
Web Search Clickstreams

Nils Kammenhuber
Technische Universität München, Germany

hirvi@net.in.tum.de

Julia Luxenburger
Max-Planck Institute of Informatics, Germany

julialux@mpi-inf.mpg.de

Anja Feldmann
Deutsche Telekom Laboratories, Germany

anja.feldmann@telekom.de

Gerhard Weikum
Max-Planck Institute of Informatics, Germany

weikum@mpi-inf.mpg.de

ABSTRACT
Search engines are a vital part of the Web and thus the Internet in-
frastructure. Therefore understanding the behavior of users search-
ing the Web gives insights into trends, and enables enhancements
of future search capabilities. Possible data sources for studying
Web search behavior are either server- or client-side logs. Unfortu-
nately, current server-side logs are hard to obtain as they are con-
sidered proprietary by the search engine operators. Therefore we
in this paper present a methodology for extracting client-side logs
from the traffic exchanged between a large user group and the Inter-
net. The added benefit of our methodology is that we do not only
extract the search terms, the query sequences, and search results
of each individual user but also the full clickstream, i.e., the result
pages users view and the subsequently visited hyperlinked pages.
We propose a finite-state Markov model that captures the user web
searching and browsing behavior and allows us to deduce users’
prevalent search patterns. To our knowledge, this is the first such
detailed client-side analysis of clickstreams.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Modeling; C.2.m
[Computer Systems Organization]: Computer-Communication
Networks—Miscellaneous; H.1.2 [Information Systems]: Mod-
els and Principles—User/Machine Systems

General Terms
Measurement, Human Factors

Keywords
Web search, clickstream, HTTP traces, Markov model

1. INTRODUCTION
Interactions with search engines make up a tremendous part of

users’ Web activities. Indeed, search engines are an active research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’06, October 25–27, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-561-4/06/0010 ...$5.00.

area in itself. Yet, in order to enhance their capabilities, a good un-
derstanding of current user behavior, especially the characteristics
of their clickstreams1 is needed.

Besides gaining new insights into user search patterns, query
clickstreams can serve as a means for Web search enhancement.
In the past, query logs [10] have been used to extend state-of-the-
art link analysis on the web graph or to perform query clustering [6]
for query expansion. The implicit feedback inferred from such logs
can be used as input to machine learning approaches [12] or used
in the estimation process of language-model based information re-
trieval [13].

Unfortunately, the currently available data sets about clickstreams
are rather limited. In principle there are two ways of gathering
such data, either on the server or on the client side. As server-side
data is considered proprietary, current analyses are limited to only
a few search-engine-specific data sets, including one gathered in
1998 from Altavista [14], one from the Excite search engine [17]
in 1997, and one from Vivisimo [16] in 2004. Furthermore, none
of these data sets include the full clickstream which consists of all
user accesses to Web pages related to a search query. The client-
side data gathering has focused on asking volunteers to surf the net
using additional browser plugins, e.g., [18], or enhancing HTTP
proxies with extended logging functionality, e.g., [2]. Yet, not all
sites currently use proxies or are willing to modify them.

We, in this paper, extract client-side logs from packet level traces
of the traffic exchanged between a large research network and the
Internet. From the packet level traces we extract all HTTP requests
and responses as well as the bodies of all responses from search
engines. From this data we reconstruct each of the users’ query
sessions. This includes that we determine for each search query the
position of the search results the user clicked upon (if any). Fur-
thermore we recursively analyze how many links (if any) the user
followed from the search result. A prototype system analyzes the
traffic at the border of the Munich Scientific Network focusing on
the Google search engine [1]. Utilizing this data, we present a char-
acterization of the query sessions as well as a finite-state Markov
model that relates the Web search clickstreams to the Web hyper-
link structure.

The remainder of this paper is organized as follows: Section 2
reviews related work. Terminology used throughout the paper is
defined in Section 3. Our methodology for extracting Web search
clickstreams is discussed in Section 4. Section 5 summarizes the
characteristics of the query sessions while Section 6 presents the
Markov model. We conclude the paper with an outlook in Sec-

1A clickstream contains all Web page accesses of one user.

tion 8.

