusses pro-
tocol anomalies found in crawlers, while Section 4.2 discusses
sensor anomalies. In Section 4.3, we design a syntax-agnostic
algorithm to detect crawlers based only on network coverage.

4.1 Crawler Protocol Anomalies
We base our crawler analysis on data gathered by 512

sensor nodes in the Zeus network (before it was sinkholed),
and 64 sensors in Sality (the number is limited by Sality’s peer
management scheme and our IP range). We announced these
sensors for two days, and then ran them passively for three
weeks, until the combined sensor in-degrees matched botnet
size estimates [28], ensuring reachability by all crawlers. Our
sensor implementations included only protocol logic, and no
malicious logic, and we verified the legality of our tactics
with law enforcement officials.

We identified crawlers using protocol-specific anomaly de-
tection on our sensor data, looking for peers with deviations
from normal bot behavior. To define normal behavior, we
reverse engineered Zeus and Sality to establish a ground
truth. Next, we cross-verified our list of detected crawlers
to ensure that crawlers from our anti-malware industry con-
tacts were all correctly detected. While it is impossible to
obtain a complete ground truth of crawlers in a live botnet,
we established the significance of our results by attributing
analyzed crawlers to large malware analysis companies, net-
work security companies, CERTs, and (academic) researchers.
We attributed crawlers using WHOIS data, protocol-specific
information (such as bot IDs revealing company names),

c1 c2 c3 c4 c5 c6
-

c1
1

LOP range ✓ ✓ ✓ ✓ ✓ ✓

Port range ✓ ✓ ✓ ✓ ✓

Random ID
Version ✓ ✓ ✓ ✓

Hard hitter ✓ ✓ ✓ ✓ ✓ ✓

Protocol logic ✓ ✓ ✓ ✓

Encryption

Coverage (%) 69 100 100 100 100 100

Table 2: Defects found in Sality crawlers.

and inquiries with contacts in the community. We informed
affected parties via closed mailing lists.
We study only well-functioning crawlers which cover at

least 1% of the bot population (≥ 50 messages to our sensors),
with the addition of one open-source Zeus crawler belonging
to a large network security company. The resulting list of
crawlers found by our anomaly detection includes 21 Zeus
crawlers and 11 Sality crawlers. We summarize the defects
found in these crawlers in Table 2 for Sality, and Table 3 for
Zeus (anonymized to avoid revealing IPs used by malware
analysts). Note that 6 of the 11 Sality crawlers are grouped
together into a single column, as these were all running in
the same subnet and exhibited the same characteristics (i.e.,
multiple instances of the same crawler).

The rest of this section discusses the results from Tables 2
and 3 in detail. We organize the results into several classes of
common defects, each of which undermines crawler stealthi-
ness, and increases attack vulnerability.

4.1.1 Range Anomalies

Crawlers with range anomalies exhibit static or constrained
values for message fields that should be randomized. Ad-
ditionally, range anomalies can occur when crawlers use
random values for non-random fields. Our results show that
range anomalies are the most common class of defects in
Zeus crawlers. We found at least one range anomaly in 20 of
the 21 analyzed crawlers.
The Zeus message header contains several fields which

are normally randomized. These include a random byte
at the beginning of each message, the Time to Live (TTL)
field which is randomized when unused, and the Length
of Padding (LOP) field, which indicates the length of the
random padding at the end of the message. Furthermore,
a random session ID is generated for each request-response
pair. In 14 crawlers, the padding length was constrained,
possibly to reduce bandwidth usage by limiting the number
of padding bytes at the end of each message. Additionally,
static or constrained random bytes and TTL values each
occurred in 10 crawlers, and 11 crawlers used static session
IDs, or rotated between a small number of session IDs.
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c1 c2 c3 c4 c5 c6 c7 c8 c9 c1
0

c1
1

c1
2

c1
3

c1
4

c1
5

c1
6

c1
7

c1
8

c1
9

c2
0

c2
1

RND range ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TTL range ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LOP range ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Session range ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Session entropy ✓ ✓ ✓

Random source ✓ ✓ ✓

Source entropy ✓ ✓ ✓ ✓ ✓

Padding entropy ✓ ✓ ✓ ✓ ✓

Abnormal lookup ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hard hitter ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Protocol logic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Encryption ✓ ✓ ✓ ✓ ✓ ✓ ✓

Coverage (%) 90 82 85 75 84 20 53 62 1 8 92 44 85 92 92 88 54 87 86 2 27

Table 3: Defects found in GameOver Zeus crawlers.

On the other hand, we found that 3 Zeus crawlers used
random values for the source ID field on each message, which
indicates the unique identifier of the bot that sent the mes-
sage. Although a small variation in source ID per IP address
is normal, and can indicate multiple bots behind a NAT
gateway, these crawlers used over 1000 different source IDs,
making them highly detectable.
Just as in Zeus, normal Sality messages end in a random

amount of padding. Nevertheless, in all but one of the
analyzed Sality crawlers, the padding length was set to a
fixed value, and in the remaining crawler the padding length
was constrained to reduce bandwidth usage. Additionally,
10 of the 11 analyzed crawlers sent messages from a fixed
port, while ordinary Sality bots use a randomized port per
message exchange.
Some types of Sality messages include a bot identifier,

which normally does not change while the bot remains up. All
of the crawlers we analyzed adhered to these semantics, and
did not change their identifiers between messages exchanged
with our sensors.

