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ABSTRACT
Packet sampling is widely used in network monitoring. Sam-
pled packet streams are often used to determine flow-level
statistics of network traffic. To date there is conflicting evi-
dence on the quality of the resulting estimates. In this paper
we take a systematic approach, using the Fisher information
metric and the Cramér-Rao bound, to understand the con-
tributions that different types of information within sampled
packets have on the quality of flow-level estimates. We pro-
vide concrete evidence that, without protocol information
and with packet sampling rate p = 0.005, any accurate un-
biased estimator needs approximately 1016 sampled flows.
The required number of sampled flows drops to roughly 104

with the use of TCP sequence numbers. Furthermore, addi-
tional SYN flag information significantly reduces the estima-
tion error of short flows. We present a Maximum Likelihood
Estimator (MLE) that relies on all of this information and
show that it is efficient, even when applied to a small sample
set. We validate our results using Tier-1 Internet backbone
traces and evaluate the benefits of sampling from multiple
monitors. Our results show that combining estimates from
several monitors is 50% less accurate than an estimate based
on all samples.

Categories and Subject Descriptors
H.1.1 [Systems and Information Theory]: Value of in-
formation; C.2.3 [Network Operations]: Network moni-
toring; G.3 [Probability and Statistics]: Nonparametric
statistics
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1. INTRODUCTION
Data reduction is an indispensable component of today’s

Internet measurement and monitoring. With the increase
in network utilization, it is very difficult for monitoring ap-
plications to process every packet in the aggregated back-
bone links at OC48+ levels. Recently, many data stream-
ing algorithms have focused on summarizing network traffic
with a very small memory footprint [18], [12], often benefi-
cial to inline monitoring at the router. While lightweight,
this aggregation requires prior knowledge of the interested
statistics before it can be implemented at the monitoring
point. On the other hand, sampling methods require very
little inline computation, but transmit a subset of traffic to
a powerful backend server for analysis. This allows users
both flexibility and extensibility in deploying measurement
and monitoring applications at the server. Sampling also
helps reduce the processing load, and memory and storage
demands of monitoring systems. However, some information
content is inherently lost with sampling. This work presents
a theoretical framework within which to assess how much
information of a given flow level metric remains after sam-
pling. While we primarily focus on the estimation of the flow
size distribution, our framework should apply to other met-
rics as well, such as traffic matrix estimation. Moreover, we
quantify the value of TCP header fields for the estimation
of flow size distributions.

Many sampling schemes have been proposed, from gen-
eral purpose packet sampling and flow sampling, to methods
aimed at identifying traffic elephants, such as smart sam-
pling [5] and sample-and-hold [6]. Two standardization ef-
forts, PSAMP [21] and IPFIX [20], are current underway as
well. Among these, random or periodic (close to random)
packet sampling, (sFlow [22]), flow summarization of packet
level information (Cisco NetFlow [19]), and a combination
of both (Cisco sampled NetFlow) are popular methods de-
ployed in commercial networks. Random packet sampling
consists of independently selecting each packet for process-
ing with probability p. Periodic sampling is shown to have



similar characteristics as random sampling [3]. While packet
sampling generally provides detailed and accurate packet
level characteristics, it is not clear whether it can reveal de-
tailed flow level characteristics.

The flow size distribution is an important metric that has
received some attention in recent years. Flow size is the
number of packets in a flow. We are interested in estimat-
ing the flow size distribution, i.e. the fraction of flows that
contains i packets during a measurement interval, with i
typically being small. This is an important metric for many
applications, such as traffic engineering, and denial of ser-
vice attack and worm/virus outbreak detections. It has been
previously thought to be very difficult to estimate the flow
size distribution accurately from sampled traffic [9]. In the
first work in the field, Duffield et al. [3] provided several
estimators, but did not provide a proof of their accuracy.

In this work we use the Fisher information metric to ad-
dress many open questions concerning flow size distribution
estimation from packet sampling. This is possible because
of the tie between Fisher information and estimation mean
squared error through the Cramér-Rao lower bound. Using
the Fisher information, we identify certain TCP fields that
are high in information content value beneficial to flow size
estimation. We show TCP protocol information to be es-
sential for accurate unbiased flow size estimators. Further
we bring the first study to our knowledge of the benefits
of computing flow size distribution estimates by combining
samples from multiple monitors. We observe that our frame-
work simplifies the task of analyzing and developing estima-
tion algorithms for sampling at both a single monitor and
at multiple monitors. Products of our study are estimators
that are close to optimal, even when given a small number
of samples. We validate our results using traces taken from
a Tier-1 backbone network. We focus on TCP flows as they
account for 80-90% of packets in the network [23].

The rest of the paper is organized as follows: In Sec-
tion 2 we introduce the general model of obtaining flow-level
statistics under a random packet sampling scheme. Then we
lay out the information theory framework and compute the
Fisher Information in Section 3. The development of an effi-
cient estimator that achieves the Cramér Rao bound, Maxi-
mum Likelihood Estimator (MLE), follows in Section 4. We
evaluate using real traces in Section 5, and evaluate the ben-
efit from multiple monitors in Section 6. Finally we conclude
with Section 7.

2. MODELING SAMPLED FLOWS
We introduce a model of flow sizes and sampled flows pro-

duced through packet sampling. We first define the relevant
entities and then enhance the model to include SYN and
sequence number information.

The conventional IP flow definition is a set of packets that
obey the following rules:

• Any two packets have the same 5-tuple, i.e., the same
IP Source, IP Destination, source port number, desti-
nation port number, and protocol number.

• Maximum inter-packet arrival time must be less than
a threshold t, where t is a value given by the network
operator, typically between 30 to 60 seconds.

In practice, some systems use other protocol information
such as a FIN packet in TCP to terminate a flow. Cisco Net-

Flow evicts flows that are active for more than time t, typi-
cally 30min, to free memory for new flows. Here we choose
the conventional definition to keep our model straightfor-
ward.

We monitor packets at a chosen point in the network.
Packets are sampled according to a Bernoulli process with
sampling probability p, 0 < p < 1. We refer to the flows
prior to sampling as original flows. A sampled (or thinned)
flow is a flow that has at least one packet sampled. A flow
of size i is a flow that originally has i packets. Likewise, a
sampled flow of size m is a flow that has m packets sampled,
where m ≥ 1. Some original flows are not sampled and
therefore not observed. Some original flows may split into
multiple sampled flows. We do not account for flow splitting.
Table 1 summarizes most of the definitions used throughout
this paper.

