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ABSTRACT

Leveraging multiple interfaces (e.g., WiFi and cellular) on
mobile devices is known to provide performance gains for
applications such as bulk data transfer. In this paper, we
complement prior studies by conducting, to the best of
our knowledge, the first measurement study of mobile web
performance over multipath TCP (MPTCP). Based on ex-
periments using real web pages under diverse settings, we
found the upper-layer web protocols can incur complex
and sometimes unexpected interactions with the multipath-
enabled transport layer. MPTCP always boosts SPDY while
may hurt HTTP. MPTCP also helps mitigate SPDY’s key
limitations of being vulnerable to losses and inefficient band-
width utilization. We provide in-depth explanations of the
root causes, as well as recommendations for improving
mobile web performance over MPTCP.
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1. INTRODUCTION

Mobile devices (smartphones, tablets, laptops efc.) are
usually equipped with multiple network interfaces support-
ing diverse access technologies, such as WiFi and cellular.
Prior research have investigated various aspects of multipath
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networking, including performance [11} [13]], energy con-
sumption [[18 |19, |23]], and mobility [[12| [26]]. In particular,
the usage of multiple interfaces has been greatly facilitated
by MPTCP, which is being standardized by the IETF [15]
and has been implemented in the Linux kernel [21]].

In this paper, we conduct a measurement study of the
performance of web browsing, a key application on mo-
bile devices, over MPTCP. It is well known that Internet
users, including mobile customers, are very sensitive to page
load time (PLT): an extra delay of 500 milliseconds may
lead to up to 20% of traffic loss for some popular content
provider [30]. MPTCP provides a convenient, transpar-
ent, and potentially effective way to enhance mobile web
performance. Notably, in this way, not only can browsers
benefit from MPTCP, but also millions of smartphone apps
that use standard HTTP interface to fetch web pages. In
fact, many smartphone apps are simply customized pro-
grammable browsers (e.g., WebView in Android) [24].

The vast majority of prior efforts focus on understanding
the performance and/or energy characteristics of bulk data
transfer over MPTCP |11} |13} [19]]. Compared to that, web
browsing has several striking differences. First, loading a
web page is a complex procedure interleaved with network
transfer and local computation, with the latter contributing to
a considerable fraction of the PLT [29]]. Second, web brows-
ing usually employs many short-lived TCP connections with
only a few round-trips, which may limit the performance
gains from MPTCP. Third, there exist different web proto-
cols (e.g., HTTP/1.1, SPDY [5]] and HTTP/2 [3]]) that may
cause diverse and complex interactions with the underlying
multipath-enabled transport layer. Our study is motivated
by all above factors. We investigate the following questions
unanswered by prior efforts, under the multipath scenario
that concurrently accesses WiFi and cellular networks, using
professionally designed real web pages.

e How much PLT reduction can off-the-shelf MPTCP achieve,
compared to using single-path TCP (SPTCP)?

e How does the above gain change under different network
conditions (e.g., various latency and loss rates) of each path?
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e How do different web protocols interact with MPTCP?
We study two representative protocols with distinctive traffic
patterns: HTTP/1.1 and SPDY. HTTP/1.1 uses a number of
concurrent short-lived connections, while SPDY multiplexes
web objects into a single connection with a longer duration.
Note that HTTP/2, recently standardized in 2015, is based
on SPDY and uses a similar multiplexing mechanism.

We summarize our main contributions. First, we de-
velop a cross-layer analysis tool that incorporates multipath
information into web performance analysis (§3.1), greatly
facilitating our measurement study. Second, we systemat-
ically compare HTTP/SPDY performance over SPTCP and
MPTCP under diverse settings, and reveal why multiplexing-
based web protocol is superior to traditional HTTP/1.1 in a
multipath environment (§4.1)and §4.2)). Third, based on our
findings, we make concrete recommendations on efficient
use of MPTCP for web browsing (§4.3).