2. RELATED STUDIES
Studies of Web search behavior can be categorized along differ-

ent axes according to whether the data is gathered from search en-
gine logs or on the client side, the time period they cover, as well as
the measures applied and research questions pursued. Jansen and
Pooch [7] survey and compare studies on traditional information
retrieval systems, online public access catalogs, and Web search-
ing up to the year 2000. They find that there is a lack of clarity in
the descriptions and that the use of different terminologies by the
various studies make the results hard to compare. They propose a
framework for such analysis which we use in this study.

More recently, a number of researchers, e.g., [9] have focused on
categorizing queries according to user search goals in order to im-
prove search performance. Lee et al. [9] rely on packet level traces.
Yet, as the focus of their paper is on automatic identification of
user goals in Web search, they do not systematically establish a
relationship between the position of the search results and the gath-
ered clickstream, nor do they consider follow-up clicks. Another
line of work, e.g., [4] aims at a topical query classification using
data from a major commercial search service.

Chau et al. [5] examine which documents of the result pages
are viewed by the user; they, however, do not consider which hy-
perlinks the user follows beyond these. In addition, their study is
limited to Web site search. Spink et al. [15] use a Markov model
for query reformulation patterns of the Excite search engine. Their
model, however, cannot include the user behavior beyond the search
engine interface: it neglects which documents reachable via the re-
sult pages are visited by the user during a query session. None of
these studies take the whole Web query clickstream into account.

3. TERMINOLOGY
To simplify the discussion, we briefly summarize some of the

terms that we use in the remainder of the paper. The definitions are
in part taken from Jansen et al. [7] and from Spink et al. [17].

Term: any unbroken string of alphanumeric characters entered by
a user, e.g., words, abbreviations, numbers, URLs, and logical op-
erators.

Query: a set of one or more search terms as typed by the user (may
include advanced search operators). As result of a query the search
engine returns a query result page.

Query session: a time-contiguous sequence of queries issued by
the same user.2

Unique query: is unique within a query session.

Repeat query: re-occurrence of the same query in the same ses-
sion, e.g., when a user retrieves several result pages for one query.
We furthermore distinguish between next result page queries and
real repeat queries. The latter indicate multiple requests for the
same query result page.
Result links: links contained in the query result page.

Result position: the absolute position of a result link in the query
result page.

2An alternative definition for a query session is: a sequence of
queries by one user which satisfy a single information need. Un-
fortunately identifying such sessions is only possible by finding
semantic demarcations, e.g., by relying on query similarity. But
recent work [16] indicates that such demarcations may not exist as
a user may work simultaneously on several information needs or
may have rapidly switching information needs.

Clicks: text/html HTTP requests that are the result of a user
clicking on a hyperlink.

Result clicks: result links on which a user clicks.

Clickstream: all text/html requests related to a query session.

4. SEARCH CLICKSTREAMS
In order to monitor the Web search clickstreams of a set of

users we rely on capturing client side logs. More specifically, we
suggest to use packet level traces as our main data source. From
these traces we extract:

for the search engine under study all HTTP requests and respon-
ses including their bodies and the HTML links they contain.
for all Web servers all HTTP request and response headers.

Neither standard browsers nor Web proxies provide us with this
kind of data. Thus one would have to either instrument all Web
browsers or install a modified Web proxy into the data path [2, 8].

While one could use any tool that can reconstruct HTTP level
detail from packet level traces (see, e. g., [8]) we utilize the HTTP
analyzer of Bro [11], a network intrusion detection system. A self-
written “policy” file for Bro extracts all the data described above
from both standard HTTP/1.0 as well as persistent or pipelined
HTTP connections. For extracting HTML links from the bodies
retrieved from the Web search engine, we use the Perl module
HTML::Parser.

4.1 Search Queries
To determine which requests are search queries, one has to con-

sider the specifics of the search engine. We, in this paper, focus on
queries to Google, but the same principle methodology can be used
to extract clickstreams for other search engines. For us a HTTP
request is a Google query if the following conditions hold:

• The request is to one of our locally-seen Google server in the
subnets 66.249.64.0/18, 64.233.160.0/19, 216.239.

