








IND AUS BRA ARG KOR CHI GER UK UAE US
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
a
v
e
ra

g
e
 r

e
la

ti
v
e
 c

o
s
t

 

 

Vodafone   Telstra    Vivo      Claro     Olleh   Unicom    E−Plus   Vodafone Etisalat   Att 

max rule

optimal−expectation rule

Figure 3: Ratio between the average cost of
Max rule (optimal-expectation rule) and average a-
posteriori optimum.

allows a group to pick collectively a better suited plan than
what members can do on their own. Indeed, there exist
several proposals for protocols that facilitate ad-hoc sharing
of resources like voice call minutes [29] and mobile broad-
band [19] between users. Likewise, several operators offer
shared plans for families and friends [8]. Our analysis is fo-
cused on characterizing the gains from collaboration – to the
best of our knowledge, this is the first such empirical study.

The scenario we study is the following. A group G is com-
posed of k users that purchase individual mobile broadband
plans. When a user exhausts her volume, she may consume
from the volume of any of the other users in the group. In
order for such a scheme to work in practice, users must be
on a shared data plan offered by some of the operators, or be
in close proximity for a significant part of the billing period
and thus be able to implement ad-hoc sharing over WiFi
or bluetooth [19, 29, 14]. If k users in the group G have
chosen plans IG = (i1, . . . , ik), and generated the demand
DG = (d1, . . . , dk), respectively, then the cost for delivering
that traffic is:

C(DG, IG) =
∑
s∈G

priceis+max(0,
∑
s∈G

ds−
∑
s∈G

capis)·min
s∈G

(µis).

Users can purchase plans (for each month t) either in a:
- (1) non-coordinated manner using one of the heuristics de-
scribed in the previous section, say OER, or in a
- (2) coordinated-OER manner by choosing the tariffs IG =
(i1, . . . , ik) in month t to minimize the expected cost aggre-
gated among all partners in the group.

IOERG = arg min
IG∈Pk

1

t− 1

t−1∑
τ=1

C(DG(τ), IG). (4)

4.1 Setting up groups for volume sharing
There are many ways in which the users can engage in col-

laborative cap sharing. We briefly describe three dimensions
of the problem of group selection that most collaborative ar-
rangements face at some stage.

First, we need to answer how to select the group for col-
laborative sharing, which can be done in many ways. For
example, the group selection can be done based on (1) loca-
tion where users residing at the same location can use short-
distance communication to share via tethering; or (2) social
relationships where users with close social ties collaborate;
or (3) random where random users collaborate opportunis-
tically.

To evaluate the gains we use the random group matching.
In Appendix A we demonstrate that groups formed using
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Figure 4: The average cost in the groups with coor-
dinated tariff selection, relative to the cost of indi-
vidual a-posteriori optima.

the social relationship or home location result in statistically
identical benefits as those with random grouping.

The next question would be to decide how large the group
should be. Smaller groups are easier to set-up and coordi-
nate, while larger ones are more cumbersome but may pro-
vide greater benefits from statistical multiplexing. Finally,
once a group is formed, one needs to decide on how to select
individual plans – in a non-coordinated manner (simple but
sub-optimal) or in a coordinated one (more complicated but
efficient).

In the remainder of this section, we study several facets
of this design space. We study how the group size af-
fects the cost of the group C(DG, IG) compared to the cost
of delivering the same demand without sharing the caps∑
u∈G C(du, iu), when the groups are selected randomly. We

also evaluate how much the coordination between the users
in choosing the next-month-tariff can help in reducing the
bill, when the groups are selected randomly. We conclude
the section with the analysis of how the demand volume
similarity affects the expected statistical multiplexing and
costs.

4.2 Effect of group size
Intuitively, larger groups yield more predictable aggre-

gate demand by statistically multiplexing more independent
sources. In order to test this hypothesis and evaluate the
impact of the group size on the overall cost incurred by the
group C(DG, IG), we vary the group size k, and for each k
generate N = 10000 random groups of k members from our
dataset, and evaluate the ratio between the average cost per
group where the packages are chosen in a coordinated-OER
manner (optimizing Eq (4)) in the final month of our dataset
(t = m = 7), and the average cost of sum of the individual
packages when no sharing is in place. We plot our findings
in Fig. 4. With N = 10000 sampled groups, the standard
error in all cases is less than 1% and, thus, the confidence
bars are omitted for clarity.