2. RELATED WORK

MPTCP in Wireless Networks. Besides being used
in datacenter networks [25]], MPTCP also benefits mobile
devices with multiple interfaces. Chen ef al. [11] and Deng
et al. [13]] evaluated the file downloading performance of
SPTCP and MPTCP over WiFi and cellular networks. Peng
et al. [23]] proposed path selection and congestion control
algorithms for energy-efficient MPTCP on mobile devices.
The mobile kibbutz system [[18]] leverages MPTCP to con-
solidate multiple users’ cellular traffic onto fewer links,
leading to improved energy efficiency. Croitoru et al. [12]
investigated how to achieve seamless WiFi mobility among
multiple APs by leveraging MPTCP. Compared to all work
above, we focus on MPTCP’s application on web browsing,
a very important but under-explored topic.

Mobile Web. Numerous work have been done on mobile
web performance. To name a few, Erman et al. [|14] studied
SPDY over cellular, and identified performance issues due
to cross-layer interactions between TCP and the radio layer.
Qian et al. [24] characterized bandwidth and energy usage
of browsing the top 500 websites on smartphones. PAR-
CEL [27] uses “bundled push” to reduce page load time and
energy consumption for mobile web. Klotski [9]] improves
mobile web performance by dynamically reprioritizing web
resources. Flywheel [[7] is Google’s data compression HTTP
proxy for the mobile web, which has been a production
system for years. None of the above investigates the per-
formance of mobile web over MPTCP.

3. MEASUREMENT METHODOLOGY

In this section, we describe our analysis tool, experimental
testbed, and measurement methodology.

3.1 The tcpdump-mpw Tool

We develop a tool called tcpdump-mpw (“mpw” stands
for “multipath web”). It is an MPTCP-friendly version
of tepdump that can extract HTTP/SPDY request/response
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Figure 1: Our multipath measurement testbed.

data from raw packet traces. It takes as input a pcap
capture and the SPDY proxy’s TLS private key, and then
performs the following processing from lower to higher
layers: (1) MPTCP subflow assembling, (2) MPTCP log-
ical connection assembling, (3) TLS/SSL decryption, (4)
HTTP/SPDY parsing, and (5) web object information ex-
traction. The output of tcpdump-mpw is a table provid-
ing details about each HTTP/SPDY transaction, including
its URL, raw size, decoded size, content type, expiration
time, and most importantly, the begin/end time and the
amount of raw data transferred over each MPTCP subflow.
As we will show, tepdump-mpw allows us to perform in-
depth study of cross-layer interactions between MPTCP and
upper-layer web protocols that no prior measurement has
revealed. tcpdump-mpw is built based on Ubidump [24]
by adding the MPTCP and SPDY v3.1 logic, as well as
detailed statistics output. We added about 2,300 lines of
code to Ubidump. We will extensively use it later in our
measurement data analysis in §4] and plan to release its
source code to the public.

3.2 Multipath Measurement Testbed

We set up a multipath measurement testbed shown in
Figure [I] The Chrome browser (version 41) on a laptop
fetches pages from an HTTP proxy (Squid 3.4.7 [6]) or a
SPDY proxy (nghttpx 0.7.12-DEV [2]]) using HTTP/1.1 or
SPDY v3.1, respectively. The proxies are employed for two
reasons. First, most today’s websites do not yet support
SPDY. Second, by making HTTP and SPDY proxies co-
located, we ensure the same network path for them to allow
fair comparison. The laptop is equipped with a built-in
WiFi interface and an external LTE modem. There are two
available network paths between the client and the proxy:
a commercial LTE network of a major U.S. carrier and an
802.11n WiFi network dedicated for the testbed. Both LTE
and WiFi have good signal strengths. The WiFi network
is operating on the 5 GHz frequency band to minimize the
interference from other users. To emulate diverse network
conditions, we use Dummynet [10] to add delay, loss, or
throttle throughput to the two wireless paths. The proxy
fetches pages from either a replay server [1f] hosting pre-
recorded pages, or real websites via Internet. The proxy
and the replay server are co-located on the same physical
machine. The physical server and the WiFi access point
are connected to a corporate network and are in the same
building. Both the client and the proxy machine run Ubuntu
Linux kernel 3.14.33 with the stable release of MPTCP
v0.89.5 [21].