Notation Definition

ALL-pktct Estimator that uses packet counts
from all sampled flows.

SYN-pktct Estimator that uses packet counts
from SYN sampled flows.

SYN-seq Estimator that uses TCP sequence
numbers from SYN sampled flows.

ALL-seq-sflag
Estimator that uses TCP sequence
numbers and SYN flags from all
sampled flows.

W ≥ 2 Maximum flow size

0 < p < 1 Packet sampling rate (in samples
per packet).

i ∈ {1, . . . , W } Flow size before sampling (original
flow size).

~θ = [θi] True flow size distribution.

~θ′ = [θ′
i]

Flow size distribution ~θ conditioned
on at least one of its packets being
sampled.

~̃θ = [θ̃i] Estimated flow size distribution.

j ∈ L Sample label.

~d = [dj ] Distribution of the sampled flows.

B = [bi,j ]
bi,j is the probability that a sampled
flow, with original flow size i, has
sample label j.

n Number of sampled flows.

d̂
(n)
j

Fraction of the n sampled flows with
label j.

α(n) Likelihood function for n sampled
flows.

h(a, b)

Given two TCP sequence numbers a
and b from two packets of the same
flow, h(a, b) returns the number of
packets from the same flow sent be-
tween these two packets.

Table 1: Notations table.

2.1 Basic Model
Assume the original flow size is upper bounded by W ≥ 2.



Let θi be the fraction of original flows of size i that cross
the monitor during some given time interval and let θ′

i be
the fraction of original flows of size i that were sampled.

Let ~θ = (θ1, . . . , θW )T denote the original flow size distribu-

tion. Likewise, let ~θ′ = (θ′
1, . . . , θ

′
W )T denote the conditional

distribution of ~θ conditioned at least on one of its packets
being sampled [3]. Under the Bernoulli sampling process

assumption, ~θ and ~θ′ are related as follows:

θi = gi(~θ
′) =

θ′
i/(1 − (1 − p)i)

PW

k=1[θ
′
k/(1 − (1 − p)k)]

. (1)

Our objective is to estimate ~θ from the sampled flows.

Note that ~θ is constrained by
PW

i=1 θi = 1 and 0 ≤ θi ≤
1, ∀i. These constraints also apply to ~θ′.

Let L be a set of label tuples. A label j ∈ L can be,
for instance, the number of packets obtained in a sampled
flow. Let j ∈ L be a label given to a sampled flow and
let dj be the fraction of sampled flows with label j. For
now consider j to be the number of packets obtained from a

sampled flow and let ~d = (d1, . . . , dW ) denote the sampled

flow size distribution. Distributions ~d and ~θ are related by

dj =

W
X

i=1

bi,jθi, (2)

where bi,j is the binomial probability of sampling j packets
out of i original packets given sampling rate p.

Equation (2) can be written in vector notation as

~d = B~θ, (3)

where B is a W × W matrix whose element (i, j) is bj,i.
Matrix B is an upper triangular matrix and thus (3) has a

unique solution. A similar relationship also holds for ~θ′.

Let n be the number of sampled flows and D̂
(n)

j , j ≥ 0,
denote the total number of sampled flows with j sampled
packets. We can also further define

~̂d (n) = [d̂
(n)

j ] = [D̂
(n)

j /n]. (4)

An estimator without protocol information. In [3]
the authors present a set of estimators based on the above
samples, i.e., without TCP protocol information. We refer
to an estimator without protocol information as an “ALL-
pktct” estimator. “ALL” refers to the use of all TCP sam-
pled flows. And “pktct” refers to an estimator that uses
only packet counts.

Next we extend the model to account for protocol infor-
mation, particularly TCP SYN flags and sequence numbers.

2.2 TCP SYN flag and sequence numbers
The basic model only accounts for the number of packets

inside a sampled TCP flow. A sampled flow can carry more
information about its original IP flow size, through stateful
upper layer protocols. TCP [15], in particular, has two fields
that provide further information regarding length: control
flags and sequence numbers.

SYN sampled flows. As pointed out in [3], the TCP
SYN flag provides valuable information during the estima-
tion phase. As in [3], we assume original flows include ex-
actly one SYN packet, which is the first packet of the flow.
We denote a sampled flow starting with a SYN packet as a
SYN sampled flow. Because there is only one SYN packet

per flow, the distribution ~θ′ conditioned on the SYN sam-

pled flows is the same as the original flow size distribution ~θ.
We refer to a TCP sampled flow with a SYN sampled packet
as SYN sampled flow. Assume there are n sampled flows.

We use d̂
(n)

(S,m) to denote the fraction of the n sampled flows

where a SYN packet is sampled and there are m sampled

packets. Likewise, we denote by d̂
(n)

(N,m)
the fraction of the n

sampled flows where there was no SYN sampled packet and
there are m sampled packets in total. For now we focus on
TCP SYN sampled flows, and ignore flows without a sam-
pled SYN. In Section 4.3 we show how to add flows sampled
without SYNs to the estimator. Equation (3) holds for SYN
sampled flows with matrix B properly redefined. The modi-
fication to B is found in [3]. We refer an estimator that uses

d̂
(n)

(S,m) as a “SYN-pktct” estimator.

Next we turn our attention to sequence numbers.
Samples with TCP sequence numbers. TCP uses

a 32-bit sequence number that counts payload bytes in a
flow. Assume that the TCP start sequence number, i.e., the
starting byte count of the sampled packets, is available. An
estimator that measures flow sizes in number of bytes can
clearly benefit from TCP sequence numbers. The question
is whether an estimator using packet counts can also benefit
from sequence numbers. We assume that there is a function
h(sa, sb) that takes two TCP sequence numbers sa and sb

from two distinct packets a and b of the same flow and re-
turns the number of packets sent between a and b including
a and b. We acknowledge that it is not easy to construct a
function h that returns the exact packet counts. In Section 5
we provide a reasonably good approximation to h.