Expectedly, the groups with 2 or more members can re-
duce the group cost. Having a single partner in the group
is likely to bring the average cost of the 2-partner group
down for 3%-14% compared to the cost of purchasing the
plans individually using the OER and not sharing them∑
s∈G h

OER
s (m). For groups of size k = 2, the largest re-

duction in cost (around 14%) occurs with plans that im-
pose high penalty rates (e.g., Vodafone India/UK, Etisalat
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Figure 5: The empirical CDF of (coordinate) group
savings in Vodafone India. Group size of 2 and 10
shown. The other group sizes and operators follow
similar trend.

UAE and Telstra AUS tariffs). With larger groups, e.g.,
k = 10, the benefits grow more and can range between 11%
(for Olleh South Korea tariffs) and 45% (for Etisalat UAE
tariffs). Another way to appreciate the gains is to look at the
corresponding aggregate cost reduction for the entire group.
Figure 5 depicts the CDF of the group savings for Voda-
fone India tariffs, and group sizes of 2 (pairs) and 10. For
the group size of k = 2 (pairs), 60% of all pairs would see
no benefit in collaborating, while around 20% of pairs could
expect the cost reduction of 30% or more by sharing their
caps. For larger groups of k = 10 partners, the distribution
of expected savings is smoother, with the mean and median
at around 35%.

While groups of 10 or more partners may bring considerate
benefits for the involved partners, they are rather difficult
to setup and maintain. With the open sharing analyzed in
Section 5 such concerns of group creation and maintenance
disappear.

4.3 Intra-group coordination
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Figure 6: The ratio of the average group cost be-
tween the coordinated and the non-coordinated tar-
iff choice. For small group sizes, coordination gives
small benefit, which grows for larger groups.

In the previous section, we assumed that once several
users engage in collaborative sharing of their caps, they
choose their packages in a coordinated manner (to minimize
Eq. (4)) based on their historic use pattern. However, if
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Figure 7: The cost (relative to the a-posteriori op-
tima

∑
u∈G ou) of the pairs sharing the cap for dif-

ferent similarity indices. Users with similar demand
(low similarity index) complement each other’s cap
better than the users with large difference in de-
mand.

users are not willing to share their history with the others
in the group, but rather purchase their packages individ-
ually, in a un-coordinated manner (using for instance, the
optimal-expectation rule Eq. 3) they can still benefit from
sharing, although the benefit of such group sharing is likely
to be lower than in the coordinated case. In Fig. 6 we depict
the ratio between the average group cost between the coor-
dinated and the non-coordinated plan choice obtained by
randomly selecting N = 10000 groups with k users from our
dataset, and evaluating the average cost of the group with
and without coordinated plan selection. We can conclude
that coordination brings relatively small benefit (5% and
less) for very small groups of 2 partners and brings higher
benefit for the larger groups. Indeed, the expected benefit
of coordination is the pricing-policy dependent.

4.4 Volume-based group selection
A natural question in the context of collaborative volume

sharing is related to whom should one partner with. Next,
we demonstrate that similarity of demand, in terms of to-
tal volume per month, should be taken into account when
constructing groups. In particular, a group should combine
users that consume similar volume across the month because
in that case the statistical multiplexing is likely to provide
the largest benefit to the cooperating partners.

The average demand per user is very skewed, covering
multiple orders of magnitude. For a group G of users, we
define the similarity metric as the ratio between the maxi-
mum and minimum average demand among the members in
the group.

similarity =
maxu∈G

∑
τ<m du(τ)

minu∈G
∑
τ<m du(τ)

.

To evaluate the relationship between the demand similarity
and the impact of sharing the cap on the cost, we select
N = 10000 random pairs of users from our datasets, and
split them in 7 different sets depending on which of the
following 7 segments the pair demand similarity falls into:
[1, 2), [2, 4), [4, 8), . . . , [32, 64), [64,∞). For each of the 7 seg-
ments, we evaluate the average cost of the pair sharing the
cap in the last month of the dataset, divided by the a-
posteriori optima (

∑
u∈G ou). We report our findings in

Fig. 7 based on the plans of Vodafone India. The other
plans and group sizes follow similar pattern and are omitted.
From this figure, we can conclude that it is most beneficial
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to collaborate with the users with similar demand volumes.
Note that users with similar demand would produce a low
similarity index.

