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ABSTRACT
We address the problem of calculating link loss rates from
end-to-end measurements. Contrary to existing works that
use only the average end-to-end loss rates or strict temporal
correlations between probes, we exploit second-order mo-
ments of end-to-end flows. We first prove that the variances
of link loss rates can be uniquely calculated from the co-
variances of the measured end-to-end loss rates in any real-
istic topology. After calculating the link variances, we re-
move the un-congested links with small variances from the
first-order moment equations to obtain a full rank linear
system of equations, from which we can calculate precisely
the loss rates of the remaining congested links. This op-
eration is possible because losses due to congestion occur
in bursts and hence the loss rates of congested links have
high variances. On the contrary, most links on the Internet
are un-congested, and hence the averages and variances of
their loss rates are virtually zero. Our proposed solution
uses only regular unicast probes and thus is applicable in
today’s Internet. It is accurate and scalable, as shown in
our simulations and experiments on PlanetLab.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Management, Monitoring

General Terms
Management, Measurement, Performance

Keywords
Network Tomography, Identifiability, Inference

1. INTRODUCTION
Many IP network inference problems are ill-posed: the

number of measurements are not sufficient to determine uniquely
their solution. For example, the traffic matrix estimation
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problem is finding the Origin-Destination (OD) pairs of traf-
fic flows from the link counts. As the number of OD pairs far
exceeds the number of links, the resulting system of equa-
tions is under-determined. Various heuristics, such as the
gravity model, can then be used to reduce the set of possi-
ble solutions.

Another tomography problem, which we address in this
paper, is to compute the loss rates of IP links from end-
to-end path measurements. This problem, unfortunately,
is also under-determined. Different methods to overcome
the identifiability issue have been proposed in the literature,
which we review in Section 2. For several practical reasons
these approaches have not been widely used in large scale
applications. For those methods that use multicast, the mul-
ticast routers are not widely deployed. Methods based on
active unicast packet trains present development and admin-
istrative costs associated with deploying probing and data
collection. Other approaches that achieve more pragmatic
targets, such as detecting shared congestion, locating con-
gested links or calculating loss rates of groups of links, can-
not provide fine grain information required by many appli-
cations.

We are interested in inferring IP link loss rates using only
the readily available end-to-end measurements. We argue in
this paper that the regular unicast probes provide enough
information to do so. More precisely, instead of artificially
introducing temporal correlations among the probe packets
with multicast, we seek to exploit the spatial correlations
that already exist among the regular unicast probes. Our
approach is based on two key properties of network losses.
First, losses due to congestion occur in bursts and thus loss
rates of congested links have high variances. Second, loss
rates of most un-congested links in the Internet have virtu-
ally zero first- and second-order moments.

After having described the performance model and as-
sumptions in detail in Section 3, we first prove our main
result in Section 4: the link variances are statistically iden-
tifiable from end-to-end measurements of regular unicast
probes in general mesh topologies. This is in sharp contrast
with what can be achieved with the mean loss rates of net-
work links, which are not statistically identifiable from end-
to-end measurements. This result shows that these variances
can be correctly learnt from a sufficient large set of end-to-
end measurements if we have a proper learning method. We
provide such an algorithm in Section 5.1. It combines the
end-to-end loss rates to provide a linear system of equa-
tions relating the link variances with the covariances of the
end-to-end loss rates. This system of equations can then be



solved in an accurate and scalable way using standard linear
algebra methods.

At the end of this learning phase, we can use the link
variances as additional information together with the most
recent measurement to calculate the link loss rates. The
method boils down to exploiting a monotonic dependence
between the mean and variance of a link loss rate. Specif-
ically, we first sort the links according to their congestion
levels using their variances. By eliminating the least con-
gested links (with smallest variances) from the first-order
moment equations we can then obtain a reduced system of
full column rank and can solve it in order to find the loss
rates of network links as showed in Section 5.2. Because
most links on the Internet are un-congested, this operation
is very accurate.

Finally, the simulations in Section 6 and Internet experi-
ments in Section 7 show that our algorithm is both accurate
and scalable.

2. RELATED WORK
The inference of internal link properties from end-to-end

measurements is called Network Performance Tomography [14].
In this paper we are interested in a particular network per-
formance tomography branch that infers link loss rates from
end-to-end measurements. This problem, unfortunately, is
under-determined when we use only the average end-to-end
loss rates (i.e., the first moment) as shown in Figure 1.

Figure 1: A network with three end-to-end paths
from the beacon B1 to each destination D1, D2 and
D3. The number next to each link denotes the trans-
mission rate of the link. Both sets of link trans-
mission rates give the same end-to-end transmis-
sion rates. Link transmission rates therefore cannot
be uniquely calculated from the average end-to-end
transmission rates.

To overcome the un-identifiability problem, we need to ei-
ther bring in additional constraints or to look for more prag-
matic goals. Most existing end-to-end tomography methods
fall into one of two classes: methods that use strong tempo-
ral correlation between probing packets in a multicast-like
environment [1, 6, 7, 9, 12, 13] (see [11] for a review of these
methods), and methods that exploit the distribution of con-
gested links in the Internet [14,22,24] for a more pragmatic
goal of identifying the congested links.

The initial methods in the first class [1,6,7] infer the loss
rate of network links using multicast probing packets. Most
recently, [9] shows that all moments of link delays, except
the means, are statistically identifiable in a multicast tree.
However, statistical identifiability in general topologies re-
mains to be a conjecture in [9]. As multicast is not widely
deployed in the Internet, subsequent methods [12,13,29] em-

ulate this approach using clusters of unicast packets. These
methods are less accurate than their multicast counterparts
and also require substantial development and administra-
tive costs. Furthermore, the iterative algorithms used to
compute link loss rates in these approaches are expensive
for real-time applications in large networks.

Methods in the second class [14,22,24,36] use only unicast
end-to-end flows for a simpler goal of identifying the con-
gested links. As different loss rate assignments are possible,
these methods use additional information or assumptions.
For example, the methods in [14, 24] identify the congested
links by finding the smallest set of links whose congestion
can explain the observed measurements. These methods es-
sentially use two assumptions: (i) network links are equally
likely to be congested, and (ii) the number of congested links
is small. In [22], we propose to use multiple network mea-
surements in order to learn the probabilities of network links
being congested. Using these probabilities, instead of the
assumptions in [14, 24], the CLINK algorithm of [22] can
identify the congested links with higher accuracy. Using
again unicast probes, [36] by passes the un-identifiability of
first order moment equations by finding the smallest set of
consecutive links whose loss rates can be determined. This
method, however, cannot be used to calculate link loss rates
at the granularity of each individual link, even if some of
these links belong to different end-to-end probing paths. In
contrast, we will see in Theorem 1 that the loss variances of
these links are identifiable.

A large body of research has also been devoted to detect-
ing shared congestion of network flows. All of these studies
use the correlations between different flows to identify the
shared bottlenecks. In [26], cross-correlation between two
flows is compared against the autocorrelation of each flow.
If the former is greater than the latter, then a shared con-
gestion is concluded, otherwise there is none. Harfoush [17]
et al. use back-to-back packet pairs to calculate the correla-
tions from which they infer shared congested links. Kim et
al. [19] use a wavelet denoising technique to improve upon
the work of [26]. Most recently, Arifler [4] used the spatial
correlations of TCP flow throughput to infer shared conges-
tion with a factor analysis model.

