DISSECTING DNS STAKEHOLDERS IN MOBILE NETWORKS

Mario Almeida, Alessandro Finamore, Diego Perino, Narseo Vallina-Rodriguez, Matteo Varvello
WHY TO STUDY DNS IN MOBILE NETWORKS?

- Complex scenario as domain owners, operators, app developers, and OSes operate autonomously

- DNS is prominent in mobile traffic, up to 50% of all flows [1]

- Performance wise, only query resolution time level has been considered [2,3]

[1] “Application Bandwidth and Flow Rates from 3 Trillion Flows Across 45 Carrier Networks” PAM’17
[3] “Behind the Curtain: Cellular DNS and Content Replica Selection” IMC’14
WHY TO STUDY DNS IN MOBILE NETWORKS?

- Complex scenario as domain owners, operators, app developers, and OSes operate autonomously
- DNS is prominent in mobile traffic, up to 50% of all flows [1]
- Performance wise, only query resolution time level has been considered [2,3]

QUESTIONS

- Who is responsible for all this traffic?
- Is it really needed?
- What is the role of DNS on users QoE?

[1] “Application Bandwidth and Flow Rates from 3 Trillion Flows Across 45 Carrier Networks” PAM’17
[3] “Behind the Curtain: Cellular DNS and Content Replica Selection” IMC’14
MOBILE NETWORKS DNS STAKEHOLDERS

STAKEHOLDERS

Domain owners & CDNs

- ADNS
 Authoritative DNS resolver

MNOs

- LDNS
 Local recursive DNS resolver

Developers & OSes

- cDNS
 On-device client DNS resolver

DNS COMPONENT

FUNCTION

Domain properties propagation

Control domain properties:
- domain-to-IPs mapping
- time to live (TTL)

Handle devices queries:
- Serves cached ADNS data
- Recursively query ADNS
- Can overwrite ADNS data (TTL violations)

Local cache:
- Controlled by the OS
- Developers can bypass it using raw sockets
MOBILE NETWORKS DNS STAKEHOLDERS

STAKEHOLDERS

DNS COMPONENT

FUNCTION

Domain owners & CDNs

ADNS
Authoritative DNS resolver

Control domain properties:
- domain-to-IPs mapping
- time to live (TTL)

MNOs
Mobile Network Operators

LDNS
Local recursive DNS resolver

Handle devices queries:
- Serves cached ADNS data
- Recursively query ADNS
- Can overwrite ADNS data (TTL violations)

Developers & OSes

cDNS
On-device client DNS resolver

Local cache:
- Controlled by the OS
- Developers can bypass it using raw sockets

Domain properties propagation

EACH STAKEHOLDER PLAYS AN IMPORTANT ROLE
DATASETS
DATASETS

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Dur</th>
<th>Apps</th>
<th>User Domains</th>
<th>Flows</th>
<th>IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNO</td>
<td>1M</td>
<td>19M</td>
<td>198M</td>
<td>250M</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>Lumen</td>
<td>1.5Y</td>
<td>8,279</td>
<td>5k</td>
<td>35k</td>
<td>5.3M</td>
<td>99k</td>
</tr>
</tbody>
</table>

DATASETS

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Dur</th>
<th>Apps</th>
<th>User Domains</th>
<th>Flows</th>
<th>IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN-NETWORK</td>
<td>MNO</td>
<td>1M</td>
<td>-</td>
<td>19M</td>
<td>198M</td>
<td>250M</td>
</tr>
<tr>
<td>ON-DEVICE</td>
<td>Lumen</td>
<td>1.5Y</td>
<td>8,279</td>
<td>5k</td>
<td>35k</td>
<td>5.3M</td>
</tr>
<tr>
<td>AD-HOC PROBING</td>
<td>NexusTTL</td>
<td>1M</td>
<td>host</td>
<td>1</td>
<td>10k</td>
<td>104k</td>
</tr>
</tbody>
</table>

DATASETS

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Dur</th>
<th>Apps</th>
<th>User Domains</th>
<th>Flows</th>
<th>IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNO</td>
<td>1M</td>
<td></td>
<td>19M</td>
<td>198M</td>
<td>250M</td>
<td>4.2</td>
</tr>
<tr>
<td>Lumen</td>
<td>1.5Y</td>
<td>8,279</td>
<td>5k</td>
<td>35k</td>
<td>5.3M</td>
<td>99k</td>
</tr>
<tr>
<td>NexusTTL</td>
<td>1M</td>
<td>host</td>
<td>1</td>
<td>10k</td>
<td>104k</td>
<td>20k</td>
</tr>
<tr>
<td>NexusPLT</td>
<td>1M</td>
<td>chrome</td>
<td>1</td>
<td>6k</td>
<td>46k</td>
<td>8k</td>
</tr>
</tbody>
</table>

DATASETS

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Dur</th>
<th>Apps</th>
<th>User Domains</th>
<th>Flows</th>
<th>IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNO</td>
<td>IN-NET</td>
<td>1M</td>
<td>-</td>
<td>19M</td>
<td>198M</td>
<td>250M</td>
</tr>
<tr>
<td>Lumen</td>
<td>ON-DEV</td>
<td>1.5Y</td>
<td>8,279</td>
<td>5k</td>
<td>35k</td>
<td>5.3M</td>
</tr>
<tr>
<td>NexusTTL</td>
<td>AD-HOC</td>
<td>1M</td>
<td>host</td>
<td>1</td>
<td>10k</td>
<td>104k</td>
</tr>
<tr>
<td>NexusPLT</td>
<td>AD-HOC</td>
<td>1M</td>
<td>chrome</td>
<td>1</td>
<td>6k</td>
<td>46k</td>
</tr>
</tbody>
</table>

Top-1M to compare popul.