Let s
(u)
min, s

(u)
max be the smallest/greatest sampled TCP

sequence number values of flow u (wrap around is easily

treated). Let U be a set of sampled SYN flows and let d̂
(n)

r

be the fraction of sampled SYN flows with r = h(s
(u)
max, s

(u)
min),

∀u ∈ U . This new sample definition induces a new ma-
trix B with bi,(S,r) = p(1 − p)i−r, ∀i ≤ W, 2 ≤ r ≤ i and

bi,(S,1) = (1−p)i−1, and the rest of the matrix being zero. Fi-

nally, let us denote an estimator that uses d̂
(n)

(S,r) as a “SYN-

seq” estimator.
Samples with TCP sequence numbers and full SYN

flag information. Our traces show that only 20% of the
TCP sampled flows contain a SYN sampled packet. In [3]
the authors conjecture that there are few SYN sampled flows
which implies less accurate estimates. Next we increase the
number samples by adding sampled flows without a SYN
sampled packet to the estimator.

Let us denote the estimator that uses TCP sequence num-
bers and SYN flags (SYNs and non SYN sampled flows) as
a “ALL-seq-sflag” estimator. Let B denote the sampling
probability matrix as defined by (3). Let j denote a tuple

(SYNFLAG, r), where r = h(s
(u)
max, s

(u)
min). Let SYNFLAG =

S when there is a SYN packet in the sampled flow and
SYNFLAG = N otherwise. Thus b′i,<S,r> = p (1 − p)i−r

and b′i,<N,r> = (i − r) p (1 − p)i−r. The element i, j of ma-
trix B is bi,j = b′i,j/

P

∀j b′i,j .
We have introduced several types of information. One

question that remains is which type of information is valu-
able to an estimator. The next section is devoted to quan-
tifying the impact of these types of information on the esti-

mation accuracy of ~θ.



3. FISHER INFORMATION IN FLOW SIZE
ESTIMATION

This section quantifies the improvement on estimation
achieved by adding different types of information to the

sampled flow distribution ~d. Throughout this work we fo-
cus on unbiased estimators. Let θi denote the quantity to
be estimated and T (θi) its estimate. An unbiased estimate
guarantees E[T (θi)] = θi.

Let T (~θ) be an estimate of ~θ obtained by an estimator T .
A good unbiased estimator of a flow size i is characterized by
a low mean squared error E[(θi − T (θi))

2]. This motivates
the definition of an efficient estimator.

Efficient estimator: An estimator T of θi is said to be
efficient if its mean squared error, E[(θi − T (θi))

2], is the
minimum among all estimators.

In what follows we provide a way to compute a tight lower
bound on the mean squared error for flow size estimators.

3.1 Measuring information: Fisher informa-
tion

The Fisher information can be thought of as the amount

of information that a set of observable samples, ~̂d (n), carry

about unobservable parameters ~θ or ~θ′ upon which the prob-
ability distribution of the samples depends. The results in

this section derived for ~θ are also valid for ~θ′.
The Fisher information is defined over a set of samples.

If the samples in the set are all mutually independent, then
the Fisher information of the set of samples is the sum of
the Fisher information of each of the samples [2]. The above
result applies to sampled flows as follows:

Lemma 3.1. Let I be the Fisher information of one sam-
pled flow. If packets are sampled independently according to
a Bernoulli process (as in Section 2), the Fisher Information
of n sampled flows is nI.

Proof. If packets are sampled independently according
to a Bernoulli process, then flows are also sampled indepen-
dently. The Fisher information of a set of n independently
sampled flows is nI [2].

Next we compute the Fisher information of a single sam-
pled flow. Assume maximum flow size W ≥ 2 and θi > 0

with 1 ≤ i ≤ W . Let nd̂
(n)

j denote the number of sampled
flows with label j as defined in Section 2.1. Assume n = 1
and that our sole sampled flow has sample label j′. Note

that in this scenario d̂
(1)

j = 0 for all j 6= j′ and d̂
(1)

j′
= 1.

Define an operator (·)j over a vector that retrieves the ele-
ment indexed by sample label j. Let

α( ~̂d (1); ~θ) =
X

∀j∈L

d̂
(1)

j (B~θ)j =
X

∀j∈L

d̂
(1)

j dj (5)

be the conditional probability that this sampled flow has

sample label j′ for a given flow size distribution ~θ. Function
α is also known as the likelihood function. The likelihood
function α can be extended to α(n), the likelihood of n inde-

pendently sampled flows. The parameters ~θ of the likelihood
function α are constrained by:

X

∀i

θi = 1 (6)

and

0 < θi < 1, ∀i. (7)

Unfortunately the Fisher information as defined in [2] is
unconstrained. But constraints (7) can be included by a
simple change of variables in α:

θi = β(γi) =
1

1 + exp(−γi)
, (8)

with γi ∈ R. Function β maps γi with domain R to (0, 1),
thus satisfying constraints (7). Furthermore, define a func-
tion g(~γ) =

P

∀i β(γi) − 1. Then g(~γ) = 0 iff constraint (6)
is satisfied. Take ~γ ∈ D, where D = {~γ|g(~γ) = 0} and β(~γ),
a vector whose i-th element is β(γi), then the likelihood
function f of one sampled flow is

f( ~̂d (1);~γ) = α( ~̂d (1); β(~γ)).

Under the above conditions we find the Fisher information

of the flow size estimation problem. Let ∇~γ ln f( ~̂d (1);~γ) be

a vector whose i-th element is ∂ ln f( ~̂d (1);~γ)/∂γi. We use
the main result of [8] to also include constraint (6). Note

that dj is equal to P (d̂
(1)

j = 1), the probability that our
sole sampled flow has sample label j. Let

J(~γ) =
X

∀j

(∇~γ ln f( ~̂d (1);~γ)) (∇~γ ln f( ~̂d (1);~γ))T dj , (9)

also with

G(~γ) = ∇~γg(~γ). (10)

From now on we omit the dependence of J and G on ~γ for
notational convenience. Let I be the Fisher information of
f(~d (1);~γ). We obtain I from its inverse I−1. The inverse
of the Fisher information with ~γ ∈ D, I−1(~γ) , is a W ×W
matrix

I−1(~γ) = J−1 − J−1GT(GJ−1GT)−1GJ−1, (11)

where GT is the transpose of G.
The Fisher information can be used to compute a lower

bound on the mean squared error of any unbiased estimator

of ~θ as seen next.