Size | # Txt | #JS/ | #Img | RTT
Website | #0bj | (KB) | Obj | CSS | Other | (ms)
News | 188.3 | 4450.8 | 33.8 | 67.7 | 86.8 | 20.9
Univ. 68.0 | 25839 | 3.0 | 16.0 | 49.0 | 30.1
AD 19.0 | 14596 | 30| 60| 100 | 62.0
News | 201.2 | 3821.2 | 38.9 | 58.0 | 104.3 | 10.7
Tech. 67.0 | 21522 | 7.0 | 30.0 | 300 | 222
Video 93.6 | 2662.9 | 11.0 | 32.6 | 50.0 | 71.9
Football | 99.1 | 24562 | 9.0 | 39.1 | 51.0 | 20.9
SHOPN | 522 | 10006 | 50| 120 | 352 | 897
Radio 66.2 | 2453.0 | 160 | 23.0 | 272 | 3.65
Wiki 280 | 6012 | 10| 60| 210/ 8.70

Search 2.0 59.9 1.0 0.0 1.0 | 8.55

ENT 60.9 | 2170.6 | 134 | 25.1 224 | 71.8
Image 91.0 | 3275.2 30| 150 73.0 | 6.20
Sport 119.0 | 26514 | 13.0 | 26.0 80.0 | 734
Social 69.0 | 1700.2 30| 17.0 49.0 | 948
Movie 39.0 845.7 6.0 3.0 30.0 | 9.09
Weather | 143.9 | 3814.2 | 21.4 | 39.7 82.7 | 11.7
RE 26.0 894.2 2.0 | 10.0 14.0 | 69.9
Airline 68.0 | 2148.6 4.0 | 23.0 41.0 | 3.15
SHOPN 48.0 | 2288.9 1.0 | 24.0 23.0 | 14.2
Gov. 68.0 | 2774.7 40| 13.0 51.0 | 8.20
Travel 21.0 | 2000.4 1.0 2.0 18.0 | 3.85
Dict. 72.4 | 2223.1 10.8 | 31.7 29.9 | 6.30
Finance 39.7 | 1988.1 2.6 | 15.1 22.0 | 6.17
Market 49.0 | 2032.8 2.0 | 16.0 31.0 | 297
Table 1: Characteristics of selected 25 websites

(AD - Advertisement, SHOPN - Shopping, ENT -
Entertainment, and RE — Real Estate).

3.3 Automated Page Loading Experiments

We picked 25 websites summarized in Table[I] They are
popular, diverse, and professionally designed. 22 out of the
25 sites are from the top U.S. Alexa-100 sites. Given the
increasing proliferation of large-screen smartphones, tablets,
and cellular dongles, we purposely used their full version
instead of mobile version. We recorded a snapshot of each
website in August 2014 using the replay server. We leverage
the Chrome remote debugging interface to repeatedly load
web pages. Similar to the prior work [[14], the PLT is defined
as the time span from issuing the landing page request
to the reception of the load event fired by the Chrome
browser. Each measurement test consists of cold-cache load-
ings (i.e., caches are cleared) using different configurations
to be described in §4] in a random order. Before loading a
page, we switch the LTE interface to the high-power state
(RRC_CONNECTED) by sending a few small ping packets
over LTE, to avoid additional radio state transition delay.
Since the state transition delay of LTE (normally less than
100ms) is much smaller than the PLT (usually around several
seconds), the impact of state transition delay on the PLT
should be small. The tests were repeated until we obtained
results of 100 successful measurements for each website.

Path | Downlink (Kbps) | Uplink (Kbps) | RTT (ms)
WiFi 7040 2020 50
LTE 9185 2286 70

Table 2: Throughput and RTT for baseline experiments.

4. MEASUREMENT RESULTS

We conduct experiments with recorded pages in diverse
scenarios (§4.1) and using pages from real websites (§4.2)).

4.1 Controlled Experiments

4.1.1 Baseline

Our baseline experiments capture typical network con-
ditions of WiFi and LTE. We employ Dummynet to apply
bandwidth throttle and add extra delay on WiFi and LTE
links to emulate the characteristics shown in Table 21 To
make our emulation realistically reflect the network condi-
tions in real-world settings, we choose the numbers from re-
cent large-scale measurement studies of metropolitan wire-
less users for LTE [16] and WiFi [28|]. For each path,
Dummynet throttles the data rate when the actual bandwidth
is higher than the target values. If the end-to-end RTT is
less than the target RTT, Dummynet matches both numbers
by injecting an additional delay. We use WiFi to carry the
primary subflow that initiates the MPTCP connection setup.
We expect this to be the common MPTCP configuration.
Under the above settings, we perform six page loadings for
each (test, website) pair: (1) HTTP over SPTCP WiFi, (2)
SPDY over SPTCP WiFi, (3) HTTP over SPTCP LTE, (4)
SPDY over SPTCP LTE, (5) HTTP over MPTCP, and (6)
SPDY over MPTCP. Figure 2] plots the PLT distribution for
each of the six modes, across all tests of the 25 websites.