We summarize the existing end-to-end tomographic tech-
niques in Table 1. We classify them according to their in-
ference methodologies and objectives.

Our solution in this paper is also based on end-to-end to-
mography. We use unicast probes in a totally different way
than [12,13,29]: we exploit the spatial correlations between
flows rather than the temporal correlations between packets
as in [12, 13, 29]. The flow-level approach offers two advan-
tages over its packet counterpart. First, the spatial correla-
tions exist even among the flows of regular and weakly cor-
related unicast packets. A flow level approach can therefore
be used with existing application traffic from a single end-
host as it does not require access to both ends of a flow as
shown in [24]. Second, our inference technique does not rely
on the strong assumption that back-to-back unicast pack-
ets are strongly correlated. Hence it is more tolerant to
cross traffic, contrary to the the approach of [29] that also
works with passive unicast probes. Compared to the ap-
proach in [22], our solution in this paper also uses multiple
measurements of unicast flows but can provide more infor-
mation about network links, i.e., link loss rates rather than
just their congestion statuses.



Table 1: A Summary of Techniques in Network Loss Tomography.
Temporal Correlations First Order Moments Higher Order Moments

Multicast Packet Trains Prior Knowledge Link Groups One Snapshot Multiple Snapshots
[6,9] [12,13] [14,24] [36] [4,26] [22]

Shared Congestion Yes Yes Yes Yes Yes Yes
Congested Links Yes Yes Yes Yes No Yes
Link Loss Rates Yes Yes No Yes No No

There are also non-tomographic techniques for calculat-
ing link loss rates such as [3, 20]. Instead of using end-to-
end measurements, these approaches use router supports
to calculate link loss rates and therefore depend heavily
on the cooperation of routers. For example, Tulip [20] re-
quires routers to support continuous IP-ID generated ICMP
packets. Unfortunately for security and performance issues,
many routers do not respond or limit the response rates to
ICMP requests. Tulip is also dependent on the cross traffic
and consistently underestimates link loss rates [20]. Further-
more, these approaches require that each end-to-end path is
measured separately and therefore do not scale well.

Techniques that use higher order moments for traffic ma-
trix estimations are proposed in [8, 30]. In both of these
works, the unknown variables are assumed to follow a cer-
tain parametric distribution. Our approach differs in two
aspects. First, we are interested in the “dual” problem of in-
ferring link properties given the end-to-end measurements,
whereas in [8, 30] link measurements are known, but end-
to-end traffic counts need to be inferred. The structures of
the linear equations relating measurements with unknowns
in the two problems are therefore different. Second, we do
not assume any parametric distribution for the inferred vari-
ables. A more detailed comparison between the two ap-
proaches will be given in Section 5.

3. THE NETWORK MODEL
We consider an overlay inference system that consists of

regular users who can send and receive UDP packets and
perform traceroute [18]. End-hosts periodically measure
the network topology and end-to-end loss rates by sending
probes to a set of destinations D. They also periodically
report the measurement results to a central server. We call
these end-hosts that send probes beacons, their set is denoted
by VB .

In this section, we describe the input data that can be
gathered from direct measurements: network topology and
end-to-end loss rates. We also describe the performance
model used by the central server to infer link loss rates.
Even though the framework we present in this paper can be
used to infer link delays and with passive measurements, we
only consider loss rates with active probes in this paper.

3.1 Network Topology
The network topology is measured using tools such as

traceroute [18]. There are several practical issues concerning
the use of traceroute to obtain network topologies, which we
will elaborate in the experiments of Section 7.

We model the network as a directed graph G(V, E), where
the set V of nodes denotes the network routers/hosts and
the set E of edges represents the communication links con-
necting them. The numbers of nodes and edges are denoted
by nv = |V|, and ne = |E|, respectively. Furthermore, we

use Ps,d to denote the path traversed by an IP packet from
a source node s to a destination node d. Let P be the set of
all paths between the beacons and the destinations. Any se-
quence of consecutive links without a branching point cannot
be distinguished from each other using end-to-end measure-
ments: These links, which we call “alias” links, are therefore
grouped into a single virtual link. We call this operation the
alias reduction of the topology. In the rest of this paper,
we use the term “link” to refer to both physical and virtual
links.

For a known topology G = (V, E) and a set of paths P , we
compute the reduced routing matrix R of dimension np ×
ne, where np = |P|, as follows. The entry Ri,j = 1 if the
path Ps,d ≡ Pi, with i = (s, d), contains the link ej and
Ri,j = 0 otherwise. A row of R therefore corresponds to
a path, whereas a column corresponds to a link. Clearly,
if a column contains only zero entries, the quality of the
corresponding link cannot be inferred from the paths in P .
Hence we drop these columns from the routing matrix. After
the alias reduction step and this removal step, the columns
of the resulting reduced routing matrix R are therefore all
distinct and nonzero. The dimensions of R are np × nc,
where nc ≤ ne is the number of links that are covered by at
least one path in P . We denote this set of covered links by
Ec, |Ec| = nc.

Figure 2: Two end-hosts B1 and B2 are beacons,
D1, D2 and D3 are the probing destinations.

In the example of Figure 2, each of the two beacons B1 and
B2 sends probes to three destinations D1, D2 and D3. The
aggregated routing topology contains 6 end-to-end paths
and 8 directed links with the reduced routing matrix R as
shown in the figure.

We make the following assumptions on the reduced rout-



ing matrix R:

• T.1 Time-invariant routing: R remains unchanged
throughout the measurement period.

• T.2 No route fluttering: There is no pair of paths
Pi and Pi′ that share two links ej and ej′ without also
sharing all the links located in between ej and ej′ .
That is, the two paths never meet at one link, diverge,
and meet again further away at another link.

These two assumptions are needed to guarantee the identi-
fiability of the variances of link loss rates from end-to-end
measurements as we will show later.

The first assumption (T.1) can be violated in the Internet
where routing changes can happen at any timescale. As a
consequence, we will have some noise in our estimation of
the routing matrix. To overcome routing changes, we could
remeasure the network topologies frequently. However, we
avoid this approach as it could require a significant amount
of repeated traceroute measurements, which is prohibitive
in many networks. We show in our experiments in Section 7
that despite the potential errors in network topology, our
algorithm is still very accurate.

Assumption T.2 can be violated if multiple paths are used
to route packets from one host to another. These paths do
not occur frequently and this phenomenon is called route
fluttering [32]. We call these paths fluttering paths. Flutter-
ing paths can occur for several reasons. The most common
cause is load balancing at routers. However, most routers
perform load balancing deterministically using flow identi-
fications (source IP, source port, destination IP, and des-
tination ports) [5]. Therefore, an end-to-end flow between
two end-hosts, with fixed source and destination ports, does
not observe these route flutterings. Another cause of route
flutterings is routing failure. Significant route flutterings
can occur during the convergent period when a new route is
searched. These flutterings are usually transient and come
with high packet loss rates. To handle these flutterings,
measurements with high frequency are needed and we do not
consider them in this paper. In the rare cases that long-term
flutterings indeed appear, we keep only the measurements
on one path and ignore the measurements on the others. To
infer the performances of the links on the different flutter-
ing paths, we repeat the inference multiple times, each time
including one of the alternative paths in the routing matrix.

Under assumption T.2, the paths from a beacon B form
a tree rooted at B. For example, the paths from beacon B1

in Figure 2 form a routing tree rooted at B1.