32.0/19, 72.14.192.0/18, or 66.102.0.0/20.

• The Host header contains the string “.google.” .

• The URI starts with /search?, contains a non-empty CGI
parameter q=..., and does not contain the string client-

navclient-auto.

• The Content-Type field of the response contains the string
text/html.

• The User-Agent field does not indicate an automated query,
i. e., it does not contain any of these strings: bot, agent,
crawler, wget, lwp, soap, perl, python, spider.

4.2 Sessions (User Web search clickstreams)
In order to statistically evaluate the search behavior, we need

to group the search-related actions of individual users. Thus we
identify search requests, and we determine individual sessions that
contain all search requests and all other text/html requests that
are directly or indirectly reachable via the result pages of the query
requests (search-induced clicks).

The grouping of requests into sessions is shown in Fig. 1 and
works as follows: For each arriving request, we determine whether
it is a search request, using the criteria from Section 4.1. If this
is the case, we utilize the fact that Google embeds a cookie called
PREF in the search request stream. The cookie contains a portion
labeled ID, which Google apparently uses for tracking individual

Google ID:
PREF=ID=...

Ignore requestAssign to most
recent session

noSearch
request?

Pseudo ID:
IP/User−Agent

New request

yes

Matching
session?

yes, at least one none at allyes no

New sessionAssign to
matching session

same Pseudo ID
Find sessions for

Any match?

Search requests Search requests
for URL match for referrer match

Figure 1: Determining the session for a new request.

users. We search in our pool of currently active sessions for a ses-
sion that matches the given ID, and add the request to the session.
If no session matches, we instantiate a new session.

If the current request is not a search request, we determine client
IP and HTTP User-Agent as a pseudo-ID (note that this concept
is orthogonal to the Google cookie IDs). In all sessions matching
this pseudo-ID, we look for requests that have either the same URL
as the current request, or whose URL matches the HTTP referrer
of the current request. We assign the current request to the session
with the most recent matching request. If no match can be found,
we ignore the current request.

Sessions that have not seen a request for more than five minutes
are considered to have ended. They are removed from the pool of
active session and will not be re-activated.

4.3 Query terms
Given that we can now group queries into sessions we also want

to examine how the queries within each session differ. Therefore
we consider the query terms within the query based on an under-
standing of the specifics of the query language provided by the
search engine. Google’s basic search [1] requires all search terms,
except stop words3, to be present in the results, i. e., all terms are
implicitly combined by “and”. Capitalization plays no role, as all
typed letters are automatically converted to lower case. In contrast,
term order is decisive. Accordingly, we normalize the queries to
lower case but retain the search term order. Negative terms, i.e.,
terms that should not occur, are preceded by a minus. Phrases are
surrounded by quotation marks and are treated as a single term.
A plus sign in front of a term tells Google that this is not a stop
word, which would be removed otherwise. The tilde sign before a
term tells Google to include synonyms and is therefore kept. The
site: operator restricts the search space to the specified domain.
While Google offers several additional advanced features we, in
this study, restrict ourself to the ones discussed above, the most
common ones.

5. SEARCH CHARACTERISTICS
We now describe the dataset that we use for our analyses of user

Web search behavior. The description is followed by an analysis of
the user query behavior, in order to reveal some characteristics of
the user population that we examine.

5.1 Dataset
For our analysis of the clickstreams we use data collected from

the Münchner Wissenschaftsnetz (MWN; Munich Scientific Net-
work). The MWN provides a 10 Gbit/s singly-homed Internet con-

3very frequent words carrying little information like a, the, . . .

nection to roughly 50,000 hosts at two major universities along
with additional institutes; link utilization is typically only around
200–500 Mbit/s in each direction. Our monitoring machine is con-
nected to the monitoring port of the border switch. Since MWN
as a whole imposes too much load on our tracer machine running
the Bro HTTP analyzer, we restrict our data gathering to Ludwig-
Maximilians-Universität, the larger one of the two universities in
Munich (about 44,000 students).