Single-path Results. We first examine HTTP/SPDY over
SPTCP. As shown in Figure 2] for both WiFi and (in partic-
ular) LTE, HTTP actually outperforms SPDY, by 12.9% and
21.0% (in terms of median PLT across all sites), respectively.
This has been observed in previous work [29]], which shows
factors such as losses and large objects can deteriorate SPDY
performance. In our SPDY experiments, the retransmission
rate for LTE is non-trivial (0.13%), and is higher than WiFi
(0.098%). This may cause the larger disparity between
SPDY and HTTP over LTE than over WiFi. We attribute the
low retransmission rate of WiFi to the clean SGHz channel
we use, and will consider higher WiFi loss rates in §4.1.2]

MPTCP Results. Now we shift our focus to MPTCP.
Figure [2] shows two interesting statistical trends: SPDY
over MPTCP performs significantly better than SPDY over
SPTCP, but HTTP over MPTCP does not always outperform
HTTP over SPTCP. To confirm this, we compute the follow-
ing metric Gyrrp(w) at a per-website basis:

(tnin( Y5, PYE,) — PYFTCP)/ min( PYE,, PETE)
where w is a website, PyEL, P, and PYEECP are the
average PLT of HTTP over WiFi, LTE, and MPTCP for
website w, respectively. Gurrp quantifies the performance
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Figure 2: PLT distributions for
baseline experiments (SPTCP and
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gain in terms of PLT reduction by MPTCP compared to the
best SPTCP case. Similar, for SPDY, we define Gsppy (w):

(mmin(PYEL, Pitgy) — PYERCP),/ min( PYE,, PHE,)

Across the 25 websites, Gsppy is always positive ranging
from 13.4% to 51.8% with a median of 36.4%, confirming
that MPTCP always helps SPDY. In contrast, Gyrrp ranges
between -41.1% and 30.8% with a median of -0.1%, indicat-
ing for 52% of our sites, using MPTCP actually hurts HTTP.

Since a negative Gyrrp is not intuitive, we repeated the
HTTP experiments under identical settings using a different
client, PhantomJS [4]], which is extensively used by Netflix,
Twitter and LinkedIn for testing. We found similar results:
Gyrrp ranges from -48.4% to 29.9% with a median of 1.5%,
indicating the issue is not specific to Chrome.

We employ tcpdump-mpw to explore the causes. As
an example, the three subplots in Figure [5] show partial
waterfall diagrams of loading the same web page using (a)
HTTP over MPTCP, (b) HTTP over SPTCP (WiFi), and (c)
SPDY over MPTCP. The sets of objects in each diagram are
similar. Clearly, the loading pattern for HTTP over MPTCP
is inefficient because objects are transferred sequentially on
Connection 8 without being requested by the browser in
parallel (we verified there is at least one idle connection for
doing so). We found such a pattern is prevalent in HTTP over
MPTCEP for some sites, thus causing their negative Gyrrp. It
does not appear in SPTCP or SPDY. We found similar issues
for Chrome version 45 released at the end of May 2015.

Figure [5] indicates that MPTCP may cause unexpected
interference due to applications’ unawareness of it. In our
discovered case, it is likely that the browser gives that
connection (i.e., Connection 8 in Figure[5(a)) a high priority
based on various heuristics for selecting a connectiorﬂ In
contrast, as shown in Figure [5]c), the issue does not appear
in SPDY over MPTCP, simply because SPDY only uses a
single multiplexing connection.

'"We found the pattern in Figure a) happens only after
the involved Connection 8 is used to transfer a very large
object using both paths. One possible reason may be that the
browser estimates the connection’s congestion window to be
large due to its use of MPTCP, and thus the browser may
think using that connection to transfer objects sequentially
takes shorter time than using other idle connections.