4.1.2 Entropy Anomalies

Entropy anomalies occur when multi-byte fields that nor-
mally contain high-entropy content are set to non-random
values. In the Zeus protocol, such fields include the source
ID and session ID, which are SHA-1 hashes, and the random
padding bytes at the end of a message. We found 3 crawlers
with low-entropy session IDs, 5 crawlers with non-random
padding bytes, and 5 crawlers with low-entropy source IDs.
The crawlers with low-entropy source IDs occasionally used
identifiers with ASCII bytes representing the name of the
company or individual running the crawler.
In contrast to Zeus, Sality uses randomly chosen integers

instead of hashes as (non-global) bot identifiers. While Zeus
crawlers often use low-entropy identifier strings, all Sality
crawlers use seemingly random integer IDs, without any
entropy anomalies.

4.1.3 Invalid Encryption

In 7 of the analyzed Zeus crawlers, we encountered cor-
rupted messages that contained irrational data for all message
fields. These corrupted messages were interspersed with cor-
rectly encoded messages. It appears that these crawlers
occasionally select incorrect keys to encrypt outgoing mes-
sages, preventing our sensors from decrypting these messages.
In GameOver Zeus, the unique identifier of each bot is used
as the key to encrypt messages towards that bot. Thus, we

suspect that the crawlers in question do not correctly keep
track of the identifier of each bot they find. We did not
encounter any invalid encryption in Sality crawlers.

4.1.4 Protocol Logic Anomalies

As mentioned in Section 2, an advantage of crawlers is
that they avoid the need to implement the full P2P protocol.
However, taking this simplification too far results in crawlers
that manifest incorrect protocol logic. This was the case
for 17 of the analyzed Zeus crawlers. In most cases, these
crawlers simply sent large amounts of peer list requests,
without regard for any other message types used by normal
bots, such as messages used to exchange commands and
binary/configuration updates.

Additionally, many crawlers used abnormal values for the
lookup key field used in Zeus peer list requests. This field
includes a Zeus identifier which is used by the receiving
peer as a metric to determine which peers are sent back in
the peer list response. Normal bots always set this field to
the identifier of the remote peer. In contrast, many crawlers
randomize the lookup key on each peer list request to increase
the range of crawled peers.

Similarly to Zeus, most Sality crawlers (9 out of 11) used
incorrect message sequences. Typically, these crawlers sent
repeated peer list requests to the same bot, without inter-
spersing any of the other normal message types, such as
URL pack exchanges. Another common defect is the use
of incorrect version numbers in the Sality message headers
sent by crawlers. While all of the crawlers used a correct
major version number, only 2 of them also used a valid minor
version number.

4.1.5 Request Frequency Anomalies

In an effort to rapidly gather as much intelligence as pos-
sible about the botnet connectivity graph, 9 of the analyzed
Zeus crawlers sent repeated peer list requests at high frequen-
cies. These hard-hitting crawlers clearly contrast with real
bots, which exchange only one peer list request per neighbor
before returning to a suspended mode. Such request-suspend
behavior is seen in many botnets [28], with a suspend period
of 30 minutes for Zeus and 40 minutes for Sality, making
hard-hitting crawlers highly anomalous.

In Sality, request frequency anomalies are even more com-
mon than in Zeus, occurring in all of the analyzed crawlers.
This is because Sality bots only support the exchange of a
single peer list entry at once, while Zeus bots return up to 10
entries in a single peer list response. Additionally, Sality peer
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lists are much larger than Zeus peer lists, typically containing
around 1000 entries, while Zeus peer lists are limited to 150
entries (and rarely contain over 50 entries). To obtain a
reasonable coverage of a bot’s peer list, Sality crawlers are
therefore obliged to send this bot multiple peer list requests.
Sending these in quick succession, as all of the analyzed
crawlers do, results in clear request frequency anomalies.

4.2 Sensor Protocol Anomalies
In addition to our crawler analysis from Section 4.1, we

also analyzed the sensors active in GameOver Zeus and Sality
during our monitoring. We found Zeus sensors belonging
to 10 organizations (grouped by subnet) by analyzing the
GameOver Zeus connectivity graph, and looking for nodes
with high in-degrees. Since sensors aim to attract as many
bots as possible, they are expected to have high in-degrees.
To create a view of the connectivity graph and node in-
degrees, our sensors sent active peer list requests to every
bot that contacted them. After identifying high in-degree
nodes, we probed each of these for anomalous responses to
identify (defective) sensors. This is necessary as, unlike high
out-degrees, our data shows that high in-degrees occur in
hundreds of apparently legitimate bots. As in our crawler
analysis, we cross-verified the identified sensors with a list of
sensors known from industry contacts.