3.2 End-to-End Probes
Another type of data that can be obtained from direct

measurements are the end-to-end loss rates. In this work, we
use periodic probes that are sent with constant inter-arrival
times. From the probes, we can calculate the end-to-end
loss rates and their covariances.

To estimate the end-to-end transmission rates, each bea-
con in VB sends S unicast probes to every destination in D.

For each path Pi, let bφi be the random variable giving the
fraction of these S probes that arrive correctly at the des-

tination, and let bφi,ek
be the fraction of these probes that

have traversed link ek successfully. Let bφek
be the fraction

of probes from all paths passing through link ek that have
not been dropped by that link. The loss rate of path Pi

is the complement to 1 of its transmission rate, defined as

φi = E[bφi]. Similarly, the transmission rate of link ek is

φek
= E[bφek

]

Let Yi = log bφi and Xk = log bφek
, which we group in vec-

tors. In this paper, we use a bold letter to represent a vector,
for example Y = [Y1 Y2 . . . Ynp ]T and X = [X1 X2 . . . Xnc ]T ,
where T denotes transposition.

We make the following assumptions that are necessary to
establish the linear relatioship between end-to-end loss rates
and link loss rates:

• S.1 Identical sampled rates: bφi,ek
= bφek

almost
surely (a.s.) for all paths Pi that traverse ek.

• S.2 Link independence: The random variables Xk

are independent.

Assumption S.1 means that the fraction of packets lost
at link ek is the same for all paths Pi traversing the link,
which holds by the law of large numbers provided S is large
enough. However we do not want to take S too large, as we
want to exploit the stochastic variability of these variables
in different snapshots, as we will see later. Hence this as-
sumption is actually an approximation, which is valid when

E[(bφek
− bφi,ek

)2] ≪ E[(bφek
− φek

)2]. (1)

Such an approximation is reasonable because a congested
link ek will experience different congestion levels at different
times (hence a large value of the right hand side of (1), which

is the variance of bφek
); whereas all paths Pi traversing ek in

the same period of time will have very similar sample means
of lost packets (hence a small value of the left hand side
of (1)).

Assumption S.2 may also not apply to all links, however
previous works [14,24] show that the correlation of network
links is weak and does not significantly affect the accuracy
of their diagnosis. Under this assumption, the covariance
matrix of X is diagonal and reads

ΓX = diag(v) = diag([v1 v2 . . . vnc ]), (2)

where vk = VAR(Xk).
Using these two assumptions, given the network topology

and end-to-end path loss rates, we can then easily establish
linear relationships between the link loss rates and the path
loss rates as (a.s.)

Y = RX. (3)

To determine the link loss rates, we need to solve the system
of linear equations (3). Recall here that it does not have
a unique solution because in most networks the matrix R
is rank deficient, that is, rank(R) < min(np, nc). In the
example of Figure 2, rank(R) = 5 < min(6, 8). In this paper,
we overcome the rank deficient problem of (3) by exploiting
spatial correlations between different path measurements.

3.3 Performance Model
To study the correlation between the path measurements,

we divide the measurement time into slots, each of duration
S probes. The collections of all measurements on all end-to-
end paths in a given time slot, obtained by sending S probes
from each beacon in VB to each probing destinations in D,
is called a snapshot of the network. We use m snapshots
Y = {y1,y2, ..., ym} to calculate the covariances between



different path loss rates. Let Σ be the covariance matrix of
Y, i.e.,

Σ =

2
6664

σ2
Y1

COV[Y1, Y2] . . . COV[Y1, Ynp ]
COV[Y2, Y1] σ2

Y2
. . . COV[Y2, Ynp ]

... . . .
. . .

...
COV[Ynp , Y1] COV[Ynp , Y2] . . . σ2

Ynp

3
7775 .

We make the following assumption about the link vari-
ances v

• S.3 Monotonicity of variance: The variance vk of
Xk is a non-decreasing function of 1 − φek

.

This assumption holds in real networks as shown in all
previous Internet measurements [31,35] where high average
loss-rates are always associated with high loss-rate varia-
tions. The assumption definitely holds in our own measure-
ments of the PlanetLab network over one day as shown in
Figure 3.

The idea of dividing measurements into multiple time slots
was first suggested in [14] and is used in [22] to study bi-
nary network performances. By dividing measurements into
small time slots, we can exploit the stochastic variations of
link loss rates, which will prove essential to classifying links
as congested or not - thanks to Assumption S.3 (in the pro-
cess explained in Section 5.2.) Averaging the estimated loss
rates over the whole measurement duration would miss these
short term variations in network links and would eventually
end up in an under-determined system as in (3). But we need
to choose S large enough, so that Assumption S.1 holds.
Choosing the optimal duration S requires a complete knowl-
edge about link loss processes at small time-scales and the
effect of active probes on the network. These questions have
been partially addressed in the literature [25, 27] and are
outside the scope of this paper. Instead, we use a heuristic
that chooses S = 1000 in our simulations and experiments.
This heuristic may not be optimal, but it is reasonable for
the dynamics of the Internet losses as shown in [35]. We
will see in Section 6.3 that our scheme is robust to different
values of S.

4. IDENTIFIABILITY OF THE LINK
VARIANCES

In this section, we show that the variances v of the link
performances X can be uniquely identified from end-to-end
measurements in any network topology that satisfies as-
sumptions T.1-2. We call this property of the network
link loss-rates the statistical identifiability property. This
property is important because it guarantees that by using a
correct inference algorithm we can accurately calculate the
link variances from the measured data.

Let us formulate this property mathematically. Denote
by Σv the covariance matrix of the measurements when the
link variances are v. The link variances are statistically
identifiable if and only if the condition

Σv = Σṽ for any sequence of snapshots y

always implies that v = ṽ.
Our interest in this section, is to find v, given the m snap-

shots and Assumptions T.1-2 and S.1-3. As we will show
later, all of the Assumptions T.1-2 and S.1-3 are needed
for the identification of v and the link loss rates.
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Figure 3: Relationship between the mean and vari-
ance of the loss rates on 17200 PlanetLab paths over
one day period on April 20th, 2007. Each path loss
rate is measured repeatedly on average every five
minutes. To measure a path loss rate, we send 1000
UDP probing packets over a period of 10 seconds
between the end-hosts. The mean and variance of
each path loss rate are calculated using 250 loss rate
samples.

From (2) and (3),

Σ = RΓXRT = Rdiag(v)RT . (4)

For a matrix R, we write the ith row of R as Ri∗ and the
jth column of R as R∗j . That is

R =

2
6664

R1∗

R2∗

...
Rnp∗

3
7775 ,

and

R = [R∗1R∗2 . . .R∗nc ].

We use the notation ⊗ to denote the element-wise product
of two vectors, i.e.,

Ri∗ ⊗ Rj∗ = [Ri,1Rj,1 Ri,2Rj,2 . . . Ri,ncRj,nc ].

Definition 1. Let A be the augmented matrix of dimen-
sion np(np + 1)/2 × nc whose rows consist of the rows of
R and the component wise products of each pair of differ-
ent rows from R. The rows of A are arranged as follows:
A((i−1)×np+(j−i)+1)∗ = Ri∗ ⊗ Rj∗ for all 1 ≤ i ≤ j ≤ np.