3.2 The Cramér-Rao bound
The Cramér-Rao theorem states that the mean squared

error of any unbiased estimator is lower bounded by the in-
verse of the Fisher information [8], provided some regularity
conditions required by the Cramér-Rao bound. These regu-
larity condition [10] translates into

P

j ∂dj/∂γi = ∂/∂γi

P

j dj ,
∀i on the flow size estimation problem, which clearly holds.

Let γ̃i be an unbiased estimate of γi. Combining the
Cramér-Rao theorem with Lemma 3.1 gives

E[(γi − γ̃i)
2] ≥ −(I−1)i,i/n,

or, more generally

E[(~γ − ~̃γ)(~γ − ~̃γ)T] ≥ −I−1/n, (12)

with I−1 as defined in (11).
The mean squared error obtained from (12) is a function

of parameters ~γ. We would like to find the mean square

error with respect to ~θ.

The mean squared error of ~θ follows by applying the delta
method [16]: Let n be a large number of sampled flows.



Definitions Number of sampled flows needed
ALL-pktct > 2.25 × 1016

SYN-pktct > 3.4 × 1016

ALL-seq-sflag 4 × 104

Table 2: Number of sampled flows an unbiased esti-
mator needs in order to achieve standard deviation
error of 0.1 for flows of size one. Results for max-
imum flow size W = 20 and sampling rate p = 1/200
over the BB-East-1 trace flow size distribution.

Although n is assumed to be a large number, it can still be
considered small on the scale of a Tier-1 Internet backbone.
Let H = [hi,j ] with hi,j = β(γj)/∂γi and likewise H′ = [h′

i,j ]
where h′

i,j = ∂gi(β(~γ))/∂γj , with gi, i, j as defined by (1).
Thus in the case where the original likelihood function α is

a function of ~θ, the mean squared error of the estimate of ~̃θ
is

E[(~θ − ~̃θ)(~θ − ~̃θ)T] ≥ H(−I−1/n) HT (13)

and when α is a function of ~θ′,

E[(~θ − ~̃θ)(~θ − ~̃θ)T] ≥ H′(−I−1/n) H′ T (14)

3.3 Applying the Cramér-Rao bound
We illustrate the application of the Cramér-Rao bound

with two examples. The first one in Section 3.3.1 shows all
of the necessary steps to obtain the Cramér-Rao bound. The
second one in Section 3.3.2 displays the use of the Fisher
Information through the Cramér-Rao bound, in designing
better estimators. In the next two examples we will look
at SYN sampled flows. The parameters of the following
two examples are just to illustrate the use of the Fisher
information. On Section 4 we will look at more realistic
scenarios.

3.3.1 Example with maximum flow size of two
Let W = 2 be the maximum flow size. Let θ1 = 0.88 and

p = 0.01. From equation (10), we have (G)i = θ2
i /(θi − 1).

Let β−1 be the inverse of function β. Equation (9) yields
J(β−1(θ1)) = −~e1 ~eT

1 /d1 −~e2 ~eT
2 /d2, where ~ej = (b1,j , b2,j) ·

(~θ2/(~θ − 1)). Let j denote the number of sampled packets
in a SYN sampled flow. Then b1,1 = 1, b1,2 = 0, b2,1 = 0.99
and b2,2 = 0.01. The inverse of the Fisher information I−1

(equation (11)) of one sampled flow is

I−1 =

»

−1078 1078
1078 −1078

–

Now assume n flows are sampled. Thus the lower bound
on the mean squared error of estimates γ̃1 and γ̃2 obtained
using the Cramér-Rao bound will be E[(γ1− γ̃1)

2] ≥ 1078/n
and E[(γ2 − γ̃2)

2] ≥ 1078/n. The Cramér-Rao bound of

parameters ~θ comes from the delta method as seen in Sec-
tion 3.2. Matrix H is

H =

»

0.105 0
0 0.105

–

.

Thus from (13), the mean squared error of any unbiased

estimates θ̃1 and θ̃2 of θ1 and θ2 respectively are: E[(θ1 −
θ̃1)

2] ≥ 1092/n and E[(θ2 − θ̃2)
2] ≥ 1092/n for n sampled

flows, given n sufficiently large.

3.3.2 Essential information from TCP sequence num-
bers

Consider the problem of estimating flow size distribution
using packet counts, and SYN and sequence number infor-
mation as defined in Section 2.2. The data processing theo-
rem [17] states that adding information can only increase the
Fisher information. Thus, we expect that an efficient esti-
mator using extra information performs better, or at least no
worse, than an efficient estimator that does not use the ex-
tra information. This clearly holds as one can always throw
the extra information away inside the estimator.

For our next example, assume a maximum flow size W = 4

and ~θ = (0.56, 0.08, 0.18, 0.18). The elements of B are bi,1 =
(1− p)i−1 and bi,j = p(1− p)i−j for j > 1. We compute the
Cramér-Rao bound for a sampling rate of p = 1/100. Also
consider the estimation using packet counts over SYN flows
(SYN-pktct) as defined in Section 2.2. Figure 1 shows the
Cramér-Rao bound obtained with 108 sampled flows under
this scenario. Clearly the addition of TCP sequence num-
bers drastically increases the Fisher information of the sam-
ples. This increase in the Fisher information is translated
into a much smaller lower bound on estimation error. The
graph also shows that the SYN-pktct estimator is able to
gather very little information about the original flow sizes.
Next we look at an example where the Fisher information
is used to obtain the number of samples needed by a given
estimate error using different types of protocol information.

3.4 Minimum number of samples required for
high quality estimates

The Fisher information is also a powerful tool to adjust
measurement parameters. Through the Cramér-Rao bound,
one can assess the minimum number of samples needed to
achieve a given error. In the following example we use
W = 20 and p = 1/200 and calculate how many samples
are needed until the best unbiased estimator can achieve a
mean standard deviation error of 0.1 for flows of size one.
In the following experiment we renormalized the flow size
distribution obtained from the Sprint backbone network.
The flow size distribution renormalization creates a distri-
bution ~θ that is a re-scaled true Internet flow size distri-
bution but with maximum flow size W . The original dis-
tribution comes from the trace BB-East-1, summarized in
Table 3 at the beginning of Section 5. The results show
that without any protocol information, only using packet
counts (ALL-pktct), the best unbiased estimator needs at
least 2.25 × 1016 sampled flows. Using SYN sampled flows
and packet counts (SYN-pktct) the best unbiased estimator
needs at least 3.4×1016 sampled flows (from where 7.5×1015

are SYN sampled flows). On the other hand, the best unbi-
ased estimator using SYN flags and TCP sequence numbers,
ALL-seq-sflag, needs a dramatically lower number: 4 × 104

sampled flows. These findings are summarized in Table 2.
Next we shortly present MLEs for the ALL-pktct, SYN-

pktct, SYN-seq and ALL-seq-sflag estimators. Experimen-
tally we will find that the ALL-seq-sflag MLE is efficient in
that it approaches the Cramér-Rao bound even for a small
sample size, n = 260, 000.