Our results show that the Zeus sensors suffer from the same
shortcomings as current crawlers, including range anomalies,
entropy anomalies, and protocol logic anomalies. In addi-
tion to these anomalies, we identified several sensor-specific
anomalies. Specifically, all of the analyzed sensors failed to
return the protocol-mandated list of proxy bots (used as
data drops in GameOver Zeus) when requested. In addition,
all but 3 of the sensors responded to peer list requests with
empty peer lists, which is highly unusual behavior. Further-
more, all of the sensors which returned non-empty peer lists
served duplicate peers in order to promote sinkholes or sen-
sors, a behavior never displayed by legitimate bots. Finally,
none of the sensors provided a correct implementation of the
Zeus update mechanism; only 3 sensors reported valid and
recent version numbers, and none of the sensors responded
to update requests used to exchange binary and config files.
Although these anomalies allow current sensors to be de-

tected, sensors are not inherently detectable. Specifically, al-
though sensors generally have high in-degrees, our data shows
that equally high in-degrees also occur for well-reachable le-
gitimate bots, making high in-degree alone an insufficient
metric for reliable sensor detection. Furthermore, P2P bot-
net protocols cannot be easily designed to expose sensors by
limiting the in-degree of bots. This is because, by the degree
sum formula1, limiting the in-degree of bots implies limiting
the out-degree as well, thus impairing the connectivity of
the bots. In our analysis, we were unable to identify any
sensors in Sality, precisely because no nodes with unusually
high in-degree were present, and all high in-degree nodes
responded correctly to probes for all packet types, includ-
ing URL pack exchanges and peer exchanges. Thus, if any
sensors are present in the Sality network, these cannot be
detected in any straightforward way. In contrast, efficient
crawlers tend to have unusually high out-degrees, as we show

1In a directed graph G = (V,E), with V the set of nodes
and E the set of edges, the degree sum formula states that∑

v∈V
deg+(v) =

∑
v∈V

deg−(v) = |E|, where deg+(v) and

deg−(v) are the out-degree and in-degree of node v.

in Section 4.3, requiring special measures to avoid detection.
To further investigate the detectability of crawlers by out-
degree, we design a distributed crawler detection model in
Section 4.3. Subsequently, we categorize crawling techniques
to evade this model in Section 5, and implement and evaluate
our detection model and evasive techniques in Section 6.

4.3 Network Coverage Anomalies
Even syntactically sound crawlers are detectable due to

their tendency to contact many peers in a short timespan,
in an attempt to quickly map the network. This behavior is
visible in Tables 2 and 3. Sality and Zeus crawlers cover up
to 100% and 92% of our sensors, respectively. Furthermore,
nearly all crawlers cover at least 20% of our sensors, and
most crawlers cover 50% or more. In contrast, ordinary bots
cover only a small fraction of the botnet, due to their limited
peer list sizes and evolution rates [10, 2, 28].

To evaluate the extent of this problem, and the effectiveness
of our proposed countermeasures, we design and implement
a syntax-agnostic crawler detection algorithm that identifies
crawlers based on their network coverage. We chose to im-
plement a distributed version of the algorithm to show that
crawler detection is possible even without requiring central-
ized components in P2P botnets. The algorithm is scalable
and Byzantine-tolerant, to allow crawler detection even in the
presence of adversarial nodes (which malware analysts may
inject to subvert the algorithm). To prevent impersonation
attacks, the algorithm assumes a non-spoofable transport
layer, such as TCP. This section provides an overview of our
algorithm, while Sections 5 and 6 discuss improved crawling
techniques and their effectiveness in evading our detection
algorithm, respectively.

Note that this is just one from a range of out-degree-based
crawler detection methods. Alternative implementations,
even centralized ones, can equally well detect crawlers with
anomalous out-degrees, and completely circumvent the risk
of subversion by Sybils. Centralized implementations fit well
with the hybrid structure of many current P2P botnets, such
as Zeus and Kelihos, where bots periodically report to a
higher layer of centralized servers [2, 35, 19]. Therefore,
this paper focuses on our findings regarding the efficacy of
stealthy crawling techniques, rather than technical details of
our particular detection algorithm. Due to space limitations,
we defer a discussion of such details, and the Byzantine-
tolerance of our algorithm, to a technical report [1].

Our algorithm is based on periodic crawler detection rounds,
with the period depending on the time needed to compre-
hensively crawl the botnet. This time depends on the botnet
architecture, diurnal pattern, and protocol, and is 24 hours
for Zeus and Sality, as shown in Section 6 and prior work [28].
Crawling for less than 24 hours misses part of the population,
while crawling longer pollutes results due to infection churn
and IP churn [28]. Our tests in Section 6 use hourly detection
rounds to detect crawlers well before they cover a full diurnal
period. The algorithm assumes that each bot has a random
identifier, generated at infection time. Each round consists
of the following operations.

Detection round announcement The botmaster pushes
a round announcement (signed and timestamped to prevent
replays) to a random bot, which then propagates to all
bots using gossiping (a technique also used in Zeus and Ze-
roAccess [28]). We use push-based gossiping to reach only
routable peers, excluding non-routable bots (never reached
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by crawlers) for scalability. The bots partition themselves
into 2g groups by sampling g bit positions (specified in the
announcement) from their identifiers. Each group contains
the bots with identical bit values at these g positions, and a
per-group leader is assigned in the announcement, creating
2g tree-shaped overlay networks rooted at the group leaders.