In the example of Figure 2, if we take only the measure-
ments from beacon B1, i.e., the network in Figure 1, then

R =

2
4

1 1 0 0 0
1 0 1 1 0
1 0 1 0 1

3
5 , A =

2
666664

1 1 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 1 1 0
1 0 1 0 0
1 0 1 0 1

3
777775

.

To prove the identifiability of v, we use the same strategy
of considering the algebraic properties of the augmented ma-
trix A (similar to [8]) to estimate traffic matrices of Gaussian



traffic flows. However, the two results are totally different
and require different analyses. In [8], the measurements are
made on the links and the unknowns are the end-to-end
flows, whereas in this work the measurements are the end-
to-end flows and the unknowns are the link performances.
The proof in [8] is much simpler as the traffic counts on the
first and last links of an OD-path share only the traffic of
this OD pair. The covariance between the first and the last
link of a path is therefore sufficient to retrieve the variance
of the traffic count in that path. In contrast, we do not
have this simple relation here. Hence we need to exploit the
more complex recursive relations between path covariances
and link variances to identify the latter. Our identifiability
result of v can be viewed as the “dual” of the identifiability
result in Corollary 1 of [8].

Given Definition 1, we now state and prove the following
lemma.

Lemma 1. The equations Σ = Rdiag(v)RT are equivalent
to the equations Σ∗ = Av, where Σ∗ is a vector of length
np(np + 1)/2 and Σ∗

(i−1)np+j−i+1 = Σi,j for all 1 ≤ i ≤ j ≤
np.

Proof. The result follows from expanding Rdiag(v)RT .

Lemma 2. v is identifiable if and only if A has full col-
umn rank.

Proof. Assume that two variance vectors v and ṽ give
the same end-to-end covariance matrix Σ: Rdiag(v)RT =
Rdiag(ṽ)RT . This would imply that R(diag(v)−diag(ṽ))RT =
0, or equivalently from Lemma 1 that A (v − ṽ) = 0. Hence,
v − ṽ = 0 if and only if A has full column rank.

Let us first consider a monitoring system with a single bea-
con B. Let R be the (reduced) routing matrix for this sys-
tem(i.e., after grouping alias IP links together and removing
all-zero columns). Observe that a node in such a tree is
either a leaf (i.e., a destination in D) or has at least two
children, because otherwise the edge before and the edge
after the node would be alias links and would be grouped
together in a virtual link.

Lemma 3. Let R be the routing matrix of a single bea-
con network. The variances v of the links represented by
columns of R are identifiable from end-to-end measurements
if Assumptions T.1-2 hold.

Lemma 3 is stated indirectly without a complete proof in [9].
Here, we provide the proof of this lemma as it will be used
later in our proof of Theorem 1.

Proof. Let us pick any branch of this tree, let n be its
number of nodes, which we index in increasing distance from
B = v0, and which we denote by v1, v2, . . . , vn. Without loss
of generality, let us place the columns corresponding to the
n links ek = (vk−1, vk), 1 ≤ k ≤ n, of this branch in the first
n columns of matrices R and A. Remember that because
of the reduction step described above, the (n − 1) nodes
v1, v2, . . . , vn−1 must have at least two children, whereas vn

is a leaf.
Let us consider the first link e1 = (B, v1). As v1 has at

least two children, we can always find two paths Pi and Pi′ ,
with i < i′, which traverse e1 and diverge at v1, so that Pi

passes though one of these two children and Pi′ through the
other. Therefore Ri,1 = Ri′,1 = 1 but Ri,j 6= Ri′,j for all

j ≥ 2, hence A((i−1)np+(i′−i)+1)∗ = Ri∗⊗Ri′∗ = [1 0 . . . 0].
As a result, the first column A∗1 is linearly independent from
all other columns of A.

We now proceed by induction for all other links. Let
2 ≤ k ≤ n − 2, and suppose that each of the k first columns
of A is linearly independent from all other columns of A. Let
us then consider the link ek+1 = (vk, vk+1). As the internal
node vk+1 has at least two children, we can always find a pair
of paths Pi and Pi′ , with i < i′, which traverse e1, . . . , ek+1

and diverge at vk+1, so that Pi passes though one child of
vk+1 and Pi′ through another. Therefore A(i−1)np+(i′−i)+1,j

is 1 if 1 ≤ j ≤ k + 1, and 0 if k + 2 ≤ j ≤ nc. This
implies that column A∗(k+1) can only be a linear combina-
tion of a set of columns that contains at least one of the k
first columns A∗1, . . . ,A∗k. From our induction assumption,
these k columns are linearly independent from any other col-
umn of A, and thus in particular from A∗(k+1). Therefore
A∗(k+1) is linearly independent from all other columns of A.

Finally, the last link of the branch en = (vn−1, vn) ends up
on the leaf node vn. This node appears therefore in only one
path Pi from B to vn, and therefore A(i−1)np+1,j = R2

i,j = 1
if 1 ≤ j ≤ n, and is equal to 0 if n + 1 ≤ j ≤ nc. This
implies again that A∗n can only be a linear combination of
a set of columns that contains at least one of the n first
columns A∗j , 1 ≤ j ≤ n, which is impossible. Therefore all
the n columns corresponding to the n links of the branch are
linearly independent from each other and from every other
column of A.

Repeating this reasoning for every branch of the tree, we
find that all columns of A are linearly independent. Because
of Lemma 2, v is identifiable. This completes the proof.

We now consider a system with multiple beacons, where R
is the reduced routing matrix after grouping alias links. Let
RB be the sub-matrix of R that contains only the rows rep-
resenting the paths originating from a beacon B, and let AB

be the reduced matrix of A with only the rows representing
paths from B and their element-wise products. As AB is
a sub-matrix of A with the same set of columns but with
fewer rows, any set of linearly dependent columns in A is
also linearly dependent in AB . We can now state and prove
the following theorem.

Theorem 1. Let R be the (reduced) routing matrix of any
multiple beacons monitoring network. The variances v of
the links represented by columns of R are identifiable from
end-to-end measurements if Assumptions T.1-2 hold.

Proof. We proceed by contradiction. Assume that there
exists a set F 6= ∅ of links whose columns in A are linearly
dependent. That is,

X

ek∈F

αkA∗k = 0 (5)

with αk 6= 0 for all ek ∈ F . Note that in (5) we only
consider links that are actually linearly dependent (those
with coefficient αk 6= 0) and ignore those that are not (with
coefficient αk = 0).

Pick any beacon B. Let PB be the set of all the paths
originating from B, and let LB be the set of all links tra-
versed by at least one path in PB , and let BB = F ∩ LB.
Our assumption (5) yields that

X

ek∈BB

αkA
B
∗k = 0 (6)



because any link ek ∈ F \ BB is not traversed by any path
in PB, which implies that AB

∗k = 0. The columns of AB

representing links in BB are thus linearly dependent.
We now consider three possible cases: (A) |BB | = 1, (B)

|BB | ≥ 2 and (C) |BB | = 0.

(A) Suppose first that |BB | = 1. This would yield that
AB

∗j = 0 for the link ej ∈ BB , which in turn would imply
that ej is not traversed by any path in PB, an impossibility
because ej ∈ BB ⊆ LB. Hence |BB | 6= 1.