Bro’s memory consumption increases slowly over time, as it ac-
cumulates state from, e. g., dangling TCP connections, etc. Thus
we start a new Bro process every 45 min and let it run for 50 min.
The resulting 5 min overlap ensures that HTTP requests that stretch
over the 45-minute boundary are not lost, apart from a few long-
lasting persistent connections. Duplicate records are removed.

We consider all requests issued from Thursday, August 17th,
17:07 MET until Friday, September 1st, 21:00 MET, excluding a
monitor downtime period of about 18 hours. The median packet
loss as reported by Bro and libpcap during each 50 min inter-
val is 0.0 % (average: 0.15 %; maximum: 7 %). The total number
of HTTP requests on TCP port 80 is 125,104,884; the number of
transferred HTML objects is 28,026,595, of which only 19,601,616
have HTTP status code 200. Note that these numbers also include
“abuses” of the HTTP protocol by non-Web applications.

During this time period, we identified a total of 545,455 Google
search queries. There are 275 empty queries where the user clicked
the “Search” button before entering a query. Out of the remaining
Google queries 414,184 are unique queries, and 130,996 are repeat
queries. The repeat queries consist of 105,683 real repeat queries
and 25,313 next result page queries. Manual inspection shows that
most queries relate to local specifics of the area of Munich. Yet,
as expected, the queries also reflect the academic environment. We
note that the data is skewed towards academic users which may
exhibit a different behavior than the general population.

5.2 Query session characteristics
To understand the characteristics of the sessions within the re-

constructed clickstream, we start by presenting statistics similar to
those of previous studies [5, 7, 17].

Query length: The maximum number of terms per query we
encountered is 199; one user copied a whole text snippet into the
query box. The median query length is 1 while the mean is 1.67.
This shows an even stronger trend towards very short queries than
observed in the course of previous studies, e.g., [14]. 64 % of the
queries consist of a single query term, 83 % contain less than three
terms, and 99 % consist of less than six terms.
Use of search operators: Of the 414,184 unique queries 11,977,
i.e., 3% use phrase search. 832 queries enforce the occurrence of
a search term via the plus operator, and 315 queries use the minus
operator to exclude search terms. However, similarity search utiliz-
ing the tilde operator does not occur at all. Finally, domain queries
occur 492 times.
Terms: We identify 249,445 distinct terms in our data, however
124,095 of these are of the form ”info:<url>” to request further
information on specific URLs from Google. We omit these terms
in the following statistics (note that this might be an explanation
for the large number of one-keyword queries found). The most
frequent terms are listed in Table 5.2 in descending order of their
frequency. This statistic clearly reveals a bias in our dataset to-
wards local themes (high frequency of terms relating to Munich
and Germany), as well as academic subjects. For example, the term
“lmu” is short for “Ludwig-Maximilians-Universität”, which is the
university whose Web traffic is analyzed in this study. Also note
the use of stop words (“in”, “der”) and the set of presumably nav-

Term Freq. Term Freq. Term Freq.
münchen 9,815 lmu 1,009 die 710

in 2,830 für 969 windows 703
the 1,875 2006 895 wetter 676
of 1,809 online 852 a 662
+ 1,724 von 832 lyrics 628

der 1,532 de 825 java 623
und 1,405 to 808 uni 599

download 1,373 bayern 799 berlin 595
muenchen 1,370 linux 783 free 591

and 1,020 wikipedia 761 hotel 582

Table 1: 30 most frequent search terms

igational queries, e. g., “wikipedia”. In addition, queries relating
to recreational activities are quite frequent such as ”hotel”, ”wet-
ter” which is German for ”weather”, as well as searches related
to companies and products (e.g., both “siemens” and “xp” occur
with frequency 224). Yet, in spite of the academic environment, we
also find queries on pornographic material, such as “sex” (387) and
“porn” (116). Interestingly, the prominence of the term “+” possi-
bly indicates that users have trouble with the correct usage of the
“+” operator, and write “+ the” instead of “+the” to prevent “the”
from being neglected as a stopword.