We conclude this section reiterating that closed (family)
sharing can reduce the bill of the involved parties, with small
savings for small 2-partner groups that grow when group has
more partners, with similar volumes and with a coordinated
plan selection.

5. OPEN SHARING
The close collaborative groups that we study in the pre-

vious section, although beneficial for users, could be too re-
strictive, and may not allow efficient sharing of unused caps.
The gain from the closed-group sharing becomes substantial
only when the many users partner-up, they generate similar
traffic volumes and coordinate the plan selection. Moreover,
coordination and the issues related to how the cost/savings
should be shared in large groups may be cumbersome. For
that reason, we look at a more flexible model, which we refer
to as open sharing model (or simply open model), in which
anyone with a mobile broadband subscription may buy or
sell mobile data according to their demand and capacity.

Open sharing systems are supported by some major mo-
bile broadband operators, like China Mobile Hong Kong [40]
and SK Telecom Korea [23], which allow their subscribers to
freely resell unused mobile data. Similarly to (closed) fam-
ily sharing plans, these offers help operators attract/retain
customers by allowing them better control and ownership of
their packages.

For the customers of the operator that do not enable shar-
ing/reselling to others, there is an option of sharing their
unused caps via tethering to users in their close proximity.
Several applications, such as Airmobs [19] or Hotspotio [14],
allow users to share their data for capacity credit or other
type of rewards.

In the rest of this section we first study the open sharing
where users are allowed to trade their unused data freely via
an operator-controlled market (in Section 5.1) and then ex-
plore the potential of the open sharing under the proximity
constraint in Section 5.2.

5.1 Telco-assisted open sharing
5.1.1 System model

As we mentioned above, our goal here is to understand
the potential of the mobile broadband sharing in which the
users are free to resell their unused cap for a fee. We denote
with p̂ the price per Mbyte of mobile broadband on such
secondary market. In the case of telco-controlled market,
p̂ can be either controlled by the operator or by the free
market based on the supply and the demand. As we will
see, the value of p̂, has a critical impact on the user plan
selection, and hence on the demand D and supply S of the
mobile broadband on the secondary market.

For a user selecting plan i and with data consumption of
d (in Mbyte), the total cost of their data plan at the end of
the month is:

CTS =
(d, i, p̂, s, b)



pricei
+ max(0, d− capi)µi(1− b)
+ max(0, d− capi)p̂ · b if p̂ < µi
−max(0, capi − d)p̂ · s

pricei + max(0, d− capi)µi if p̂ ≥ µi
−max(0, capi − d)p̂ · s

(5)

with s we denote the fraction of the unused capacity that
the user could sell to others in the trading system. Likewise,
b denotes the fraction of the capacity over the cap that the
user could acquire from others. These fractions depend on
the demand and the supply on the secondary market. If the
supply is greater than the demand, s = 1, otherwise b = 1.

Given the price p̂ on the secondary market, and sup-
ply/demand parameters, s and b, users can select the plan
according to the rules described in Section 3 to minimize
their monthly cost. In the rest of the section we use the
optimal-expectation rule: users select the plan iTSOER as fol-
lowing

iTSOER = arg min
i∈P

(
1

t− 1

t−1∑
τ=1

C(du(τ), i, p̂, s, b)

)
. (6)

We define of the supply S in the open-sharing market to be
the sum of unused caps across all the customers participating
in the market:

S(p̂, s, b) =
∑
u

(max(0, capcu − du))

Similarly, the demand D of in the open-sharing market is
given by the sum of demand on top of the purchased cap
across all users:

D(p̂, s, b) =
∑
u

(max(0, du − capcu)) where µcu > p̂

Note that a user under a plan i with a µi smaller than p̂
does not contribute to D, as these users would obtain their
over-the-cap capacity directly from the operator. The over-
all amount of traffic users can share in this market is simply
min(S,D). We distribute equally the amount of capacity
exchanged among all users; therefore the fraction of un-
used/extra traffic users can sell/buy on the sharing market
will be respectively:

s =
min(S(p̂, s, b), D(p̂, s, b))

S(p̂, s, b)
(7)

b =
min(S(p̂, s, b), D(p̂, s, b))

D(p̂, s, b)
(8)

Users participating in the market make individual deci-
sions on which package to purchase based on their consump-
tion, the value of p̂, and the parameters s and b (optimizing
Eq. (6)). On the other hand, such decisions determine sup-
ply and demand. Hence for a given p̂, the supply and the
demand would self-regulate to stable values s(p̂) and b(p̂),
which solve the system of equations (7)-(8). In general, the
smaller p̂ result in larger demand (as user purchase smaller
packages), while for larger p̂ supply on the secondary market
dominates the demand; see Fig. 8 (top).