Hardhitter aggregation Every bot contacts its leader
and reports all IPs that requested its peer list within a con-
figurable history interval. This interval must cover multiple
detection rounds, or else crawlers can avoid detection by con-
tacting only a limited set of bots per round (see Section 6).
Leaders aggregate the IPs (including their own history), and
flag IPs reported by at least a configurable threshold fraction
of the group as suspicious. Section 6 discusses how to set the
threshold to minimize false positives/negatives.

Crawler voting Leaders collectively vote for suspected
crawler IPs, and classify those IPs which receive a major-
ity vote as crawlers. Majority voting makes the algorithm
tolerant of adversarial leaders which unjustly blacklist non-
crawler IPs, or whitelist true crawlers [1]. As leader selection
is random, adversarial nodes are unlikely to dominate the
leader population unless a large fraction of the bot popula-
tion consists of Sybils (anti-Sybil strategies are discussed in
prior work [29, 7]).

Crawler propagation All bots retrieve the list of crawlers
from n randomly chosen leaders, and filter crawlers reported
by a majority of the leaders. This limits the scope of faulty
results reported by adversarial leaders. Bots can expect reli-
able results if |A| < n×m, where |A| denotes the number of
adversarial leaders and m the fraction of leaders required in
a majority.

5. STEALTHY CRAWLING TECHNIQUES
In this section, we propose methods to improve the re-

liability and stealthiness of P2P botnet crawling. These
strategies are specifically aimed at evading out-degree- or
request-frequency-based detection, as described in Sections 4
and 4.3. We measure the efficacy of these strategies, and their
impact on crawling efficiency, in Section 6. The methods
proposed in this section apply to all variants (distributed and
centralized) of out-degree-based crawler detection algorithms.

5.1 Contact Ratio Limiting
A straightforward way to limit the out-degree of crawlers is

to limit the set of bot IPs they contact. For instance, crawlers
which contact only half of the bots (a contact ratio of 1/2)
are expected to still obtain a reasonably complete view of the
network, as the addresses of the excluded bots are returned
in the peer list responses of the remaining bots. A limitation
of this approach is that it further exaggerates the node
verification problem described in Section 2. Contact ratio-
limited crawlers are not only unable to verify the authenticity
of non-routable nodes, but also cannot verify the excluded
routable bots. Furthermore, we show in Section 6 that to
evade detection using contact ratio limiting, crawlers must
use very low contact ratios of 1/16, or even 1/32. As we show,
this reduces the completeness of the gathered intelligence.

5.2 Request Frequency Limiting
As described in Section 4.1, many crawlers send multi-

ple peer list requests in quick succession to maximize their
coverage of each bot’s peer list. Stealthy crawlers should
limit their request frequencies to avoid being identified as

hard hitters (see Section 4.1.5). We measure the impact of
request frequency limiting in Section 6, and show that the
crawling efficiency obtained by frequency-limited crawlers
depends on protocol-specific factors, like the selection strat-
egy for returned peers, and the number of entries per peer
list response.

5.3 Distributed Crawling
By distributing their egress traffic over multiple source

addresses, crawlers can reduce the risk of detection by IP-
centric sensors. This strategy encompasses several techniques.
(1) Crawlers can be (virtually) distributed over multiple
addresses, crawling only a limited subset of bots per source
address. (2) Addresses used for crawling can be rotated
periodically, with a rotation frequency configured such that
a new address is selected before exceeding the per-address
detection threshold.
As we show in Section 6, distributed crawlers must use

IPs from distinct subnets to reliably avoid detection. The
crawler detection algorithm in our experiments can reliably
detect crawlers with IPs distributed over a /20 subnet, or
with per-address crawling traffic limited by a factor of up
to 1/32. Thus, distributed Zeus or Sality crawlers require
addresses from at least 32 distinct /20 subnets, or a single
/16 network block.

5.4 Anonymizing Proxies
Crawlers could attempt to evade detection by using proxy

servers or an anonymizing network such as Tor [8] to ob-
tain rapidly changing IP addresses. This approach can be
effective, but unfortunately does not blend well with current
anonymizing services, due to several issues. (1) Effective
crawlers simultaneously open thousands of connections, caus-
ing connection tracking and scalability problems with non-
dedicated proxy services. Furthermore, the bandwidth and
latency performance of the Tor network is known to be con-
strained, resulting in slowly converging, and thus inaccurate,
crawling results [8, 26]. (2) The IPs used by anonymizing
proxies and Tor exit nodes are often publicly known, and
can thus be easily blocked by botmasters [12, 23]. A more
effective option might be to set up a dedicated anonymizing
proxy service, though this would require one or more large
dedicated network address blocks as well as strong secrecy
measures to avoid these from leaking out.

6. STEALTHY CRAWLING EVALUATION
In this section, we evaluate the detectability of in-the-wild

Zeus crawlers by network coverage, using the crawler detec-
tion algorithm introduced in Section 4.3. Furthermore, we
measure the effectiveness of the evasive crawling techniques
introduced in Section 5, and their tradeoffs in crawling speed
and completeness. We do this by simulating (to ensure re-
peatability) the effects of these evasive strategies on traffic
we logged from real-world Sality and Zeus crawlers.