4. FINDING AN OPTIMAL UNBIASED ES-
TIMATOR

The Maximum log-Likelihood Estimator (MLE), finds a
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Figure 1: Cramér-Rao bounds of the examples on
Section 3.3.2. This graph compares the estimation
of SYN-pktct to the SYN-seq. Notice that adding
TCP sequence numbers to the estimation greatly
improves its quality.

set of parameters ~̃θ that maximize the log-likelihood of the
sampled data. Under the same regularity conditions as re-
quired for the Cramér-Rao bound, the MLE is an asymptot-
ically efficient unbiased estimator of ~γ, i.e., its error achieves
the Cramér-Rao lower bound as the number of samples tends
to infinity. As in practice we do not have a very large num-
ber of samples, we would like it to be efficient using the
number of samples typically collected at Tier-1 backbone
routers. This section presents MLEs for the models in Sec-
tion 2. In particular we show that the ALL-seq-sflag MLE
does not require a large number of samples to be unbiased
and achieve the Cramér-Rao error lower bound. In addition,
we present a conjugate gradients algorithm for the MLE, a
faster convergence algorithm than the commonly used Ex-
pectation Maximization algorithm.

We estimate the MLE over function α(n) through the
use of penalty functions for the constraints in (6) and (7).

Whenever a value of ~θ violates one of the constraints, the
likelihood function receives a penalty, which in the end forces
the search to remain within the constrained region. To sim-
plify analysis, we generate synthetic sampled flows for the
traffic in an idealized fashion. In the first part of this section
we estimate the flow size distribution using only SYN sam-
pled flows. This, of course, does not account for the “noise”
introduced by flow-splitting, which splits one long original
flow into two or more shorter ones. We will not account for
flow splitting, although [11] shows that is possible to do so.
We will evaluate the complete model with “noise” in Sec-
tion 5 on an actual trace. Next we introduce the MLE for
our model.

4.1 MLE with conjugate gradients
Let n be the number of sampled flows and nd̂

(n)
j the num-

ber of sampled flows with label j ∈ L. The likelihood func-

tion with respect to parameters ~θ, as defined in Section 3.1,

is α(n)( ~̂d (n); ~̃θ). The MLE can be written as

~̃θ = arg max
~̃θ

n
X

∀j∈L

d̂
(n)

j ln(B~̃θ)j (15)

subject to
P

i θ̃i = 1 and 0 < θ̃i < 1, ∀i ∈ {1, . . . , W }.
First we consider the SYN-pktct MLE as proposed in [3].

We analyze the Expectation Maximization (EM) algorithm,
used in [3] to find a solution of the log-likelihood equation

(15). Let D̂
(n)

(S,r) denote the number of SYN sampled flows

with label r sampled packets. Let d̂
(n)

(S,r) be the fraction of

SYN sampled flows with r sampled packets, as defined by
(4).

We detail the approach in [3] for the sake of completeness.

The EM algorithm finds the MLE ~̂θ (n) by the successive
refinement of previous estimates:

θ̃
(k+1)
i = θ̃

(k)
i

X

∀j∈L

bi,j d̂
(n)

(S,j)
PW

r=1 θ̃
(k)
r br,j

,

where ~̃θ(0) is an initial guess of ~θ.
Although the EM algorithm is sound, needs no fine tuning,

and is guaranteed to always improve the estimate at each
step, in practice it can suffer from slow convergence [14].
More specifically, Theorem 5.2 in [14] shows that if the pa-

rameters ~θ are “poorly separable” then EM exhibits a slow
convergence rate. The term “poorly separable” can be quan-
tified as the difficulty of distinguishing whether a sample j
came from flow sizes i or i′ with i 6= i′, i.e., if bi,jθi ≈ bi′,jθi′ .
Unfortunately, flow size estimation suffers from this vileness.
Although one expects that other maximum likelihood algo-
rithms will also suffer with these “poorly separable” param-
eters, it is believed that in practice the effect is felt more
by EM [14] (conjecture strengthened by our practical expe-
rience with our EM and conjugate gradients method imple-
mentations when applied to the flow size estimation prob-
lem).

We instead use the method of conjugate gradients [13] to
compute a solution to (15). Our conjugate gradients MLE
algorithm was implemented with the help of the wnlib li-
brary1.

For the above algorithm to work, need to provide the ma-

trix B and the gradient ∇~̃θ
ln α(n)( ~̂d (n); ~̃θ) conditioned on

PW
i=1 θi = 1. The i th component of our gradient is

∂

∂θi

ln α(n)( ~̂d (n); ~̃θ) =
X

∀j∈L

bi,j d̂
(n)

j
PW

r=1 θ̃r br,j

− 1.

The remaining constraints 0 < θ̃i < 1, ∀i ∈ {1, . . . , W } are
introduced as penalty functions. Like EM, the conjugate

gradient algorithm also requires an initial guess ~̃θ (0). The
only requirement for any initial guess is that no flow size
can have zero probability.

4.2 The use of TCP sequence numbers on SYN
sampled flows

The following two experiments, with results shown in Fig-
ures 2 and 3, were designed to compare the use of various
types of information on the MLE accuracy. Let W = 50 be

1http://www.willnaylor.com/wnlib.html



the maximum flow size and p = 1/200 be the packet sam-
pling rate. We use samples from a renormalized flow size dis-
tribution obtained from the Sprint backbone network. The
renormalized flow size distribution is based on the distribu-
tion of the BB-East-1 trace, summarized at the beginning of
Section 5 in Table 3. These experiments use 1012 synthet-
ically generated flows that, in average, produce 1.8 × 1010

sampled flows after packet sampling (from where 5×109 are
SYN sampled flows). The initial value for the MLE opti-

mization is θ̃
(0)
i = 1/W .