The final charge per user is then

hOER,TSu (t) = C(du(t), iTSOER, p̂, b(p̂), s(p̂))))

5.1.2 Benefits of trading systems
We use the equilibria supply/demand parameters (s =

s(p̂) and b = b(p̂)) to estimate the impact of p̂ on the cost
of users and the revenues of the operator. By choosing the
equilibria parameters, we are analyzing steady state scenar-
ios in which users actually obtain from the system what they
expect. Unstable scenarios can occur at the starting phases
of the system and continue until users adapt their s and b
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Figure 8: Supply and demand (top), average user
savings (middle), and operator revenues ORR (bot-
tom) for varying p̂ in Vodafone India tariffs.

to the steady ones7. Figure 8 shows the steady state supply
(S(p̂)) and demand (D(p̂)) for a range of p̂ for Vodaphone
India tariffs in the last month of our dataset. Also, we re-
port the average savings per user and the revenues of the
operator. The reported revenues of the operator are relative
to the earnings without trading system:

ORR(p̂) =

∑
u h

OER,TS
u∑

u h
OER
u

When p̂ is equal to the penalty rate (in case of Vodafone
India8 it is µ0 = 2), each user makes the decision to pur-
chase a cap, which is the same as in the case where there is
no secondary market. Hence the ∼ 19% savings that hap-
pen when p̂ = µ0 come not from users purchasing smaller
packages but rather exclusively from sharing the packages
they would purchase if no sharing was enabled (by optimiz-
ing eq. (3)). We report the average per-user savings and
the overall operator revenue ORR, for p̂ = µ0 for all of the
10 studied operators in Table 2. We observe that the ORR
is greater than 80% in all but one operator (Vodafone UK).
This means that if the Telco allows sharing through their
billing system, but controls the price to be the penalty rate,
the impact on its revenues can be somewhat controlled and
kept relatively low.

In Vodafone India, a p̂ slightly over 0.1282 drives the sys-
tem to the largest average user savings, which is around 47%.
We denote that optimal point with p̂∗. This p̂∗ is also the one
in which S(p̂∗) = D(p̂∗) (i.e. where the supply and demand
are identical) and where the relative revenues of the operator
are the lowest (near 36%). We report the average per-user-

7An example of an unstable scenario is when most users
select the plan with the lowest cap (usually the cheapest),
probably expecting to acquire cheap capacity in the sec-
ondary market for most of their demand. This, however,
creates a buyer’s market, in which capacity is not available
in the sharing system; thus, compelling users to obtain ca-
pacity under the penalty rate of the mobile operator.
8We note that each time we refer to a particular telco, e.g.
Vodaphone India, we actually refer to their tariffs not the
telco itself.

savings and relative operator revenue for other 9 operators
in Table 2 for p̂ = p̂∗. From the table, we observe how users
under tariffs with high penalty rates, such as Vodafone In-
dia and Etisalat UAE, receive large benefits from the trading
system while the telco revenues are strongly impacted by it.
On the other hand, for ATT and Olleh South Korea plans,
which possess plans with relative low penalty rates, opera-
tors’ suffer a low impact on their revenues even under the p̂∗.
Additionally, the users in such low-penalty tariffs experience
the least amount of savings from the trading system. China
Unicom is again an exception for our analysis. The tariff
system offered by China Unicom is somewhat atypical with
commit rate being cheapest in the second smallest package9,
which creates some unusual dynamics.

Regarding the relative savings per user, the ECDF of per
user savings with Vodafone India tariffs for the case p̂ = p̂∗

is depicted in Figure 9. From the figure we observe that
per-user savings are widely distributed with a peak around
38%, which corresponds to a large fraction of users which
move from one package to another. In Figure 10, we plot
the average relative savings for several groups of customers
based on their average consumption for p̂ = p̂∗. The ways
savings are distributed among the customers is very tariff-
dependent, and indeed differ from one operator to the other.
In general, the heavier the customer is, the larger is her
expected savings, even though in some tariffs this is not
the case (Vodafone UK and China Unicom). As a large
percentage of users have a relative low consumption (less
than 200MB), the savings from these users drive, in a large
percentage, the global benefits provided by the collaborative
system.
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Figure 9: ECDF of relative savings per user with
Vodafone India tariffs (p̂ = p̂∗ = 0.128).