(B) Suppose next that |BB | ≥ 2. We will show that this
case is impossible, by proceeding as follows: (i) We show
that there is a path Pi ∈ PB that traverses all links in BB ,
which we index in increasing order of their distances to the
beacon B. (ii) We show that any path Pi′ that traverses
a link ebk

∈ BB must also traverse at least one of the two
links of BB that are consecutive with ebk

on that path. (iii)
Using (ii), we prove that there is a path Pi1 that traverses
the second and third links of BB . (iv) We next prove that
there is a path Pi2 that traverses the third and fourth links
of BB . (v) Finally, we prove by recursion that |B| < 2.

(i) From (6) the columns representing links in BB are lin-
early dependent. However, from Lemmas 2 and 3, any subset
of columns representing links in the tree rooted at B are lin-
early independent. Therefore, (6) can occur only if all links
in BB are alias links in the tree rooted at B. As a result,
there is a path Pi ∈ PB that traverses all links in BB .

Let eb1 , eb2 , . . . , ebn be all the links of BB , with n = |BB | ≥
2. As they are all on the same path Pi ∈ PB, we can order
them in increasing distance from the beacon B, with eb1

being the closest link to B and ebn the farthest away.

(ii) Any path Pi′ /∈ PB that traverses a link ebk
∈ BB must

also traverse at least one of the two links ebk−1
, ebk+1

∈ BB .
Indeed, as Pi and Pi′ both traverse ebk

, Ri,bk
= Ri′,bk

= 1
and thus A((i−1)np+(i−i′)+1),bk

= Ri,bk
Ri′,bk

= 1. More-
over, Ri,j = 0 for all ej ∈ F \ BB . If Pi′ did not tra-
verse any other link of BB but ebk

, then Ri′,bl
= 0 for all

ebl
∈ BB \{ebk

}, hence A((i−1)np+(i−i′)+1),bj
= Ri,jRi′,j = 0

for all links ej ∈ F\{ebk
}. But then (5) implies that αbk

= 0,
a contradiction. Therefore Pi′ must traverse another link of
BB \{ebk

} located just before or after link ebk
(see Figure 4),

because otherwise Pi and Pi′ would form a route “fluttering”
as they would meet at ebk

, diverge at ebk+1
(respectively,

ebk−1
) and meet again at some link ebj

with k + 2 ≤ j ≤ n
(resp., 1 ≤ j ≤ k − 2). This is contradiction to Assump-
tion T.2. Consequently, any path Pi′ that traverses a link
ebk

∈ BB must also traverse at least one of the two links
ebk−1

, ebk+1
∈ BB .

(iii) Now, all columns of the routing matrix R are dis-
tinct, hence the columns R∗b1 and R∗b2 corresponding re-
spectively to eb1 and eb2 are distinct. Therefore, there is a
path Pi1 that traverses only one of the links eb1 and eb2 , and
not the other (Clearly, Pi1 /∈ PB). Because of the argument
in (ii), Pi1 must traverse eb2 and eb3 , and must not traverse
eb1 .

(iv) Columns R∗b2 and R∗b3 corresponding respectively to
eb2 and eb3 are also distinct. Again, there is a path Pi2 that
traverses only one of the links eb2 and eb3 , and not the other.
If it traverses eb2 but not eb3 , then it must also traverse eb1 .
However in this case Pi1 and Pi2 share link eb2 , but cannot
share any other link of BB . Therefore Ri1,b2 = Ri2,b2 = 1
and thus A((i1−1)np+(i1−i2)+1),b2 = Ri1,b2Ri2,b2 = 1, and
A((i1−1)np+(i1−i2)+1),bj

= Ri1,bj
Ri2,bj

= 0 for all other link

B

Route Fluttering

B.(ii)

B.(iv)

B eb1

eb1 eb2 eb3 eb4

ebk
ebk−1

ebk+1
ebn

ebn

Pi

Pi

Pi′

Pi′

Pi1

Pi2

Figure 4: Illustration for the proof of the theorem.
Solid links are links in BB. Dashed links are links
not in BB.

ebj
∈ BB \{eb2}. Because of (5), as αb2 6= 0, there must be a

link in F\BB that is traversed by both Pi1 and Pi2 . However
such a link would necessarily cause again route fluttering,
because Pi1 and Pi2 would meet at this link and at link eb2 ,
but they would need to separate between themselves because
they do not share eb1 nor eb3 (see Figure 4). Consequently,
Pi2 traverses eb3 , as well as eb4 , because of (ii).

(v) We apply the same argument in (iv) recursively for
every pair of consecutive links ebk

, ebk+1
∈ BB , starting with

k = 3 until k = n − 1. However, for k = n, we reach
a contradiction, as there must be a path Pin−1

traversing
ebn but not ebn−1

. This, in turn, would imply that there is
another link ebn+1

∈ BB traversed by Pin−1
because of (ii),

but this link does not exist. This contradiction shows that
|BB | < 2.

(C) Consequently, points (A) and (B) above imply that
for any beacon B, BB = ∅. Hence F = ∪B∈VB

BB = ∅, a
contradiction with our initial assumption, which proves the
theorem.

Theorem 1 says that if we have enough snapshots to estimate
the covariances of all pairs of paths, then there is only one
set of link variances that can generate this sequence of snap-
shots. It holds for all networks where Assumptions T.1-2
are true.

5. INFERRING LINK LOSS RATES FROM
END-TO-END FLOWS

In this section, we present our algorithm to infer link loss
rates in any snapshot. The algorithm consists of two phases.
In the first phase, we take multiple snapshots of the network
to learn the variances of network links, using Theorem 1.
In the second phase, we sort the links in increasing order
of their variances. The higher the link variance, the more
congested the link. We gradually remove the least congested
links from (3) until we obtain a new system of full column
rank. We then solve this system of equations to obtain the
loss rates for the remaining links. After this step, we still do
not know the loss rates of the removed links. However, these
links are the least congested links and we can approximate
their loss rates by 0.

5.1 Estimating the Link Variances Using
Sample Moments

In Section 4, we have shown that the link variances can
be learnt from a sufficiently large number of snapshots. In



practice, even though it is easy to obtain many snapshots if
we wait long enough, it is unlikely that the statistical prop-
erties of the links or that the routing matrix R remain the
same in all of these snapshots. It is therefore important to
have an algorithm that can quickly estimate the link vari-
ances from only a small number of snapshots. The proof of
Theorem 1 provides us with a hint for such an algorithm.

From Lemma 1, given the sample moments

bΣii′ =
1

m − 1

mX

l=1

Y
(l)
i Y

(l)

i′
− Y

(l)
i Y

(l)

i′ , 1 ≤ i ≤ i′ ≤ np, (7)

we can establish a system of linear equations relating bΣ and
v as

bΣ∗ = Av. (8)

As A has full column rank (Theorem 1), we can then
solve (8) to find v using a standard technique from lin-
ear algebra (i.e., using Householder reflection to compute
an orthogonal-triangular factorization of A) [15]. The time
complexity of this operation is O(n2

p ∗ n2
c − n3

c/3) [15]. This
inference method (a special case of the generalized method of
moments [16]) is a consistent estimator and has two advan-
tages over a Maximum Likelihood Estimator (MLE). First,
it does not require an underlying assumption on the distri-
bution of the link loss rates. Second, it is much less com-
putationally expensive than an iterative MLE. For example,
we show later that (7) can be solved within seconds for net-
works with thousands of nodes; whereas [8] reports that the
proposed EM method to estimate the means and variances
of the O-D traffic counts under the Gaussian assumption
cannot scale to networks with hundreds of nodes.