Figure 3: PLT distributions when
additional losses added to WiFi
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Figure 4: PLT distributions when
additional losses added to WiFi
(MPTCP).

Figure[2)indicates SPDY’s performance improves dramat-
ically when switching the transport protocol from SPTCP to
MPTCP. The cause is two-folded. First, SPDY is known to
suffer from bandwidth under-utilization in particular during
slow start, due to its usage of a single connection [29].
Fortunately, this issue is alleviated by MPTCP, whose effec-
tive congestion window is the sum of those of its subflows.
In contrast, most HTTP flows are short-lived, giving them
fewer chances to use both paths. For the two MPTCP modes,
all SPDY connections use both WiFi and LTE, while the
fraction is only 47.4% for HTTP (examples shown in Fig-
ure[5]c) and (a), respectively). Second, SPDY’s vulnerability
to losses, which is again attributed to its usage of a single
connection, is also mitigated by MPTCP. If a loss happens
on one path, MPTCP can use another one to minimize the
impact of loss. We investigate this in detail in

4.1.2 Packet Loss

It is known that over SPTCP, packet losses impact SPDY
and HTTP differently. They force SPDY’s single TCP
connection to reduce its congestion window. While doing so
is necessary for congestion losses, it is often too conservative
for non-congestion (random) losses that commonly occur
in WiFi networks. Even in cellular networks, spurious re-
transmissions can cause a similar problem [[14]]. In contrast,
in HTTP/1.1, a non-congestion loss only affects one of its
parallel connections, leading to a smaller impact.

We confirmed this for HTTP/SPDY over SPTCP by adding
to the WiFi path additional losses (0.5% and 1%, following
a prior study of SPDY [29]). The original WiFi loss rate is
less than 0.1%. As shown in Figure [3] SPDY performance
quickly deteriorates as the packet loss rate (PLR) increases:
the median PLT for 0%, 0.5%, and 1% additional PLR are
4.504s, 5.756s, and 6.992s, respectively, while for HTTP,
the corresponding PLT are 3.937s, 4.151s, and 4.369s, re-
spectively, indicating HTTP’s robustness to losses.

Does the same disparity occur when using MPTCP? To
answer this question, we repeat the above experiment using
MPTCP. We inject additional losses (0.5% and 1%) only to
the WiFi path as we expect packet losses are more likely to
occur due to the contention-based channel access of WiFi.
As shown in Figure 4] MPTCP helps significantly mitigate
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Figure 5: Partial waterfall diagrams of loading the same web page using: (a) HTTP over MPTCP, (b) HTTP over
SPTCP (WiFi), and (c) SPDY over MPTCP. The text associated with each URL (only last 8 characters shown) has the
following meaning. For example, “GET (1k) /200 (8k, 21%) [3]”’ means the size of GET request is 1KB, the size of its 2000K
response is 8KB, 21% of the response data is transferred over the primary WiFi path, and the whole transaction occurs on (MP)TCP

connection 3. The red and green bars correspond to HTTP request and response, respectively.
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Figure 6: PLT distributions when
additional latency added to each
path (MPTCP).

the impact of packet loss on SPDY, making its median
PLT differ by no more than 6.92% under the three lossy
conditions. This is because MPTCP’s default scheduling
algorithm prefers to use the less lossy LTE path when losses
occur over WiFi. We confirm this by studying the rela-
tionship between PLR and the overall fraction of traffic
transferred over LTE. For SPDY, under 0%, 0.5%, and 1%
additional PLR, 62.2%, 66.3%, and 69.2% (median) of TCP
payload is delivered over LTE. For HTTP, the corresponding
fractions are 35.5%, 36.4%, and 37.0%, respectively, whose
smaller differences are attributed to the fact that HTTP flows
are very short and thus the LTE path has much smaller
chances of being used.

4.1.3 Latency

Next, we consider how latency affects MPTCP perfor-
mance by injecting additional delay to each individual path.
Figure [6] plots the PLT distributions in three network condi-
tions: the baseline with no additional delay (§4.1.1), with
50ms extra delay only on the WiFi path, and with 50ms
extra delay only on the LTE path. We have three main
observations. First, similar to what we discussed before,
SPDY over MPTCP in general outperforms HTTP over
MPTCP, even when additional latency is present.