5.2 Open sharing via tethering
If the network operator does not enable reselling of the

unused data caps, the users can still share via short-range
tethering with others in their close proximity. Such proxim-
ity constraint may significantly limit the potential of sharing
in the rural areas, where the density of mobile users may
not be enough to allow meaningful cap sharing. However, in
the dense urban environments, the opportunities of finding
a buyer/seller match are much more likely. In this section
we aim to quantify the potential of the open sharing model
under the proximity constraint.

9In all other telcos, the lowest commit rate is in the largest
package.
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Figure 10: Average savings for users under different
consumption intervals for p̂ = p̂∗.

Operator
ORR
p̂ = p̂∗

Avg. user
savings
p̂ = p̂∗

ORR
p̂ = µ0

Avg. user
savings
p̂ = µ0

Vodafone India 36% 47% 81% 21%
Telstra Australia 51% 33% 84% 14%
Vivo Brazil 58% 28% 89% 3.9%
Claro Argentina 68% 22% 95% 2.1%
Olleh South Korea 80% 14% 94% 4.5%
China Unicom 81% 54% 81% 54%
E-Plus Germany 72% 22% 83% 14%
Vodafone UK 51% 47% 68% 32%
Etisalat UAE 29% 53% 93% 5.9%
ATT US 79% 17% 84% 13%

Table 2: Lowest average user cost and lowest relative

revenue found in stable systems (δ = δ̂ = δe) for all
operators.

The first question we ask is how many cellular users can
one expect to communicate with over a short-range chan-
nel. To answer that question, we use the census data from
the country of the operator we study. For each ward, the
census data reports the area (in km2) and number of people
per ward from which we can calculate the density of peo-
ple per km2. To estimate the number of people a cellular
user can communicate with over a short-range channel, we
calculate the expected number of people in the circle with
20m radius for each ward. The 20m radius was taken as a
standard WiFi indoor range. Different technologies would
indeed have different ranges, but for the purpose of quick
first order estimate, we use the 20m range. The CDF of
the number of neighbors within 20m range is depicted in
Figure 11. In this particular country, a cellular user has a
median of 3.18, and an average of 4.11 other cellular users
in their 20m radius. Note that these numbers are rather
conservative in that they assume that humans are spread
uniformly in the area covered by the ward. In practice both
in urban, and especially in rural, areas a large fraction of
space is non-occupied (e.g. parks, highways or agriculture
land), and even in the populated land, humans tend to be
clustered; hence the denominator area in the density calcu-
lation is likely much smaller, and the number of proximal
neighbors is likely to be larger than what the CDF in Fig.
11 would suggest.

Next, we study the relationship between the density of an
area (represented by the expected number of users a user
can communicate with) and the potential savings users may
expect in the open sharing among their neighbors. For this
analysis, we let users select their cap based on their historical
consumption, optimizing their bill as if full market liquidity
was in place with various p̂, but allow them to trade capac-
ity with other users in a near range of them. The number of
users within the tethering range is defined by a parameter
η we call density, which we vary between 0 and 20 following
the official census data report. To understand the impact of
density on the sharing, we employ the following procedure.
We take N = 40000 users for which we have a detailed his-
tory of data sessions described in Section 2. Time is slotted
in seconds, and each user tracks the total consumption and
spare capacity in the billing circle. At the time of each data
session with volume V , user u checks its total consumption.
If the total consumption is smaller than the capacity of her
package, she uses it; otherwise she picks randomly η = den-
sity other users as neighbors. In case any of them has a spare
capacity greater than V , the one with the largest spare ca-
pacity responds by sharing it with the user u and adjust its
own consumption by +V . In case none of the neighbors has
enough spare capacity, user u purchases it on the primary
market from the operator paying the penalty rate. Users
decide on which package to purchase optimizing Eq. (6) for
various p̂. Varying p̂, allows to control the supply and the
demand of the secondary market.