In practice, when m is small, sampling variability makes
bΣ 6= Σ, hence (8) may be an algebraic inconsistent system
of equations (with high probability). Furthermore, due to

sampling variabilities, some entries of bΣ may be negative.
These algebraic inconsistencies are expected in real systems.
In our simulations and experiments in Sections 6 and 7, we

ignore equations with bΣii′ < 0. As (8) contains many re-
dundant covariance equations, we can safely remove those

with bΣii′ < 0.
Note that calculating the matrix A can take a significant

amount of time. Fortunately, we only need to do this once
for the whole network. When there are changes in the rout-
ing matrix R due to arrivals of new beacons, removals of
existing beacons or routing changes, we can rapidly modify
A without recalculating the whole matrix, because only the
rows corresponding to the changes need to be updated.

5.2 Eliminating Good Links To Obtain a
System of Full Rank

Knowing the link variances, we can then identify the link
loss rates as follows. First, we sort and relabel the links
in increasing order of their variances v1 ≤ v2 ≤ . . . ≤ vnc .
From Assumption S.3, the sorted variances also imply 1 −
φe1 ≤ 1 − φe2 ≤ . . . ≤ 1 − φenc

. In real networks, the
percentage p of congested links is small. Moreover, the loss
rates of non-congested links are close to 0, i.e., 1 − φek

≈ 0
for all 1 ≤ k ≤ (1 − p)nc. We can therefore shrink R by
removing the columns representing the links with the lowest
variances until we reach a matrix R∗ of full column rank.
Note that if we need to remove more than (1−p)nc columns,
it means that some of the congested links can form a linearly

dependent set. We show in Sections 6 and 7 that this case
rarely occurs.

Once R∗ is obtained, we can then rewrite (3) as:

Y = R∗X∗, (9)

where X∗ is the reduced vector representing the log of the
transmission rates of the remaining links. We then solve (9)
by using a standard linear algebra method [15]. Even though
we do not know exactly the loss rates of the links we remove
from R to obtain R∗, these links are the best performing
links in the network. It is therefore reasonable to approxi-
mate their loss rates by 0.

5.3 The Loss Inference Algorithm
Our general algorithm to infer link loss rates in a snapshot

is as follows. After calculating the link variances using the
m previous snapshots, it takes as input the reduced routing
matrix R and the (m + 1)th snapshot and outputs the link
loss rates on this snapshot. We call our algorithm the Loss
Inference Algorithm (LIA). LIA has a time complexity of
O(n2

p × n2
c).

Input: The reduced routing matrix R and m + 1
snapshots: Y = {y1,y2, ..., ym,ym+1}.

Phase 1 (Learning the link variances):
Solve (8) with the first m snapshots {y1,y2, ..., ym}
to find vk for all links ek ∈ Ec.

Phase 2 (Inferring link loss rates):
Step 1. Sort vk in increasing order.
Step 2. Initialize R∗ = R.

(Loop) While R∗ is not of full column rank
remove R∗

1∗ from R∗.
Step 3. Solve (9) for snapshot (m + 1)th.

Approximate φek
≈ 1 for all links ek

whose columns were removed from R.

Output: Link transmission rates φ = [φ1 φ2 . . . φnc ]
T

of the (m + 1)th snapshot.

Loss Inference Algorithm (LIA)

6. SIMULATION
We first evaluate our algorithm by simulations in different

network topologies. We fix the proportion of links that are
congested to p. p is varied in our simulations to evaluate
the algorithm under different congestion levels of the net-
work. In each snapshot, each link is then randomly selected
to be congested with probability p. We use the loss rate
model LLRD1 of [24] where congested links have loss rates
uniformly distributed in [0.05, 0.2] and good links have loss
rates in [0, 0.002]. We also evaluate our method with the
loss rate model LLRD2 of [24], where loss rates of congested
links vary over a wider range of [0.002, 1]. In both mod-
els, there is a loss rate threshold tl = 0.002 that separates
good and congested links. We found very little difference be-
tween the two models, hence we only report the results for
LLRD1 in this paper. Once each link has been assigned a
loss rate, the actual losses on each link follow a Gilbert pro-
cess, where the link fluctuates between good and congested
states. When in a good state, the link does not drop any
packet, when in a congested state the link drops all packets.
According to [32], we set the probability of remaining in a
bad state to 0.35 (similarly to the simulations in [24, 36]).



The other transition probabilities are chosen so that the av-
erage loss rate matches the loss rate assigned to the link.
When a packet on path Pi arrives at link ek the link state is
decided according to the state transition probabilities inde-
pendently of other links and paths. We also run simulations
with Bernoulli losses, where packets are dropped on a link
with a fixed probability, but the differences are also insignif-
icant. Therefore, we only report results with Gilbert losses
in this section.

For each network, unless otherwise stated, we take m = 50
snapshots and S = 1000 probe packets in each snapshot. We
apply our inference algorithm (LIA) to first calculate the link
variances v using m snapshots in Phase 1 and then proceed
to Phase 2 to find the link loss rates in a new snapshot.

The accuracy of the LIA algorithm depends on two main
factors: (i) sampling errors in estimating the end-to-end loss
rates and their covariances, and (ii) the approximation we
apply in Phase 2 of the algorithm by assigning 0 loss rates to
all links whose columns are removed from R. To assess these
two sources of errors separately, we evaluate the accuracy of
the LIA algorithm using two criteria. We first evaluate its
capability to locate the congested links using two metrics:
the detection rate (DR), which is the percentage of links that
are correctly diagnosed as congested, and the false positive
rate (FPR), which is the percentage of links that are good
but are diagnosed as congested. With F denoting the set of
the actual congested links, and X the set of links identified
as congested by a location algorithm, these two rates are
given by:

DR =
|F ∩ X |

|F|
; FPR =

|X\F|

|X |
.

To calculate DR and FPR for the LIA algorithm, we com-
pare the inferred rates against the threshold tl (given by the
loss model) to determine whether the links are good or con-
gested. In the case of the loss models LLRD1 and LLRD2,
tl = 0.002.

We then evaluate the accuracies of LIA in estimating the
link loss rates using the method proposed in [6]. Suppose we
want to compare two loss probabilities q and q∗, where q is
the real loss rate on a link and q∗ is the inferred probability.
For some error margin, δ > 0, the error factor [6] is then
defined to be

fδ(q, q
∗) = max


q(δ)

q∗(δ)
,
q∗(δ)

q(δ)

ff
, (10)

where q(δ) = max{δ, q} and q∗(δ) = max{δ, q∗}. Thus,
q and q∗ are treated as being not less than δ, and having
done this, the error factor is the maximum ratio, upwards or
downwards, by which they differ. Unless otherwise stated,
we used the default value δ = 10−3 in this paper. This
choice of metric is used to estimate the relative magnitude
of loss ratios on different links in order to distinguish those
that suffer higher losses.

6.1 Results on Tree Topologies
We first perform our simulations on tree topologies of 1000

unique nodes, with the maximum branching ratio of 10. The
beacon is located at the root and the probing destinations
D are the leaves. We fix the percentage of congested links
p = 10%. We repeat each simulation configuration 10 times.
The rank of the augmented routing matrix A is always equal
the number of links nc as we have seen in Section 5, hence

we can estimate the link variances v very accurately in all
of our simulations.