Second, for both HTTP and SPDY, adding a delay to the
WiFi path incurs more performance degradation than doing
so to the LTE path. This is explained as follows. The default
scheduler of MPTCP prefers the path with a smaller RTT,
which plays a major role in determining the PLT. Recall that
originally the WiFi and LTE links have a 50ms and 70ms
RTT, respectively. Adding a 50ms delay to WiFi changes
the smaller RTT, leading to a greater performance penalty
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compared to adding a 50ms RTT to LTE that makes the
smaller RTT remain the same. We also confirmed this by
measuring per-path traffic volume. For HTTP, originally,
62.3% (median) of downlink payload is delivered over WiFi.
After adding a 50ms delay to LTE, the fraction remains
similar at 69.0%, while adding a 50ms delay to WiFi dra-
matically reduces it to 37.1%.

Third, the performance of HTTP over MPTCP is more
sensitive to delays compared to SPDY over MPTCP. As
illustrated in Figure[6] the maximum difference (in terms of
median PLT) among the three delay configurations is 44%
for HTTP and only 19% for SPDY. Recall that the overall
PLT consists of two components: network transfer and local
computation. Since the network time of SPDY is smaller
and thus contributes less to the PLT than the network time of
HTTP does (assuming HTTP and SPDY incur similar local
computation time for the same site), a proportional increase
of network time caused by injected delay makes HTTP’s
overall PLT grow faster than that of SPDY.

4.1.4 Congestion Control

We examine the impact of MPTCP’s congestion control
(CC) algorithms on PLT. There are currently two major
CC algorithms proposed for MPTCP: LIA (Linked Increase
congestion control Algorithm) [31f] and OLIA (Opportunis-
tic LIA) [17]. Both LIA and OLIA couple the congestion
window increases of MPTCP subflows and thus facilitate
fairness between MPTCP flows and regular SPTCP flows.
We can also directly apply conventional CC (e.g., the default
CUBIC CC in Linux) to MPTCP so each MPTCP subflow is
treated independently as a regular TCP flow. This is called
decoupled CC and is more aggressive than LIA and OLIA.



Figure [7| compares three CC algorithms, LIA, OLIA and
CUBIC, whose impact on the PLT is small, in particular
for HTTP. This is because HTTP/1.1 uses many concurrent
short-lived connections (median duration measured to be
0.371 seconds) most of which terminate at the slow start
phase so CC does not yet have a chance to operate (assuming
a low loss rate). This is in line with prior comparison of
MPTCP CC in the context of downloading small files [11]].
Multiplexed TCP flows in SPDY are longer (median du-
ration 2.743 seconds), leading to some disparities among
the three CC algorithms in Figure As expected, the
decoupled CUBIC exhibits lower PLT than the two coupled
CC. However, the difference (8.7% for the median PLT) is
not as significant as that of file download time. We use
the baseline setting (§4.1.1)) to download a 4MB file. The
average download time for CUBIC, LIA, and OLIA is 4.37s,
5.45s, and 5.12s, respectively, exhibiting a 25% difference.
Differently from file download, due to the local computation
overhead in web browsing, its network transfers are less
likely to be throttled by the congestion window.

4.2 Real Websites

We now change the proxies’ configuration to fetch pages
from real websites. This differs from the previous replay
experiments in three aspects. First, in replay, the latency
between the proxies and the replay server is negligible.
This helps us capture the upper bound of MPTCP’s impact.
In contrast, the Internet path between the proxies and the
real websites incurs non-trivial latency (summarized in the
last column of Table [I) that penalizes both MPTCP and
SPTCP. Second, real websites may be overloaded, incurring
additional processing delay. Third, most websites have
contents from several non-origin sources that contribute a
significant fraction of the downloaded bytes [8].

Figure [§] plots the PLT distributions under the same set-
tings used in §4.1.T] except that the proxies now connect to
real websites. Due to the aforementioned factors, compared
to Figure 2] the disparities among the six schemes become
smaller. Nevertheless, we observe similar trends as found
in replay experiments: over SPTCP, SPDY performs slightly
worse than HTTP while over MPTCP, SPDY non-trivially
outperforms HTTP by 17.0% (median PLT). Also, SPDY
over MPTCP considerably excels SPDY over SPTCP (WiFi)
by 28.6% and SPTCP (LTE) by 38.9%. Note that MPTCP
will exhibit more advantages as more web servers support
it, because in this case no proxy is required and the shared
proxy-server path is therefore eliminated.