For each of the ten operators and each density value, we
experiment with several p̂ values and report the maximal
total relative savings in Figure 12. For low densities, in the
optimal state the supply is much larger than the demand
of the secondary market, allowing users which have an ex-
cessive demand to find a supplier with high likelihood. In
the case of high densities, the system converges to the case
with full liquidity studied in Section 5.1 where in the opti-
mal state the supply of the secondary market is equal to the
demand.

From Figure 12, we can observe that the savings of users
in environments with average density population (4 people)
are in the range of 9-25%. For the highly populated areas,
with 20 people per tethering circle, the relative savings in-
crease to 18-48%. The results are encouraging and comple-
ment, from an economical perspective, previous endeavors
of measuring technical benefits of collaborative systems for
the mobile users [18].

We conclude this section with the remark that our analy-
sis suggests that in some cases the operator may be better off
(have higher ORR) by embracing the sharing economy and
assisting it though its own billing system while controlling
the price on the secondary market than allowing the users to
create their own secondary market via tethering. For exam-
ple, the operator relative revenues ORR of Claro Argentina
is 0.95 when p̂ equals the penalty rate µ0. However, when
users can choose their own p̂, even with the constraint of
tethering they can save more than 5% of their bills as long
as they have sufficient density of sharing neighbors; in dense
areas with 20 neighbors the revenues of the operator could
be reduced by as much as 19%. Our results indicate the
existence of a fine tradeoff between the tariff structure, the
population density and the potential of the sharing economy
with and without Telco assistance.
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Figure 11: Expected number of cellular users in 20m
radius.
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6. RELATED
Our work is related to pricing and economics of mobile

broadband. Recent work has looked into the merits and de-
merits of usage based pricing (UBP) in cellular networks [2,
20, 26]. Likewise, authors of TUBE [12] suggest time depen-
dent pricing can help in reducing peak-hour congestion. Au-
thors of [30, 31] investigate the existing 3G/4G billing sys-
tems and demonstrate a number of loopholes in them. Our
contribution is to investigate how volatility (hence, lack of
predictability) in demand can lead to sub-optimal decisions
in terms of choosing plans. A closely related recent work
investigated the notion of ‘irrationality’ of users in choosing
mobile broadband plans – users often pay more than they
consume [28] for different services. Our work builds up on
the findings to investigate variability in demand and suggest
how one can pick close to optimal plans.

A number of authors have analyzed the sharing in cellular
networks. In [29] authors suggest sharing unused the min-
utes and sms and designed a prototype of the system that
enables such sharing. In [15, 21] authors apply game the-
oretic tools to study crowdsoured architectures (including
collaborative consumption) for mobile data access. Authors
of [24] propose kibbutz, a system that leverages mobile link
sharing to improve the energy consumption and connection
performance of users. We complement these works by pro-
viding quantitative insights on the viability and the impact
of collaborative consumption in the mobile data access.

There has been recent surge of services that enable col-
laborative consumption of various resources including apart-
ments [1], cars [13], books [4], etc. Results of our work here
suggest that collaboration between end-users can be benefi-
cial for users of mobile broadband, providing economic in-
centives for technical solutions like Airmobs [19] or Hotspo-
tio [14].

7. DISCUSSION
In this section, we briefly discuss some of the issues that

may influence our results.
A major assumption that we rely on is that the user de-

mand is independent of the pricing signal and market struc-
ture. This is a fairly strong assumption, since it is well
known that pricing signal may have a rather important im-
pact on how much demand one generates. However, we be-
lieve that the demand data we use here offers a useful input
for a first-order approximation of the demand mobile broad-
band users put on the network. The effects of the pricing
signal on the mobile broadband remain to be studied in the
future.

As stated earlier, our analysis is performed assuming pre-
paid plans, which are the norm in large parts of the world
[11]. Having said that, long-term contracts are popular as
well and we intend to extend our analysis to such plans.
Likewise, mobile broadband prices could vary depending on
the technology mobile technology employed (4G/3G) or if
they are bundled with other mobile services (e.g. voice or
sms). These options can play a role in the choice of a mobile
broadband plan, but we do not incorporate such external-
ities in our analysis. However we expect that mobile com-
munications will follow the trend seen in fixed-line commu-
nications where residential broadband has replaced a large
part of traditional fixed-line business (voice telephony).