Figure 5 shows the accuracy of the LIA in locating the
congested links. The errors in our results come from sam-
pling errors and they have two sources: (i) the sampling er-
rors in estimating end-to-end loss rates and (ii) the sampling
errors in estimating their covariances. Even under these er-
rors, our method is highly accurate with large DR and small
FPR. We also compare our results with the Smallest Con-
sistent Failure Set (SCFS) algorithm of [14] that uses only a
single snapshot (i.e., the current snapshot) of network mea-
surements. As shown in the figure, our algorithm is much
more accurate even with small numbers of snapshots m. The
reason for the better performance of LIA is obvious: we ex-
tract more information from the measurements, namely the
second order statistics. Note also that the LIA algorithm is
more accurate when m is large, as in this case the errors in
estimating covariances of end-to-end loss rates are small.
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Figure 5: Accuracy of the LIA algorithm in locating
the congested links.

The real power of the method is in inferring not only the
locations of the congested links but also the link loss rates
as shown in Figure 6. In the figure, we plot the cumulative
distribution functions (CDFs) of the absolute errors (the
absolute values of the differences between the inferred loss
rates and their true values) and of the error factors (10) with
m = 50 snapshots. As we can see in the figure, both errors
are extremely small: the inferred values match almost ex-
actly the true values. These small errors are not only caused
by the sampling errors of end-to-end loss rates but also by
our approximation of the loss rates of links removed from
R (to obtain R∗) by 0. This type of error could be fatal if
some congested links (with non-negligible loss rates) are re-
moved because they affect all equations of (3) in which they
appear. Fortunately, in all simulations R∗ always contains
the columns of all the congested links. Thus in our simu-
lation results, the errors introduced by this approximation
are small. We investigate the effect of these approximation
errors further in Section 6.3.

6.2 Results for Mesh Topologies
We further evaluate our LIA algorithm on mesh topolo-

gies. We use different mesh topologies generated by BRITE [21]



Table 2: Simulations with BRITE, PlanetLab and DIMES Topologies.

Congested Link Location Error Factors Absolute Errors
Topology DR FPR MAX MEDIAN MIN MAX MEDIAN MIN

Barabasi-Albert 91.27% 3.78% 1.27 1.00 1.00 0.0018 0.0010 0.00
Waxman 92.67% 2.84% 1.42 1.00 1.00 0.0020 0.0009 0.00

Hierarchical (Top-Down) 87.81% 6.13% 1.55 1.00 1.00 0.0026 0.0008 0.00
Hierarchical (Bottom-Up) 90.00% 3.78% 1.44 1.00 1.00 0.0014 0.0009 0.00

PlanetLab 96.40% 2.71% 1.16 1.00 1.00 0.001 0.0008 0.00
DIMES 86.75% 6.05% 1.56 1.00 1.00 0.0017 0.0010 0.00
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Figure 6: Accuracy of the LIA algorithm in deter-
mining the link loss rates. The number of snapshots
m = 50.

(WAXMAN, Barabasi-Albert and Hierarchical) with 1000
nodes, the PlanetLab topology [34] with 500 beacons, 14922
distinct links collected on the 15th of July, 2006, and the
DIMES [33] topology with 801 beacons and 35067 distinct
links collected from May to July, 2006. In the simulated
topology, end-hosts are nodes with the least out-degree. In
PlanetLab and DIMES topologies all end-hosts are given.
Both DIMES and PlanetLab are real Internet topologies.
Most of the DIMES hosts are located in the commercial In-
ternet, contrary to most of the PlanetLab hosts that reside
in Universities and research organizations. In all simula-
tions, the end-hosts are both beacons and probing destina-
tions. The link loss model is LLRD1 with p = 10% congested
links. We use the default values m = 50 and S = 1000. The
results are reported in Table 2. Each entry in the table is
an average of 10 runs. We omit the confident intervals for
clarity reasons.

The results confirm that the LIA algorithm achieves high
accuracies in all topologies. This is understandable as the al-
gorithm provably can work with all topologies (Theorem 1).
On some topologies such as the BRITE hierarchical topolo-
gies or the DIMES topology, LIA performs less well than on
other topologies. These inaccuracies are the results of the
approximation in (9). Note however that in all topologies
the link variances are learnt exactly.

The ratio between the number of congested links and the
number of columns of R∗ is shown in Figure 7. We could
see clearly that the number of congested links is always
smaller than the number of columns in R∗. As we remove
columns of R until we reach a full column rank matrix R∗,
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Figure 7: Ratio between the number of congested
links (pnc) and the number of columns of R remain-
ing in R∗. In all topologies, this ratio is always below
1.

this means that we reach a full rank matrix R∗ by only re-
moving columns of un-congested links. Hence, our approach
that first calculates the links variances and then solves (9)
is appropriate as it does not assign zero loss rates to any
congested link.

6.3 Effect of p and S

In this section, we explore the influences of the percentage
of congested links p and the number of probes S on the
accuracy of the LIA algorithm. We run simulations on the
PlanetLab network with m = 50 snapshots. In Figure 8.a,
we plot the DR and FPR of the LIA algorithm in locating
congested links when varying p from 5% to 25% with S =
1000. In Figure 8.b we plot the DR and FPR of the LIA
when varying S from 200 to 1000 with p = 10%.

As p increases, the link variances v can still be learnt
precisely, as proved in Section 4. However, when p is large,
some of the congested links may need to be removed from
R to obtain R∗ in (9). As a consequence, the accuracies
of our LIA algorithm in calculating link loss rates, hence in
locating congested links, degrade as p grows. When S is
small, sampling errors of end-to-end loss rates φ also affect
the accuracy of LIA. The impact of S, however, is less severe.

6.4 Running Time
In all of our simulations, the time needed to solve (3) is

in the order of milliseconds, whereas the time required to
solve (9) is about 10 times longer. These running times are
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Figure 8: Accuracy of the LIA algorithm under dif-
ferent values of p and S.

for Matlab programs on a Pentium 4 with a 2Ghz proces-
sor and 2GB of memory. The computation of A, for our
simulated networks could take up to an hour on the same
computer. However, as explained earlier, we need to calcu-
late A only once. After calculating A (only once), the time
needed to run the inference algorithm is in the order of less
than a second.

7. INTERNET EXPERIMENTS
We test our LIA algorithm on the PlanetLab network with

716 end-hosts. All end-hosts are beacons (VB) and probing
destinations (D).

7.1 Methodology
We first use traceroute to measure the network topology.

Traceroute is performed in parallel from each beacon to all
other beacons. The collected routes will then be combined
to form a complete network topology. Using traceroute to
build network topology can lead to errors because of sev-
eral factors. First, for security and performance reasons,
many routers in the Internet do not respond or limit the
rate of responses to ICMP queries. The paths to nodes be-
hind these routers cannot be ascertained. According to our
own traceroute measurements between PlanetLab hosts, 5
to 10% of routers do not respond to ICMP requests. Sec-
ond, many routers have multiple interfaces and return dif-
ferent IP addresses to different traceroute requests. We em-
ploy the sr-ally tool [28] to disambiguate multiple interfaces
at a single node. In our measurements on the PlanetLab,
about 16% of routers on PlanetLab have multiple interfaces.
Unfortunately, the sr-ally tool does not guarantee complete
identification of routers with multiple interfaces [28]. As a
result, there could be errors in the measured topology of the
network. Despite these errors, the experiment results show
that the LIA algorithm is accurate.