6.1 Crawler Detection Accuracy
A full-scale crawler detection algorithm would run dis-

tributed over all routable nodes in a botnet. Since we cannot
deploy such an experimental setup, we instead ran our crawler
detection experiments on the 512 sensor nodes which we in-
jected into the GameOver Zeus botnet. As mentioned in
Section 4.1, none of the sensors contained any malicious
logic. We performed all our experiments before the recent
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t |G| #FP D1/1 D1/2 D1/4 D1/8 D1/16 D1/32 D1/64 D1/128 D1/256

1 8 119 100 100 100 94 89 83 39 28 0
2 8 13 100 100 89 89 83 44 6 0 0
5 8 0 100 89 89 72 50 0 0 0 0

CZeus N/A N/A 100 80 52 42 38 2
CSality N/A N/A 100 90 74 44 27 16

Table 4: False positives vs. detected crawlers for |G| = 8 and t ∈ {1%, 2%, 5%}.
Dc = % detected crawlers for contact ratio c. C = % bots covered by crawler using contact-ratio limiting (relative).
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Figure 2: Crawlers detected in 24 hours for |G| = 8 and t ∈
{1%, 2%, 5%}. The contact ratio simulated on the crawler traffic
varies over x.

GameOver Zeus takedown. Our sensor nodes logged all re-
ceived requests over a total test period of 24 hours. We chose
a 24-hour period to account for a full diurnal cycle without
suffering from duplicate results due to address aliasing caused
by dynamic IP addresses. We then performed our experi-
ments with varying configuration parameters on the logged
traffic, to ensure that any detection differences were a result
of the configuration parameters rather than churn in the bot
and crawler populations. During our test period, 18 of the
crawlers from Table 3 (Section 4.1) were active, which we
used as a ground truth. The rest of this section describes our
measurements of the effectiveness of the crawling techniques
proposed in Section 5 to evade out-degree-based detection:
(1) contact ratio limiting, and (2) address distribution. (We
do not evaluate frequency limiting here as it does not pertain
to the out-degree of crawlers.)

6.1.1 Contact Ratio Limiting

The detection results of our GameOver Zeus tests are
shown in Figure 2 (detected crawlers) and Table 4 (detection
rate vs. false positives). We used a per-bot request history
of 24 hours, meaning that crawlers are detected if they cover
a significant fraction of the bot population in 24 hours. In
our experiments, we randomly partitioned our sensors into 8
groups per detection interval. In a full-scale implementation,
this arrangement would split the Zeus population of 200.000
bots [2] into groups of 25.000 bots (including non-routable
bots) per leader. We denote the number of groups as |G|
(the magnitude of the set of groups G) in Figure 2. We
vary the per-group detection threshold, denoted as t in the
figure, to illustrate the tradeoffs between detection accuracy
and false positives. This threshold is the percentage of bots
per group that a crawler must cover to receive a vote from
that group. We simulated the detection performance for
contact ratio-limited crawlers by excluding crawler requests
to a varying subset of our sensors (the x-axis in Figure 2).
As shown in Figure 2, a per-group detection threshold

of 1% allows 28% of crawlers to be detected even if these
limit their contact ratio to only 1/128 bots. However, this

comes at a cost of 119 falsely identified crawlers (denoted
#FP in Table 4), most of which are actually sets of NATed
bots sharing a single IP. Increasing the threshold to 2%
reduces the number of false positives to 13, but also limits
the detection accuracy to 44% for a 1/32 contact ratio, and
6% for a 1/64 contact ratio. In our tests, the ideal threshold
is 5%, allowing 100% of crawlers to be detected without false
positives if no contact ratio limiting is used in the crawlers.
The accuracy degrades gracefully to 50% for crawlers with
a 1/16 contact ratio, meaning that stealthy crawlers may
contact at most 1 in every 16 bots to evade detection with
50% probability. When increasing the threshold further to
10%, the detection rate degrades to 89% (2 false negatives) if
no contact ratio limiting is used, and to 50% when a contact
ratio of 1/8 is applied.

6.1.2 Address Distribution

To determine the range of addresses needed by distributed
crawlers, we also measured the effectiveness of crawler de-
tection using subnet aggregation. Using the ideal detection
threshold of 5%, our experiments show that crawlers can be
detected with 100% accuracy (no false positives) using sub-
net aggregation ranging from /32 (per-IP detection) to /20
(aggregation per subnet of 4096 hosts). Starting from a /19
filter, the crawler detector reports 110 false positives, caused
by multiple infections within the same subnet. This indicates
that to evade detection, address-distributed crawlers for Zeus
must take each address from at least a distinct /20 subnet.
As shown by our contact ratio experiments, a coverage re-
duction of a factor 32 is required for Zeus crawlers to avoid
detection, so that the address-distributed crawlers must take
their addresses from 32 distinct /20 subnets, or alternatively
from a single /16.