Query sessions: We identify 153,719 query sessions. The me-
dian number of queries per session is 2, the mean number is 3.5.
There are sessions with more than 100 queries but more than 46 % /
20 % only contain one / two queries. Similarly, the median number
of unique queries is 1 and the mean number decreases to 2.7. Ac-
cordingly, the median number of repeat and real repeat queries is 0
while the mean is 0.85 and 0.69, respectively.
Query refinements: To describe the relationship between two con-
secutive queries in the same session, we distinguish between the
following kinds of query modifications: repeat (the same query
again), disjoint (no overlap in the query terms), add (the follow-
up query is a superset of the previous one), delete (the follow-up
query is a subset of the previous query), and replace (the follow-up
query and the previous one overlap but are not strict subsets). We
find that there are 20 % (76,541) repeat, 68 % (265,715) disjoint,
4.75 % (19,661) add, 2.5 % (9,521) delete, and 4.75 % (20,023)
replace modifications. This rather coarse-grained categorization
leaves space for further investigation, e.g., to examine how often
terms are changed into phrases, or how often users re-order terms.
Result pages viewed: The maximum number of viewed result
pages is 32. The mean number is 1.06 and the median is 1. If
we consider the unique queries, 96.5 % look at only a single result
page. Less than 0.1 % consider four or more distinct result pages.

6. A STATE MODEL FOR WEB SEARCH
To better understand the behavior of users that search the Web,

we model Web user behavior during a search session as a Markov
model. The Markov model relates the hyperlinks between the Web
documents (thereby capturing the relationships between the reques-
ted documents) with the clickstream (the sequence in which a user
requests the documents) and the properties of the documents (posi-
tion in search result, HTTP status code).

The goal of the model is to help answer numerous questions
regarding a user’s navigational behavior during Web search, e. g.:
Which link result position is likely to contain the answer a user is
looking for? Is a user likely to explore the Web site of a top-ranked
result click further than a subsequent one? Do protections against
“deep links” from search engines affect user search behavior?

referrer (hyperlinks etc.)
clickstream (state changes)

cookie (user identification)

g1p1R6

g1p1
g1p2

g2p1R1g1p2R2

g2p1

g1p1R10

g1p1R6L2g1p1R6L1

g1p1R6L1L1

Figure 2: Logical relations (referrer, cookies) and actual click
sequence as conducted by the user in a sample search session.

6.1 States and transitions
Each state in our Markov model includes important aspects of

the users’ navigational behavior. It retains the following informa-
tion:
index of search query in session: gx index of result page: py
position of result click: Rk (if known)

Furthermore, as a user may visit additional pages between result
clicks, we capture the tree structure of such requests by keeping an
index for the tree depth Li and the number of sons for each level
of the tree Lz. Moreover, a state may have additional attributes for
capturing whether the page was reached via a different HTTP status
code than “200 OK”.

Each state captures the logical relationship of the requested page
to the query that directly or indirectly made the user access this
page. As the user clicks on pages he maneuvers through the state
space, and each click on a hyperlink corresponds to a state change.
(Note, however, that requests served directly out of the client cache
can only be inferred if they do not result in an If-Modified-Since
request.) In effect, when viewing the clickstream as a set of events
over time, the current state represents the user’s (presumed) navi-
gational position in the graph of hyperlinked documents accessed
during the search session.

Let us consider an example of a search session where the user
searches for information on the soccer world championship in 2006.
The states in our Markov model are given in parentheses; the en-
tire search is depicted in Fig. 2. At first, the user might submit
the query “soccer” to the Google search engine (g1 p1), and ex-
plore the sixth result link on page 1 (g1 p1R6), e. g., “soccer in-
ternational root page”, in a new browser window. On this Web
site he explores, e. g., the link for “German version” (g1 p1R6L1),
where he follows yet another link (g1 p1R6L1L1). He finds that this
link does not contain what he was looking for, thus presses the
back button twice, which results in two If-modified-since re-
quests (g1 p1R6L1, g1 p1R6), and clicks on the “English version”
page instead (g1 p1R6L2). Still unsatisfied, he goes back to the ini-
tial search result list (g1 p1) and explores the tenth link: “soccer-
sites.com” (g1 p1R10). As this site does not contain the desired
information either, he takes a look at the next set of results from
Google (g1 p2), where he clicks on the second result link (g1 p2R2)
“ussoccer.com”. This is still not a site about the FIFA World Cup
in Germany, so he refines his original search by typing “Soccer
world cup” in yet another browser window (g2 p1). In this case, the
first result (g2 p1R1) points to “The official site for the 2006 FIFA
World Cup Germany”, which the user clicks on. The thick lines in
the background of Fig. 2 show the relationships (i. e., hyperlinks)
between the Web pages, whereas the thin black arrows depict the
actual user clickstream.