After constructing the routing topology with traceroute,
we remove fluttering paths by examining all pairs of paths.
We found very few of them in our data set. To simplify the
analysis we take one of the fluttering paths to include in the
topology and completely ignore the others. As a result, we
remove 52 out of 48151 paths from the routing matrix. By
removing these paths, we lose information about the links
that only appear in them but they account for less than
0.01% of the total number of links and thus are negligible.

Nodes then send probes between each other to determine

the end-to-end loss rate. We use periodic probes with an
inter-arrival time of 10ms. Each probe is a UDP packet
of 40 bytes. The probing packets consist of a 20-byte IP
header, an 8-byte UDP header, and a payload of 12 bytes
that contains the probing packet sequence number. End-to-
end loss rates are calculated at the receivers based on the
number of received and sent packets over a period of 10 sec-
onds (which corresponds to 1000 probe packets). To avoid
overloading any host or creating additional congestion, we
limit the probing rate from each host to 100KB/sec, i.e.,
each beacon probes 150 paths in 1 minute. Previous exper-
iments on Planetlab [10] show that this probing rate does
not cause additional congestion on the PlanetLab network.
We also randomize the order in which a host sends probes
to other hosts. Every five minutes all hosts send their mea-
surement data to our central server at EPFL. Note that the
probing rate, the impact of active probes on the network
and the stationarity of network loss processes intermingle
and make the problem of finding the optimal probing strat-
egy very difficult. We do not address this question in the
current paper.

We launched the experiments on all PlanetLab hosts (716
hosts) on April 20, 2007. For various reasons, such as nodes
being down and failed ssh connections, only 381 hosts suc-
cessfully ran both the traceroute and loss measurements.
The experiment lasted a total of 24 hours with approxi-
mately 2 GB of loss and topology data. In total we have
250 snapshots of the network. We then run our LIA algo-
rithm on this data set. To infer the link loss rates on any
given snapshot, we first use the previous m snapshots to
learn the link variances. After that we use these variances
to infer the link loss rates. We report our analysis of the
data in the next section.

7.2 Results
In the Internet, we do not know the real loss rates of the

network links as in the simulations of Section 6. Therefore
we cannot validate our inference results by comparing them
against the true values. We adopt the indirect validation
method of [24], where the set of end-to-end measured paths
in any time slot is divided into two sets of equal size: the
inference set and the validation set. The partition is done
randomly. We run first our LIA algorithm on the inference
set to calculate the link loss rates of the links Einf that appear
in the inference topology. We then use the measurements in
the second set to validate the inferred values. Let φi be the
measured transmission rate of path Pi in the validation set.
We compare φi with the product of the estimated link rate
bφek

on the link ek ∈ Pi ∩Einf to check the consistency of the
inference. More precisely, we declare the estimate correct if:

˛̨
˛̨
˛̨bφi −

Y

ek∈Pi∩Einf

φek

˛̨
˛̨
˛̨ ≤ ǫ, (11)

where ǫ is the tolerable error that is used to account for
sampling errors in estimating the end-to-end loss rates with
probes. In our experiment, we choose ǫ = 0.005.

7.2.1 Accuracy of LIA
In Figure 9 we plot the percentage of paths that are con-

sistent with the test in (11) as a function of the number of
snapshots m used in the variance learning phase. Each point
in the curve is an average of 10 runs. The result shows that



Table 3: Location of Congested Links.
tl inter-AS intra-AS

0.04 53.6% 46.4%
0.02 56.9% 43.1%
0.01 57.8% 42.2%

more than 95% of the paths in the validation set are consis-
tent with the inferred loss rates. Predictably, the accuracy of
the LIA algorithm increases as we increase m. However, the
accuracy flattens out when m is significantly large (m > 80).
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Figure 9: Cross validation of the LIA algorithm on
the PlanetLab network.

In all of our experiments, the time needed to solve (3) is
in the order of milliseconds, whereas the time required to
solve (9) is about a second. Overall, the running time of
LIA is in the order of seconds for the PlanetLab network.

7.2.2 Statistics of Congested Links on PlanetLab
Having the link loss rates, we can study statistical proper-

ties of the congested links. These studies allow for a deeper
understanding of the Internet performance. Namely, we can
answer two questions: (i) are the congested links inter- or
intra-AS links? and (ii) How long does a link remain con-
gested?

To answer the ASes question, we need to map IP ad-
dresses into ASes. We use the BGP table available at Route-
Views [23] to construct the mapping. In our analysis, we
use the mapping that was obtained on April 20th, 2007. Ta-
ble 3 shows the locations of lossy links for different link loss
threshold tl (Recall that tl is used to classify links as good
or congested: a link is (not) congested if its loss rate is (less)
more than tl).

We observe that congested links are more likely to be
inter-AS than intra-AS, especially for small tl. However,
compared to the study in [36], the percentage of intra-AS
lossy links in our study is larger. There are two expla-
nations for the differences between our findings and those
in [36]. First, we do not apply the probe optimization tech-
nique in [36]. Hence, in our experiments, each beacon needs
to send more active probes than the experiments in [36].
These active probes may create additional packet losses at
the access links in our experiments compared to [36]. Sec-
ond, in [36], only the loss rates of groups of links (MILSes)
can be computed. Therefore, even though a lossy MILS

spans several ASes (30% of them span more than 3 ASes), it
is not clear that the actual lossy links in this group are inter-
AS or intra-AS. Indeed, in [36], only 27.5% of lossy links are
confirmed to be inter-AS whereas 15% are intra-AS. The
other links could be either inter- or intra-AS. Furthermore,
our observation is consistent with the findings of [2] where
it was observed that non-access bottleneck links are equally
likely to be intra- and inter-AS. This is especially true for
measurements performed from Planet-Lab hosts with high
access bandwidth.

To study the duration of the congested links, we apply the
LIA algorithm on 100 consecutive snapshots and compare
the set of inferred congested links (with tl = 0.01, m = 50).
We find that 99% of congested links remain congested for
only one snapshot (5 minutes). The other 1% span two
snapshots. Note that this analysis is sensitive to the dura-
tion S of each snapshot. A complete study of these proper-
ties would require a thorough understanding of the impact
of S, the stationarity of link loss processes, etc. and is a
topic of our future research.

8. CONCLUSION
First-order moments of end-to-end loss rates are in gen-

eral not sufficient to uniquely identify average link loss rates.
More information is needed. In contrast, we have shown in
this paper that second-order spatial statistics are sufficient
to uniquely identify the variances of loss rates, which in turn
uniquely determine the average loss rates of the most con-
gested links, under the assumptions that their variance is a
non-decreasing function of their mean, and thus that the loss
rate of non-congested links is virtually zero. We show that
this method is both accurate and scalable in our simulations
and experiments.

We expect that the sufficient information brought by second-
order statistics of end-to-end paths, without multicast sup-
port, to identify problematic links in a network with a gen-
eral topology can be exploited for other problems of network
inference.

A first immediate extension is to compute link delays.
Congested links usually have high delay variations. In this
direction, we first need to take multiple snapshots of the
network to learn about the delay variances. Based on the
inferred variances, we could then reduce the first order mo-
ment equations by removing links with small congestion de-
lays and then solve for the delays of the remaining congested
links.

A second extension is the detection of anomalies in the
network, from a few vantage points. The inference method
is fast and so could have potential for such problems.

An important question to address is the choice of the op-
timal value for S. As stated earlier, the answer requires un-
derstanding the statistical properties of link performances
on small time-scales. We intend to work on this problem in
our future research.
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