6.1.3 Sality Crawler Detection

To complement our Zeus experiments, we attempted to
repeat our crawler detection tests in the Sality network.
Unfortunately, the peer list size and peer exchange properties
of Sality prohibit small-scale tests of our algorithm.
In Sality, bots maintain a peer list of 1000 entries, and

exchange peers based on a responsiveness-based reputation
metric, as documented by Falliere [10]. To obtain meaningful
evaluation results, it is necessary to run significantly more
sensors than fit in a Sality peer list. Otherwise, sensors are
highly likely to be present in the peer lists of many legitimate
bots, making these bots indistinguishable from crawlers.
While our 512 sensor nodes were sufficient to prototype

our algorithm for Zeus, where typical bots only maintain
around 50 peer list entries [2], a Sality prototype would
require several thousand IP addresses, which we were unable
to obtain for our experiments. Nevertheless, because Sality’s
reputation mechanism and limit of a single entry per peer
exchange significantly restrict the out-degree of Sality bots,
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Figure 3: Bots crawled in 24 hours for varying contact ratio.

we expect that Sality crawlers are highly susceptible to full-
scale crawler detection (as could be implemented by the
Sality botmasters).

6.2 Stealthy Crawling Performance
To evaluate the reconnaissance performance of the stealthy

crawling techniques proposed in Section 5, we implemented
contact ratio and frequency-limited crawlers for both GameOver
Zeus and Sality. (We do not evaluate address-distributed
crawlers, as these should suffer no degradation in crawling
performance.) For both Zeus and Sality, we ran all of the
crawling tests in parallel for 24 hours, to ensure that per-
formance differences did not result from churn in the bot
population. The contact ratio-limited crawlers only con-
tacted a deterministically restricted fraction of bots, based
on the bot identifier. Figure 3 graphs the number of bots
detected over time by contact ratio-limited crawlers, while
Figure 4 shows the results for frequency-limited crawlers.

6.2.1 Contact Ratio Limiting

As shown in Figure 3 and Table 4, the number of peers
found steadily drops as the crawler contact ratio decreases.
At a contact ratio of 1/2, crawling performance is still good,
finding 80% of the Zeus peers found in a full crawl, and 90%
of the Sality peers. However, as can be seen in Figure 2, this
contact ratio still allows 89% of the crawlers to be detected.
Reducing the contact ratio further causes a rapid decline in
completeness. At a contact ratio of 1/4, our crawler finds 74%
of Sality peers, and only 52% of Zeus peers. When reducing
the contact ratio to 1/16, only 38% of the Zeus bots, and
27% of the Sality bots are found by our crawler, while this
contact ratio still leads to a probability of 50% that crawlers
are detected. These results show that contact ratio limiting
achieves crawler stealthiness only at a high cost in crawling
completeness. Note that it is not relevant whether or not our
initial crawls reached the full bot population. Rather, the
results serve only to show the relative coverage degradation
which results from contact ratio limiting.
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Figure 4: Bots crawled in 24 hours for varying request frequency.

6.2.2 Frequency Limiting

Figure 4 shows crawling results for aggressive crawling,
where the suspend-request cycle used by normal bots is not
respected, as well as for crawls adhering to the suspend
period between requests. We show results for crawlers using
a full suspend cycle (30 minutes for Zeus and 40 minutes
for Sality), as well as a half suspend cycle. The results are
highly dependent on the protocol of the crawled botnet. For
Zeus, even crawlers adhering to a full suspend cycle achieve
reasonable efficiency, finding 74% of the bots found by the
aggressive crawler. There are two main reasons for this. (1)
Zeus returns 10 peers per peer list response, and the peer lists
of typical bots contain only around 50 entries. This makes it
possible to cover a larger fraction of each bot’s peer list in a
single suspend-request cycle than for Sality, which features
more stringent constraints. (2) Due to the frequency-based
automatic blacklisting mechanism used in Zeus, even our
aggressive crawler is rate limited to avoid being blacklisted.
This reduces the gap between the aggressive crawling results
and the suspend cycle-adherent results. For Sality, the impact
of frequency limiting is severe. Only 11% of the bots are
found using a half suspend cycle, and only 7% when adhering
to a full suspend cycle. This is because the peer lists of
Sality bots contain up to 1000 entries, while only one entry
is returned per peer list response. Note that even frequency-
limited crawlers are prone to out-degree based detection.
Thus, frequency limiting must always be used in unison with
out-degree limiting.

7. INTERNET-WIDE SCANNING
Recent advances have enabled fast Internet-wide scanning

in practical tools such as ZMap [9]. These tools work by
probing large subsets of the public IP address space, in
order to find hosts that have a particular property (i.e., a
security vulnerability, OS version, etc.), as evidenced by
their response to the probes. Internet-wide scanning has
been proposed as an alternative reconnaissance method for
finding botnet servers and bots [24]. Additionally (though
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Fixed port Probe msg Susceptible

Zeus ✗ ✗ ✗

Sality ✗ ✓ ✗

ZeroAccess ✓ ✓ ✓

Kelihos/Hlux ✓ ✓ ✓

Waledac ✗ ✓ ✗

Storm ✗ ✓ ✗

Table 5: Susceptibility of P2P botnets to Internet-wide scanning.