Figure 2: Flow size distribution estimate obtained
with SYN-pktct and SYN-seq MLEs. Obtained us-
ing 120 runs with 5 × 109 SYN sampled flows each
and p = 1/200 as the sampling rate. Clearly the SYN-
pktct MLE is not an unbiased estimator and cannot
capture important features of the original flow size
distribution. On the other hand, the SYN-seq MLE
is not only an unbiased estimator but also has small
standard deviation errors for most flow sizes.

Figure 2 shows a graph with the original flow size dis-
tribution and its estimates using SYN-pktct and SYN-seq
MLEs. The MLE curves show the mean and standard devi-
ation errors of the estimates obtained from 120 independent
runs. The standard deviation errors are computed with re-
spect to the average of the estimates and not to the true

flow size distribution values ~θ. Observe that although SYN-
pktct MLE exhibits tight standard deviation errors, most
estimates are wrong. Moreover, it does not capture impor-
tant features of the original flow size distribution. Wrong
estimate averages and small standard deviation errors in
the SYN-pktct MLE are indications that the estimator was
able to extract only a small amount of information from the
5 × 109 SYN sampled flows. On the other hand, the SYN-
seq MLE, which adds TCP sequence number information to
the previous estimator, shows itself to be an unbiased esti-
mator (i.e., E[θ̃i] = θi , 1 ≤ i ≤ W ) with tight standard
deviation errors. According to the Cramér-Rao bound, the
SYN-pktct MLE needs at least 1017 SYN samples flows to
achieve a result comparable to the one obtained using the
SYN-seq MLE with 5 × 109 SYN sampled flows.

Note that both SYN-pktct and SYN-seq estimators ne-
glected all sampled flows without a SYN sampled packet,

which amounts to 80% of the sampled flows in the BB-East-1
trace. The estimator accuracy could be increased by adding
the remaining 80% of the sampled flows to the estimator.
In [3] the authors argue that there are not enough SYN
flows to find good estimates using the SYN-pktct MLE. In
what follows we consider all sampled flows and show that
the best estimator in [3], “ALL-pktct MLE” according to
our nomenclature, also suffers from the same problems as
the SYN-pktct MLE. We further show that adding flows
without a SYN sampled packet drastically increases the ac-
curacy of the estimator that uses TCP sequence numbers.

4.3 MLEs using all sampled flows
Incorporating SYN flag information for all sampled flows

can be done seamlessly in the SYN-seq estimator and even in
the SYN-pktct estimator. This extension can potentially in-
crease the accuracy of the ALL-pktct MLE presented in [3].
However we will restrict this modification to the estimator
with TCP sequence numbers further referred as “ALL-seq-
sflag estimator”. In this section we compare the ALL-seq-
sflag MLE to the ALL-pktct MLE.

Figure 3: Flow size distribution estimates obtained
from ALL-pktct and ALL-seq-sflag MLEs. We used
120 independent runs with 1.8 × 1010 sampled flows
each and p = 1/200 as the sampling rate. As ex-
pected, 1.8 × 1010 sampled flows is too small of a
sample set for the ALL-pktct MLE to become an un-
biased estimator. The SYN-seq-sflags MLE, on the
other hand, substantially improved on the SYN-seq
MLE estimates.

The following experiment uses the parameters given at the
beginning of Section 4.2. Figure 3 shows graphs of the orig-
inal flow size distribution and its estimates obtained from
ALL-pktct and ALL-seq-sflag MLEs. Again the estimator
using packet counts (ALL-pktct) was not unbiased and un-
able to capture important features of the flow size distri-
bution. It is interesting to note that the ALL-pktct MLE
seems to find an accurate estimate for the fraction of flows
with size one. This accuracy is misleading. On our exper-
iments we found that this “accuracy” is highly dependent

on the initial value ~̃θ(0) of the MLE algorithm. We also
found that ALL-pktct MLE estimates E[θ̃1] = 0.32 with



high confidence (the standard deviation errors on the graph
are very small) for the BB-East-2 trace, result similar to the
one obtained on Figure 3 for the BB-East-1 trace. But in
the BB-East-2 case, the true value is θ1 = 0.09, while in the
BB-East-1 trace θ1 = 0.36. This means that estimates from
ALL-pktct and SYN-pktct do not have a strong relationship
with the true distribution values.

Figure 3 also shows that the ALL-seq-sflag MLE estimates
are unbiased and have very tight standard deviation errors
for the BB-East-1 trace. Similar results were also obtained
from the BB-East-2 trace. Note that ALL-seq-sflag MLE
greatly improves on the SYN-seq MLE estimates for small
flow sizes. Next we show that ALL-seq-sflag MLE can be
considered as an efficient estimator and that the Cramér-
Rao bound is tight.

4.4 An efficient estimator: ALL-seq-sflag MLE
Figure 4 shows the mean standard deviation error of ALL-

seq-sflag MLE estimates compared to its respective Cramér-
Rao bound. For a large number of sampled flows (≥ 108)
the Cramér-Rao bound and the ALL-seq-sflag MLE mean
standard deviation error are almost indistinguishable. Thus
the Cramér-Rao bound is tight and the ALL-seq-sflag MLE
appears to be efficient for a large number of samples. For
a much smaller sample set, 260, 000 sampled flows, there
is a small bias on the estimates of the ALL-seq-sflag MLE.
The mean standard deviation error that is fairly close to the
Cramér-Rao bound. Thus, one can argue that the ALL-seq-
sflag MLE is an efficient estimator for practical purposes
even when there are only 260, 000 sampled flows.

Figure 4: This graph compares the standard devia-
tion errors of the ALL-seq-sflag MLE estimates with
the Cramér-Rao bound.

The next section evaluates the SYN-seq MLE on an actual
trace.

5. EVALUATION ON NETWORK TRACES
The focus of this section is to evaluate the flow size dis-

tribution estimators in an Internet backbone environment.
We evaluate our algorithms with packet traces from a Tier-
1 ISP’s backbone network. They are collected using IP-
MON, a passive measurement system that captures the first
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Figure 5: Number of sampled flows with label
(S, r), r ≥ 1 obtained from both h drawn syntheti-

cally, and h̃ obtained using the real sampled trace.
Results from the BB-East-2 trace. Packet sampling
rate p = 0.01. This graph shows nd̂(S,r), the num-
ber of sample tuples (S, r) (from flows with a SYN
sampled packet). Notice that the average is slightly
underestimated.