Repeated
URL?

yes yes yes

gx pyR

y[...]Lx pg (z+1)

gx pyL

state
Copy previous

New request

New session?

yes

nono Search
request?

New
query?

search state
Copy previous

from previous oneg (x+1)

g1p1

no Referrer
is search

rq?

repeated
no, is

yes, is different

Find position in
search results

position

p1

in session

if not found

(z+1)

Figure 3: Determining the Markov state for a new request.

We distinguish three types of states:
Query result pages: have the form gx py indicating that this is the
y-th result page of the x-th query in the session.
Result clicks: have the form gx pyRγ , where gx py identifies the
query and γ is the result position.
Other clicks: have the form πLz where π is the state of hyperlink-
ing document Π that originates the click, and z is the index of the
clicked document in the vector of clicked hyperlinks originating
from Π, ordered in time.

6.2 From HTTP logs to Markov states
For the construction of the Markov model, we focus on text/

html objects, since each Web page has an HTML document as its
skeleton. A brief analysis of HTTP Content-Types reveals that
the number of transferred objects in other potentially hyperlink-
capable formats such as PDF or XML is insignificant.

To capture the Web search clickstreams by means of a Markov
model, we apply the following logic: For each new request ν , we
first locate the session that it belongs to, using the method described
in Section 4. Then we determine the state to be assigned to the
request using the mechanism outlined in Fig. 3:

First we examine whether ν requested the same URL as a pre-
vious request ρ in the same session. If so, we simply assign ν
the same state as ρ . Otherwise, we check whether ν is a search
request. If so, we either increment the search index number from
gx . . . to g(x+1) . . . (in the case of a new query), or we retain the old
search number gx . . . if the user repeats her query, e. g., she might
request the next Google result page (which requires an adjustment
of the page number from gx py to gx p(y+1)), or she might have en-
tered the same search terms again. If the request ν is not a search
request, we examine the request ρ that corresponds to the URL
where the referrer of ν points to—note that this task is described
in Section 4.2. Assume that ρ has state gx py[. . .], and that previ-
ous requests already have been assigned the states gx py[. . .]L1 to
gx py[. . .]Lz. Then we assign ν the state gx py[. . .]Lz+1. An excep-
tion occurs if ρ is a search request: In this case, we determine the
position of the URL for ν in the HTML code pertaining to ρ and
thus determine its search rank. Here, the state we assign to ν is
gx pyRposition, i. e., it depends on the position of ν in the list, but not
on the number of child states of ρ .

Note that the user clicking on a single hyperlink may trigger the
download of multiple text/html documents. For example, the
URL that a hyperlink points to may result in a “302 Found” redi-
rect (having text/html as Content-Type), which points to an
HTML document consisting of multiple frames, each contained in
yet another individual text/html object. Thus we assign a request
the same state as a previous request from the same session, if they

are less than one second apart from each other and are linked via
URL / referrer. To keep Fig. 3 simple, this mechanism is omitted in
the picture. In the case that we cannot capture the beginning of a
session, a “new” session may start with, e. g., g1 p3 instead of the
normal case g1 p1 shown in Fig. 3. This is due to the fact that we
always calculate the page number (g...py) from the search request’s
URL. We find only a small number of such exceptions in our data.

When identifying state transitions as indicated by the temporal
evolution of the search clickstream, we find that the time sequence
of the clickstream (thin black arrows) is likely to differ from the hy-
perlink graph as highlighted in Fig. 2. For example, by keeping the
query result page in a separate window, the user can call g1 p1R10
without having to re-enter his query; thus a re-request of g1 p1 is not
necessary. Note that the same page and therefore the same state can
be reached multiple times, e. g., when the user presses the “Back”
button after retrieving page g1 p1R6L1L1.