Our analysis is purely economic. In the context of op-
portunistic traffic sharing (via tethering), such sharing may
impact the end-to-end performance (e.g. increased band-
width from multiple radios [36]), quality of experience (e.g.
TCP issues with multihoming [33]), network coverage (e.g.
users in close proximity may have different cellular signal
strengths) and energy consumption [24]. These considera-
tions are out of scope of this paper.

We believe our analysis can form the basis for designing
incentives for risk management with and without user collab-
oration. Various solution (cost/revenue-sharing) concepts10

from cooperative game theory as well as non-cooperative
game theory could be of great use in designing such sys-
tems.

In the context of open sharing, an important element for
enabling such system are micropayments. Our largest moti-
vation for this type of systems comes from innovative Asian
operators that facilitate the exchange of data using in-house
applications [23, 40]. These solutions should include the nec-
essary features to facilitate safe transactions among users.
On the other hand, applications could also leverage tether-
ing to provide a similar service [19, 29]. These applications
should be enhanced to support micropayment without com-
promising the security and privacy of users. Solutions along
the lines of [39] could be used to eliminate the effect of pos-
sible fraud in such a p2p micropayment system.

In this paper, we assume that operators do not react to
the appearance of collaborative systems. Although we used
a wide range of existing pricing plans to explore different sce-
narios, finding the effects of long-term strategies from mobile
providers under this environment is still an open problem.
Operators could, for instance, try to tune their penalty rates
or cap structure to discourage the use of collaborative sys-
tems, while also minimizing revenue impact. Also, operators
with control of the collaborative system could try to find a
secondary market price that maximizes its revenues. Since

10Eg. Shapley value, Nash bargaining, core, nucleus, etc.
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the domain space of possible strategies and pricing plans
is enormous, studying these cases in a general way is very
challenging (either analytically or empirically) and forms an
interesting line for future research.

Recently, it has been recognized that time and the loca-
tion are two important dimensions, which may influence the
value of mobile data [12]. For example a crowded cell in
the peak hour may price mobile data higher than a sparse
cell over off-peak hours. Such time/location based pricing
may improve the efficiency of cellular networks, albeit most
existing cellular operators do not distinguish the price of
the mobile data based on time nor location. Incorporating
time/location in the models we study would be an interest-
ing direction for future research.

8. CONCLUSIONS
Collaborative consumption is an exciting new trend of

sharing various goods or services for economic and social
benefits. In the context of mobile broadband, collaborative
consumption can either be user-driven (e.g. via tethering) or
Telco-driven (integrated through the Telco’s billing system).
We quantified the economic impact collaborative consump-
tion could have both on the Telco and the customers. The
methodology we develop can assist the operators to design
the tariffs and/or control the secondary market to optimize
its revenues in the presence of mobile broadband sharing.
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APPENDIX
A. GROUPING BY LOCATION OR SOCIAL

RELATIONSHIP
As described in Section 4.1, users can form collabora-

tion groups based on their location or social relationships.
Our dataset includes additional data from all users, such as
billing information or call registries, which we can leverage
to build these types of groups. In this section, we show that
the benefits of these groups are similar to the ones from
random groups, which we analyzed previously.

To form groups based on location, we use the residence
information of our dataset. Users living in the same postal
code11 are placed in the same location group. On the other
hand, we use the call registry from the users to build social
relationships groups. The call registry allows us to find pairs

11In the country we analyzed, postal codes have very high
granularity, with around 35 people in average per postal-
code.
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Figure 13: Number of groups of different sizes for
social and location groups.
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Figure 14: Average cost of random grouping vs. so-
cial and location grouping. The value of coordina-
tion (left). The impact of group size (right).

of users who have called each other at least once. We refer
to these pairs of users as peers. We create the social group of
every user by combining all his/her peers. Figure 13 shows
a histogram of group size for social and location groups we
obtained from the 40K users in our dataset. Note that the
y-axis is in the log-scale: the number of groups per group
size decreases rapidly for each group selection type.

Figure 14 (left) depicts the cost of the coordinated-OER
rule for localization and social groups relative to the cost
obtained for random groups. We observe how the benefits
obtained by group size are similar to the ones described in
Section 4.2. We show the results until groups of size five,
as we could not obtain a statistically significant number of
groups with larger sizes. In Figure 14 (right) we compare the
costs for users when coordinated and non-coordinated tariffs
are chosen relative to the ratios for random groups. Simi-
larly, the results agree with the analysis of random groups
that we describe in detail in Section 4.3.
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