not strictly necessary), it has been used in practice to discover
bots in the ZeroAccess P2P botnet [20].
Internet-wide scanning can be an efficient approach to

node discovery in P2P botnets, but unfortunately it does not
generalize well to all protocols. This is due to several factors.
(1) Many P2P botnets use a large port range, where each bot
listens on only a single port from this range. For instance,
Zeus bots choose ports in the range 1024-10000 [2]. This
makes Internet-wide scanning intrusive and inefficient, as
thousands of ports must be scanned per host. Internet-wide
scanning is a feasible reconnaissance method for ZeroAccess
only because it runs on a single fixed port (depending on
the version) [25, 36]. (2) Some botnets, like Zeus, use a
different encryption key for packets destined to each bot,
based on the node ID of the receiving bot. This makes it
impossible to probe bots without a-priori knowledge of their
node ID. Consequently, Internet-wide scanning is inherently
incompatible with botnets like Gameover Zeus which use
this tactic. (3) Like crawling, Internet-wide scanning cannot
learn about non-routable nodes that remain hidden behind
a firewall or NAT gateway.
Table 5 summarizes the susceptibility of all major P2P

botnets active since 2007 to Internet-wide scanning [28]. We
consider two prerequisites for Internet-wide scanning in P2P
botnet reconnaissance: (1) the bot protocol must run on a
known port (or small port range), and (2) it must be possible
to construct a probe message to determine if a host is infected
or not. As shown in Table 5, only two of the analyzed botnets
run on a sufficiently small port range, namely ZeroAccess and
Kelihos. Probe construction is possible for all botnets, except
Zeus, which requires a-priori knowledge of the node ID in
order to contact a bot. These results show that Internet-wide
scanning is not a full-fledged alternative to crawling or sensor
injection. Moreover, there are serious scalability issues in
very large address spaces like IPv6, which is expected to
become ubiquitous within a relatively short timeframe. Still,
for susceptible P2P botnets in IPv4 networks, Internet-wide
scanning is a valid recon alternative if no bootstrap peer list
is available for crawling.

8. DISCUSSION
This section discusses tradeoffs of the various P2P botnet

reconnaissance methods, given the stealthiness and coverage
of the various alternatives as studied in this paper. We
summarize tradeoffs and recon characteristics in Table 6.

8.1 Automating Protocol Logic Extraction
Current crawlers and sensors have many protocol-specific

shortcomings which make them very easy to detect. On the
other hand, protocol-adherent recon tools inherently require
more implementation effort. To reduce this implementation
effort, part of the botnet protocol state machine can be
extracted from bot samples using tools like Inspector Gad-

get [21]. This leaves only particular message types, such as
peer list requests and responses, in need of special handling
and manual implementation.

8.2 Crawling vs. Sensor Injection
To detect syntactically sound reconnaissance implemen-

tations, botmasters must rely on semantic anomalies such
as in-degree or out-degree fluctuations. Our results have
shown that crawlers are inherently more prone to this than
sensors, as they strive to actively contact all or most of the
bot population. At the same time, high in-degrees are not
uncommon in legitimate super-peers, and are thus not an
effective metric for detecting sensors. This means that sen-
sors are a more naturally stealthy reconnaissance method
than crawlers. Moreover, properly announced sensors can
be used as a launchpad for more invasive botnet takedown
efforts, for instance by serving as sinkholes [28]. Data gath-
ered by sensors also lends itself well to mapping infected IPs
for subsequent cleanup actions. This applies even more to
sensors than crawling and Internet-wide scanning, as sensors
can find the expected 60–87% of NATed hosts [28].
On the downside, sensors cannot gather data about the

edges between bot nodes. As shown in Table 6, this data
can only be gathered by crawlers. In sinkholing attacks,
edge data is crucial in determining which peer list entries
to poison [28]. While it is possible to augment sensors with
active peer list requests to gather edge data, this effectively
adds a crawling component to them. Thus, both dedicated
crawlers and augmented sensors require defenses against
out-degree-based detection.

8.3 Stealthy Crawling Strategies
In Section 6, we have evaluated multiple stealthy crawl-

ing strategies in the wild. As we have shown, individual
crawlers which limit the contact ratio or restrict the request
frequency have a strongly reduced network coverage. A more
promising method is distributed crawling. Given a large
network address block (at least a /16 for the botnets we
studied), or several smaller blocks, it is relatively painless to
implement, and has no negative impact on crawling coverage.
A possible caveat is that it is still an open problem to deter-
mine whether detection techniques for distributed network
scanning generalize to distributed crawling [16]. Addition-
ally, to prevent request frequency-based detection, crawlers
must limit the per-address request rate, reducing network
coverage. Coverage can be improved by running multiple
rate-limited crawlers in parallel (each with a different node
ID, if applicable), effectively masquerading as a set of bots
behind a NAT gateway.