7. MODEL-BASED ANALYSIS
Our state model does not only investigate the search queries, but

also takes into account all subsequent clicks that are direct or indi-
rect consequences of the users clicking on search results (followup
clicks). In the following, we demonstrate the broad applicability of
our model by highlighting some key findings.

Using the data (see Section 5.1) with our model, we assign a
state to 1,488,246 text/html requests with HTTP status code 200
and identify 1,336,418 “clicks” (search states). Thus the share of
search operations and their followup clicks amounts to least 6.8
percent of all transferred HTML documents.

If we analyze the distribution of the number of followup clicks
for each individual search request (i. e., the “child states” for each
gx py), we see a mostly linearly falling slope on a CCDF plot (Fig. 4,
circles). In this respect, search-triggered Web sessions thus do
not seem to differ from Web sessions in general [3]. The same
holds for the distribution of total the number of clicks per session
(plot not shown).

Similar behavior occurs in the distribution of the number of clicks
between a document and the original search request, which we call
click distance. In addition to this, Fig. 4 reveals that the users be-
have slightly different during working hours (triangles) than during
recreational times (cross-hairs): During their spare time, users
are more likely to engage in “serendipity clicks” leading them
away from the page they may have been originally looking for.

Next, we compare the total number of clicks per session (circles)
vs. the distribution of click distances (cross-hairs) in the corre-
sponding time intervals. We observe that both curves overlap al-
most exactly for almost the entire range, except at the end. This
suggests that most users follow a rather linear approach during
searching and browsing; i. e., they normally do not click on the
“back” button and follow another link on the previous page, etc.
Only long sessions with many clicks seem to differ significantly in
this respect (lower right of plot).

Users are much more likely to re-formulate queries than to
view the second result page. By comparing states gi p1 with gi p2
and gi+1 p1, we observe that a user is about 37 times more likely to
enter a new query than to look at the next result page.

If we look at the lozenges in Fig. 5 (bottom), we see that most
users request the first search result—in fact, more than 60 % of
the clicks on any ranked search result (i. e., excluding advertise-
ments, search settings etc.) go to position 1. Note, however, that
we witnessed automatic pre-fetching of the first search result in a
number of cases.

When we consider the number of follow-up clicks to a search

u

lo
g1

0(
P

[d
at

a
 >

 u
])

−6
−5

−4
−3

−2
−1

1 10 100

#clicks induced by one search, Mo−Fr, 08:00−18:00h
Click distance from result list, Mo−Fr, 08:00−18:00h
Click distance from result list, other times

Figure 4: CCDF for number of clicks triggered by one search
operation, and CCDFs for click distance between search page
and visited document.

2 4 6 8 10

0
2

4
6

8
10

12

Rank in search results

fo

llo
w

up
 c

lic
ks

 p
er

 s
ea

rc
h

re
qu

es
t

O
ve

ra
ll

sh
ar

e
of

 re
su

lt
cl

ic
ks

 b
y

ra
nk

followup clicks
Overall share

0%
20

%
40

%
60

%
80

%

Figure 5: Rank in search result vs. willingness of the user to
continue browsing from the result page.

result as a measure for the result quality, we see that top-ranked
search results indeed seem to be of higher quality than lower-ranked
ones (Fig. 5, top line with crosses). Yet, the presumed result quality
difference between high ranks and low ranks is significantly lower
than the difference in popularity (lozenges). This suggests that the
page summaries in the result list probably are read by most
users before they click.

Let us finally analyze the impact of HTTP redirects that lead the
user away from a search result: If a user enters any state gx py{R,L}z
via an HTTP redirect (not issued by the search engine), the aver-
age number of clicks that start from this document is only 0.12, as
compared to the normal 6.5. This means that a user who clicks on
a search result, but is redirected to a different page than the desired
one, normally does not spend any time on that page. We conclude
that operators protecting their Website against “deep linking”
from search engines repel many potential customers.