64 bytes IP packet header of every packet on an optical
link [7]. The BB-East-1 and BB-East-2 traces are from two
OC-48 links between backbone routers on the east coast.
The Access-East trace is from an access link in the east
coast. The statistics of these traces are listed in Table 3.

Internet flows sizes can be on the order of millions of pack-
ets, i.e., MLE equation (15) with W ≫ 1 is intractable. Next
we will see how to estimate TCP flow size distributions over
real traces for very large maximum flow sizes W ≫ 1.

Table 3: Trace Facts
Trace Avg. Rate Active Flows Duration

Access-East 373Mbps 61,000/sec 2 hours
BB-East-1 867Mbps 140,000/sec 2 hours
BB-East-2 25Mbps 5,000/sec 2 hours

5.1 Large maximum flow sizes
Unfortunately, our model in Section 2, requires one pa-

rameter for each flow size from 1 to W . One could model the
tail of the flow size distribution as a Pareto model, which
would replace most of the larger flow sizes parameters by
the two parameters of the Pareto distribution. But even
in this case, the estimator still needs to compute sample
probabilities dj and this implies summing a large number of
coefficients (up to W ) on equation (2), with its associated
computational cost.

Fortunately, TCP sequence number MLEs are fairly ro-
bust to mismatches between the modeled maximum flow
size W and the actual maximum flow of the set of flows that
generated the samples. All estimates presented next were
from the BB-East-2 trace.

5.2 An approximation to h(smin, smax)
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Figure 6: Number of sampled flows with label
(S, r), r ≥ 1 obtained from both h drawn syntheti-

cally, and h̃ obtained using the real sampled trace.
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rate p = 0.01. This graph shows nd̂(N,r), the number
of sample tuples (N, r) (from flows without a SYN
sampled packet). Notice that the average is slightly
overestimated.

Before proceeding to the actual estimation of the flow size
distribution we need to address one last issue. Function h
introduced in Section 3.3.2 takes as arguments two TCP
sequence numbers of two packets in a flow and returns the
number of packets sent between these two packets. Before
we can estimate flow sizes from real Internet traces we need
to approximate h using real Internet sampled flows. We
describe this next.

The baseline for our approximation h̃(s1, s2) to h(s1, s2)
is to use |s1 − s2| divided by the maximum data segment
transmitted on the flow, where s1 and s2 are two TCP se-
quence numbers of packets belonging to the same flow. The
reasoning here is that while a TCP application has enough
data to send, most TCP protocol stacks will send packets
with data up to the maximum payload size. Most TCP im-
plementations use maximum payload sizes of 1460, 1448 or
536. Notice that we are looking at only one direction of the
flow, i.e., we only have access to one side of the two-way
TCP connection. Unfortunately a good approximation of h
requires enhancements to the baseline approach.

Zero sized packets and modern web browsers present two
difficult issues to resolve in finding a good h̃. (1) Since zero
sized packets do not increase the TCP sequence number
counter, they are almost totally invisible to us if not sam-
pled. (2) Modern web browsers use persistent HTTP 1.1
connections since an user is expected to follow many links
on the same web server. Upon receiving a request for a page,
the web server sends all packets with the same size except
for the last one. The user’s browser keeps the TCP connec-
tion open, and in the event of a new user requested page,
it asks for more data over the same TCP connection. This
creates a TCP flow from possibly many independent flows.
One can argue that these are independent TCP flows and
should be treated as such. However, as they share the same
SYN packet, our model groups them into a single flow.

We first deal with the multiple payload size problem. A

sizable amount of the web-servers on the Internet are Linux
machines. Linux machines have an interesting behavior on
their IPID field, they are all sequential for a given a TCP
flow (a reference to the many uses of the IPID field can be
found on [1]). With distinct payload sizes inside the same
flow, most of them not sampled, |s1 − s2| will likely not give
us a number that is a multiple of the maximum payload
size per packet in the flow. If these small sized payloads
are not a large fraction of the total number of packets we
can verify whether the number of packets obtained using
the IPID difference of the packets is close to the number
obtained using Sequence Numbers. If so, we will use the
IPID difference.

In most TCP flows the majority of the data is sent in one
direction, i.e., the TCP sequence number difference on one
direction is much larger than on the other. If most of the
data is being sent in the direction being sampled, we obtain
maximum payload sizes from the sampled flow, by discard-
ing FIN and SYN packets (usually smaller), assuming sam-
pled packets are representative of the unsampled packets.
Otherwise, we denote the flow as a TCP ACK flow. TCP
ACK flows usually have many zero sized packets. One can
estimate the value of h on TCP ACK flows by looking at the
TCP ACK sequence numbers, which are sequence numbers
of the data being sent on the opposite direction of the sam-
pled packets. We keep statistics on the distribution of some
specific payload sizes (such as sizes 1460, 536) of non TCP
ACK flows and assume that the payload size distribution in
both directions is the same. Using the TCP ACK sequence
numbers and the above mentioned distribution we obtain an
estimate of the value of h.

The above function h̃ is a rather simplistic application of
TCP protocol information; however it works reasonably well
although the proposed estimator can certainly benefit from
a more accurate model of h. We leave the construction of a
better model for future research.

The above observations were made from trace Access-
East, and then tested on BB-East-2. Sampling flows on the
BB-East-2 trace at rate p = 1/100 generates, on average, ap-
proximately 125,000 sampled TCP flows to be used by the
estimator. Figures 5 and 6 show how well we can approx-
imate the sample tuples nd̂(S,r) and nd̂(N,r), respectively,

obtained from h̃ over real sampled data from BB-East-2.
Recall that nd̂(S,r) (nd̂(N,r)) are the counts of the sampled

SYN (NON-SYN) flows where r = h(s
(u)
max, s

(u)
min).

Note that the use of h̃ results in a slight underestimate of
the number of sampled SYN flows and a slight overestimate
of the number of sampled NON-SYN flows. This matter
needs further investigation but it might indicate that sam-
pled flows are suffering from flow splitting [11]. A future
research topic is to account for flow splitting in the model.