4.3 Summary and Recommendations

We summarize our findings and provide recommendations
of when and how to better use MPTCP for web browsing.

e Multiplexing-based web protocols, such as SPDY and
HTTP/2, gain more benefits from MPTCP than HTTP/1.1
does. The reason is that MPTCP alleviates their two key
limitations: vulnerability to loss and inefficient bandwidth

utilization (assuming a single multiplexing connection is
used). In contrast, due to its connections being short-
lived, HTTP/1.1’s chances of utilizing both paths are much
slimmer. Given the increasing popularity of HTTP/2, our
findings provide an incentive to enable MPTCP for mobile
web browsing.

e We found for Chrome, HTTP over MPTCP is sometimes
worse than HTTP over SPTCP, possibly because MPTCP’s
interference leads to suboptimal TCP connection manage-
ment decisions. At the high level, it implies the importance
of browsers being aware of MPTCP and its potential impli-
cations such as high latency/bandwidth variation.

e Since web browsing is usually delay-sensitive, when
using the default scheduler of MPTCP, the PLT is largely
determined by the path with a lower latency when both
paths’ bandwidth and loss do not differ too much. Browsers
can leverage it to determine whether to enable MPTCP:
having a secondary path with a small latency (despite low
bandwidth) is usually more beneficial than having one with
high bandwidth and latency.

e Although MPTCP may significantly boost the perfor-
mance of network transfer, when page loading is throttled by
local/remote computation, the gain of enabling MPTCP may
be limited (§4.2). For a similar reason, MPTCP’s congestion
control plays a minor role in determining the PLT.

5. DISCUSSION

In this section, we discuss several unaddressed issues in
this paper.

Client Device. Throughout this study, we used a laptop
as the client device and loaded full web pages that are not
optimized for handheld screens. Changing the client to a
smartphone or tablet may shrink the disparities observed
in §4] due to the increased fraction of local computation
time [[20]]. However, we expect the overall trends to remain
the same. We plan to test the mobile version of these web
pages on smartphones and tablets in our future work.

Energy Consumption. As the key focus of this study
is performance, one important aspect we did not examine
is energy consumption. Prior study shows that due to high
energy cost of LTE radio, simultaneously using WiFi and
LTE for file transfer may increase the overall smartphone
energy usage [[19]. A similar issue exists in web browsing
over MPTCP. However, since MPTCP can reduce the PLT,
the quantitative impact of MPTCP on the overall energy
consumption still needs to be explored in our future work.

Mobility. MPTCP can also facilitate mobility [12} [26].
Consider a scenario where a user keeps browsing the web
as she walks out of WiFi coverage so her phone is forced to
switch to cellular. To avoid the incurred interruption, one can
leverage MPTCP’s backup mode [[13]] to ensure the smooth
transition. As web browsing is delay sensitive, the LTE
interface can be preemptively enabled when the WiFi signal
becomes weaker, to further reduce the transition latency.



Other limitations. We discuss other limitations in our
study. (1) We only consider one combination of typical
WiFi/LTE network conditions (§4.1.1)), followed by chang-
ing individual parameters (loss, delay and congestion con-
trol) one by one. A more comprehensive approach is to
thoroughly evaluate many combinations of both paths’ char-
acteristics. (2) We mainly conduct experiments using the
Chrome browser (and perform some key tests using Phan-
tomJS) and the nghttpx proxy. Despite their popularity, it
is ideal to also test on other browsers and proxies. (3) We
are not able to test MPTCP on production web servers since
most of them do not yet support MPTCP.

6. CONCLUDING REMARKS

To the best of our knowledge, we have conducted the
first measurement study of mobile web performance over
MPTCP. Using t cpdump-mpw, our cross-layer analysis tool,
we systematically compared HTTP/SPDY performance over
SPTCP and MPTCP under diverse settings, and discovered
unexpected interactions between MPTCP and HTTP/SPDY.
Besides the future work mentioned above, we also plan to
evaluate mobile web over MPTCP in a range of heteroge-
neous environments [22], as well as to leverage the insights
obtained from this measurement study for improving mobile
web performance.
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