20k apps for static analysis
ANALYSIS ROADMAP

Domains Footprint
- What are the relevant domains?
- What the role of the OS?
- What the role of Apps?

Domain Properties
- Original values at the ADNS
- How LDNS cache/mingle those properties
- On-device caching performance

Configs & Apps Design
- Are explicit proxies widely adopted?
- Are developers using OS configurations?

Impact on QoE
- DNS impact on webpage page load time (PLT)
ANALYSIS ROADMAP

Domains Footprint
- What are the relevant domains?
- What is the role of the OS?
- What is the role of apps?

Domain Properties
- Original values at the ADNS
- How LDNS cache/mingle those properties
- On-device caching performance

Configs & Apps Design
- Are explicit proxies widely adopted?
- Are developers using OS configurations?

Impact on QoE
- DNS impact on webpage page load time (PLT)
DOMAINS FOOTPRINT: FOCUS ON POPULAR DOMAINS

- 198M domains in MNO dataset, but top-10k most popular generate 87% flows
DOMAINS FOOTPRINT: FOCUS ON POPULAR DOMAINS

- 198M domains in MNO dataset, but top-10k most popular generate 87% flows

POPULAR DOMAINS

DRIVE FLOWS COUNT
DOMAINS FOOTPRINT: FOCUS ON POPULAR DOMAINS

- 198M domains in MNO dataset, but top-10k most popular generate 87% flows

POPULAR DOMAINS

DRIVE FLOWS COUNT

BECAUSE THEY ARE ALSO COMMON ACROSS APPS
DOMAINS FOOTPRINT: FOCUS ON UNPOPULAR DOMAINS

- Out of 198M, 162M (82%) domains are used only once in 1 month
Out of 198M, 162M (82%) domains are used only once in 1 month
DOMAINS FOOTPRINT: FOCUS ON UNPOPULAR DOMAINS

- Out of 198M, **162M (82%)** domains are used only once in 1 month

UNPOPULAR DOMAINS ➔ EPHEMERAL

Example: `d-2294771243204135673.ampproject.net`

TRACKING/PERSOANLIZATION INTRODUCES OVERHEAD

5 services handle 80% of ephemeral domains
TTL POLICIES ARE AGGRESSIVE

- 50% of domains have TTL < 60s
TTL POLICIES ARE AGGRESSIVE

- 50% of domains have TTL < 60s
- This impacts on-device caching performance

Simulation based on domains requested more than once
TTL POLICIES ARE AGGRESSIVE

- 50% of domains have TTL < 60s
- This impacts on-device caching performance

Simulation based on domains requested more than once
DNS IMPACT ON WEBPAGES PLT

- Consider top-1k Alexa pages, and measure DNS latency over the critical path (i.e., content downloaded entirely/partially in isolation)
DNS IMPACT ON WEBPAGES PLT

- Consider top-1k Alexa pages, and measure DNS latency over the critical path (i.e., content downloaded entirely/partially in isolation)
QUICK OVERVIEW OF OTHER RESULTS

- Alexa rank does not well intersect with the popular domains
- iOS and Android share popular domains, but iOS devices are more “chatty”
- Aggressive TTL values, but domains have <10 IPs over 1 month
- Almost no TTL violations found, but LDNS architecture can impact caching performance
- Explicit proxies are not widely adopted, nor developer bypass OS config
SO DNS HAS AN IMPACT
HOW DO WE REDUCE IT?
Design Options

Ideally one would like not to have any DNS traffic.

<table>
<thead>
<tr>
<th>Name</th>
<th>Popular</th>
<th>Stakeholder</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit proxy</td>
<td>No</td>
<td>Operator</td>
<td>No DNS on radio access</td>
<td>From tests, reduces only 50% DNS latency on PLT</td>
</tr>
<tr>
<td>Domains pre-fetching</td>
<td>No</td>
<td>Developer</td>
<td>Lower latency</td>
<td>More DNS traffic</td>
</tr>
<tr>
<td>Domains pre-staging</td>
<td>-</td>
<td>OS/Operators</td>
<td>From tests, is the best performing</td>
<td>Complex to engineer</td>
</tr>
</tbody>
</table>
GOING BEYOND THIS PRELIMINARY WORK

What is the “PLT” of generic mobile apps traffic?

What is on the “critical path” beyond DNS?
THANK YOU!