In what follows we obtain flow size distribution estimates
from the BB-East-2 trace.

5.3 Evaluation and performance
Using the sampled flow size distribution obtained using h̃

(Figures 5 and 6), we find estimates for the flow size distri-
bution of the flows contained at the BB-East-2 trace. We use
the SYN-seq MLE with maximum flow size W = 50. Fig-
ure 7 shows that the SYN-seq MLE captures some features
of the flow size distribution. Once again, we use θ̃(0) = 1/W
as the initial guess estimate for the MLE algorithm. The
conjugate gradient algorithm took 85 seconds in average (on



a Mobile Pentium4 2.0GHz processor) to achieve the the es-
timates shown in Figure 7. The ALL-seq-sflag MLE with
W = 150 obtains similar but noisier results. The reason
why SYN-seq MLE outperforms the ALL-seq-sflag MLE is
the subject of further investigation. Flow splitting could be
one of the possible causes.
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Figure 7: Estimated flow size distribution from the
BB-East-2 trace versus the original flow size dis-
tribution. Packet sampling rate p = 0.01 using the
SYN-seq MLE.

In what follows we assess the value of sampling at multiple
monitors.

6. FLOW SIZE ESTIMATION ON MULTI-
PLE MONITORS

So far we have considered samples from a single moni-
tor. Flows crossing a backbone network will normally cross
multiple monitors in the network. In this section we study
the value of the information obtained from multiple moni-
tors and how to best use the collected samples at multiple
monitors.

The combination of sampled network measurements from
multiple monitors was considered in [4]. In [4] the authors fo-

cus on estimating ~θ, using local estimates of ~θ, ~̃θ(1), . . . , ~̃θ(m),
obtained at m monitors. It assumes all monitors will sample

independently. Their goal is to find a new estimate ~̃θ′ of ~θ us-

ing a linear combination of the local estimates ~̃θ(1), . . . , ~̃θ(m)

such that the variance of X̂ ′ is the smallest among all linear
combinations. [4] applies this method to obtain reasonable,
although not optimal estimation on traffic matrix informa-
tion from combined samples. In this section, we focus on the
flow size distribution. Our goal is to determine the informa-
tion loss from combining local estimates instead of combin-
ing all samples and then estimating the desired quantity.
This allows us to assess how close the method in [4] is to
optimal. In this section we focus on the SYN-seq estimator.

Assume there are u monitors sampling packets at rates
p1, . . . , pu respectively and that the same traffic is seen by
these u monitors, as in [4]. Let B be a matrix as defined
in Section 2.2 for the TCP sequence number case, with the
only change being the sampling rate p = (1 − Q

z(1 − pz)).
This models the case where all packet samples are combined
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Figure 8: This graph uses the Cramér-Rao bound to
show the advantage of making the estimation with
the combine samples taken at each monitor over
the combination of the two independent estimations
taken at each monitor. The evaluation is done over
distribution from trace BB-East-2.

at a single central server and the estimation is performed on
the combined samples.

The alternative is to form an estimate at each monitor and
then combine them into a single one. This approach was sug-
gested in [4]. Let W = 200 be the maximum flow size and
p = 1/64 be the packet sampling rate when there is only one
monitor or p1 = p2 = 1/128 when there are two monitors.
Figure 8 compares the standard deviation of the estimation
error of the following three approaches: (1) Estimation us-
ing one monitor with sampling rate p, (2) estimation using
the combined samples of two monitors at rates p1 and p2

and (3) estimation using the combined estimates obtained
at each monitor. The results are presented by evaluation

of (2) and (3) in respect to (1). Let ~̃θ′(L) be the estimates

obtained by the approach described in [4]; ~̃θ(SM) be the es-
timates obtained by the single monitor with sampling rate

p; and ~̃θ(TM) be the estimates obtained in a central server
from the combined samples collected at the two monitors

with sampling rates p1 and p2. Let σ
(L)
i =

√
E[(θi − θ̃

(L)
i )2],

σ
(SM)
i =

√
E[(θi − θ̃

(SM)
i )2] and σ

(TM)
i =

√
E[(θi − θ̃

(TM)
i )2]

obtained by the Cramér-Rao bound. Figure 8 shows the

graph of curve σ
(L)
i /σ

(SM)
i (“Combining independent esti-

mates”) against curve σ
(TM)
i /σ

(SM)
i (“Combining samples”).

The results show that combining the sample at a central
server is almost as good as sampling at one monitor with
double the rate. The results also shows that combining two
independent estimates increases the standard deviation er-
ror of the estimates in 50%. Using a central site comes with
the cost of transferring all data to the central site. One can
reduce this cost by sending summarized data.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have focused on a key issue that arises

when conducting measurements for the purpose of estimat-
ing network statistics such as the flow size distribution, namely,
what are the values of different types of information on the



quality of the estimate? Using flow size distribution as an
example and packet sampling as the measurement technique,
we studied the values of different types of information, such
as packet counts, SYN information, and sequence number
information. Using the Fisher information through its ap-
plication via the Crámer-Rao bound on mean squared error,
we found that TCP sequence number information is essen-
tial for accurate flow size estimation. We also explored the
benefit of including SYN flag information, and determined
that the former is useful in reducing the errors associated
with estimating the fraction of small sized flows. Using this
as a starting point, we presented MLEs based on the conju-
gate gradients method, which come close to the Crámer-Rao
bound, even for small sample set sizes. Last, we applied the
framework to determine the benefits of combining observa-
tions from multiple monitoring sites. Our analysis shows
substantial benefit in performing estimation on the com-
bined set of observations as opposed to combining the esti-
mates made on observations at individual monitoring sites.
To our knowledge this is the first study of flow size estima-
tion from samples collected at multiple monitors.

This is a first step in an attempt to understand the value
of different types of information for the purpose of estimat-
ing network statistics. Our future work will focus both on
applying our framework to other estimation problems and
more specifically to refining the application to flow size dis-
tribution estimation. For example, there is a need for a par-
simonious model of the flow size distribution with a small
number of parameters. Another research direction is to ex-
tend the work on multiple monitors. For example, can one
use the Fisher information to derive an adaptive mechanism
for determining sampling rates at different monitors so as to
minimize error subject to a resource constraint.
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