8.4 Internet-Wide Scanning
We have also investigated Internet-wide scanning as a re-

connaissance alternative in Section 7, and found it unsuitable
as a generic reconnaissance strategy. Whether or not it can
be used depends on the port range, bot protocol, and IP
address space (i.e., IPv4 vs. IPv6) used by the target botnet.
Moreover, Internet-wide scanning from a limited address
range is prone to IP-based detection. The nature of Internet-
wide scanning is to quickly cover large network blocks by
sending stand-alone lightweight probes. Implementing a full
bot protocol makes no sense, as this defeats the simplicity of
Internet-wide scanning. This means that scanners inherently
do not behave like normal bots. Therefore, Internet-wide
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Method Generic Mapping Attacks Stealth strategies Advantages Disadvantages

Crawling ✓ Edges I, P, S • Protocol adherence • Find edges • Cannot find NATed nodes
• Address distribution • Fast deployment • Need out-degree limiting
• Rate limiting

Sensor ✓ Nodes I, P, S • Protocol adherence • Find NATed nodes • Cannot find edge data
injection • Announcement rate limiting • Support sinkholing • Need announcements

• Node verification

Internet-wide ✗ Nodes I • Sound probe syntax • Fast deployment • Cannot find NATed nodes
scanning • Address distribution • No bootstrap list • Cannot find edge data

• One-time usage • Not generic
• Only probes

Table 6: Tradeoffs of P2P botnet reconnaissance methods. Attacks: I = Infection reporting, P = Partitioning, S = Sinkholing.

scanning should be used only as a one-time measure, to boot-
strap conventional crawling if no bootstrap peer list can be
obtained. We stress that Internet-wide scanning of botnets
should be used with extreme care, as by emulating the botnet
protocol it may trigger IDS signatures even in uninfected
networks. Unlike crawling, Internet-wide scanning cannot
gather edge data, and it also cannot find non-routable bots.

8.5 Backbone-Based Sensors
An approach orthogonal to the recon methods we have

studied uses sensors placed on Internet backbone systems.
Given access to such systems and a suitable signature for
a particular family of bot traffic, this allows for completely
passive botnet recon, which cannot be detected or blocked
by botmasters. While potentially highly efficient, an obvi-
ous caveat is that this method requires the cooperation of
backbone operators. Moreover, completely passive detection
may be difficult for botnets like GameOver Zeus, which take
active measures to thwart signature-based detection systems
and encrypt traffic using destination-based keys.

9. RELATED WORK
To the best of our knowledge, our work is the first sys-

tematic study of anti-recon in P2P botnets. Prior work has
hardened theoretical P2P botnets against recon, and pro-
vided anecdotal evidence of anti-recon in practice. Our work
expands on these results to provide a more complete picture
of anti-recon, and how to overcome it.

Early experiments with crawler-based node enumeration in
P2P botnets were performed by Holz et al. in the Storm bot-
net [13]. At the same time, passive crawling inaccuracies due
to address aliasing, firewalls, NAT gateways and churn were
studied by Rajab et al. [27] and Kanich et al. [17]. Recent
work has studied the completeness and accuracy of sensors
compared to crawlers in P2P botnets, showing that sensors
can discover up to two orders of magnitude more peers, while
also verifying their authenticity [28, 15]. Additionally, techni-
cal reports on specific P2P botnets have presented evidence
of anti-recon in the wild [10, 25, 35, 19, 6, 13, 34, 33, 2, 4].
Our work systematizes this anecdotal evidence, and performs
the first in-depth study of the susceptibility of current and
future recon tools to active disruption.
Theoretical work has studied the design of botnet proto-

cols which inherently complicate crawling. Such designs were
proposed by Hund et al. [14], who use proof-of-work schemes
to prevent efficient crawling, and by Starnberger et al., who
use asymetrically encrypted bot IDs to prevent node discov-
ery [32]. Additionally, Yan et al. propose a botnet design
which spreads disinformation to thwart crawlers [37]. These

methods cannot be directly applied to current botnets, and
require botmasters to implement complex and radically dif-
ferent P2P protocols. Moreover, the approach of Starnberger
et al. hides bots within legitimate P2P networks which bot-
masters cannot control. To the best of our knowledge, there
are currently no real-world botnets implementing these or
similar designs.

Sarat et al. detect sensors with faulty protocol implementa-
tions in structured P2P networks [30], but do not investigate
crawlers or protocol-agnostic anti-recon. Our work studies
protocol-specific weaknesses in both crawlers and sensors,
as well as protocol-agnostic crawler detection. Moreover, in
contrast to prior work, we evaluate improved recon strategies
in practice.
Karuppayah et al. propose to reduce the set of crawled

nodes by approximating a minimum vertex cover of the
botnet graph [18]. However, their results are based on simu-
lations of Zeus which assume that all bots are simultaneously
reachable, peer lists can be fully retrieved using only a small
number of requests, and peer addresses are distributed rel-
atively uniformly over the peer lists. In contrast, our own
experience based on non-simulated observations is that Zeus
crawling coverage decreases rapidly as the set of crawled
nodes is reduced (as it would be in a minimum vertex cover).

10. CONCLUSION
We have systematically analyzed anti-recon in P2P botnets,

showing that current botnets already take active measures
to discourage and retaliate against crawlers and sensors, and
that future recon tools are at risk of more invasive attacks.
Moreover, we have shown that current recon tools suffer from
a myriad of shortcomings, which significantly increase their
susceptibility to subversion. Crawlers are especially prone to
protocol-agnostic detection, due to their tendency for out-
degree explosion. We have investigated several stealthier
crawling strategies, of which distributed crawling is the most
promising — it does not negatively impact crawling coverage,
and is straightforward to implement given a large network
address block. Alternatively, sensor injection supports node
verification and improved network coverage, and can be
augmented with graph connectivity information.
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