8. SUMMARY AND OUTLOOK
In this paper we analyze Web search clickstreams. Our data is

gathered by extracting the HTTP headers from packet-level traffic,
as well as the bodies of Web search result pages. We correlate both
data sets to extract sequences of subsequently posed queries, and
relate each query to its clicked result pages and follow-up clicks.
In the future we intend to perform timing-based analyses by con-
sidering the time a user spends in each state. Furthermore, we are

in the process of gathering more data across an longer time period
and / or a different user population to solidify our analysis results.

Based on the data gathered so far we find that most queries con-
sist of only one keyword and make little use of search operators,
such as the plus, minus or tilde sign. Moreover, users issue on aver-
age four search queries per session, of which most consecutive ones
are distinct. Relying on our Markov model that captures the logical
relationships of the accessed Web pages, as well as the users’ navi-
gational behavior, we gain additional insights on users’ Web search
behavior. Users are much more likely to re-formulate a query than
to look at the second result page. This is consitent with the obser-
vation that the top-ranked results are much more attractive to a user,
perhaps due to the reluctance to use the scrollbar. Moreover, judg-
ing from follow-up click behavior, top-ranked results seem to be
of higher quality than lower-ranked ones. “Serendipity browsing”
seems to influence user search behavior during recreational time
periods. Finally, Web sites that are protected against “deep links”
repel many visitors.

Our approach for gathering clickstreams is generic and not lim-
ited to Google, our example search engine. In future work, we plan
to gather data from multiple search engines for the same user set
during the same time period to facilitate comparisons across differ-
ent search engines. The ultimative goal of this work is to not only
gather new insights into users’ search patterns, but also to harness
the Web search clickstream to improve Web search capabilities.

9. REFERENCES
[1] Google basic search. http://www.google.com/support/bin/static.

py?page=searchguides.html&ctx=basics.
[2] R. Atterer, M. Wnuk, and A. Schmidt. Knowing the user’s every move—user

activity tracking for website usability evaluation and implicit interaction. In
WWW, 2006.

[3] P. Barford. Modeling, Measurement and Performance of World Wide Web
Transactions. PhD thesis, Boston University, 2001.

[4] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman, and O. Frieder.
Hourly analysis of a very large topically categorized web query log. In ACM
SIGIR, 2004.

[5] M. Chau, X. Fang, and O. R. L. Sheng. Analysis of the query logs of a web
site search engine. In American Society for Information Science and
Technology, 2005.

[6] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Query expansion by mining user
logs. In IEEE Trans. Knowl. Data Eng. 15(4), 2003.

[7] B. Jansen and U. Pooch. Web user studies: A review and framework for future
work. In American Society of Information Science and Technology, 2001.

[8] B. Krishnamurthy and J. Rexford. Web Protocols and Practice.
Addison-Wesley, 2001.

[9] U. Lee, Z. Liu, and J. Cho. Automatic identification of user goals in web
search. In WWW, 2005.

[10] J. Luxenburger and G. Weikum. Query-log based authority analysis for web
information search. In WISE, 2004.

[11] V. Paxson. Bro: A system for detecting network intruders in real-time. In
Computer Networks, 1999.

[12] F. Radlinski and T. Joachims. Query chains: Learning to rank from implicit
feedback. In KDD, 2005.

[13] X. Shen, B. Tan, and C. Zhai. Context-sensitive information retrieval using
implicit feedback. In ACM SIGIR, 2005.

[14] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz. Analysis of a very
large altavista query log. Technical report, SRC Technical Note 014, 1998.

[15] A. Spink, B. J. Jansen, and H. C. Ozmultu. Use of query reformulation and
relevance feedback by excite users. In Internet Research: Electronic
Networking Applications and Policy, 2000.

[16] A. Spink, S. Koshman, M. Park, C. Field, and B. J. Jansen. Multitasking web
search on vivisimo.com. In ITCC, 2005.

[17] A. Spink, D. Wolfram, B. Jansen, and T. Saracevic. Searching the web: The
public and their queries. In American Society for Information Science and
Technology, 2001.

[18] H. Weinreich, H. Obendorf, E. Herder, and M. Mayer. Off the beaten tracks:
Exploring three aspects of web navigation. In WWW, 2006.

