
A Tangled Mass: The Android Root Certificate Stores

Narseo Vallina-Rodriguez
ICSI

Berkeley, CA, USA
narseo@icsi.berkeley.edu

Johanna Amann
ICSI

Berkeley, CA, USA
johanna@icir.org

Christian Kreibich
ICSI / Lastline

Berkeley, CA, USA
christian@icir.org

Nicholas Weaver
ICSI / UC Berkeley
Berkeley, CA, USA

nweaver@icsi.berkeley.edu

Vern Paxson
ICSI / UC Berkeley
Berkeley, CA, USA
vern@icir.org

ABSTRACT

The security of today’s Web rests in part on the set of X.509 cer-
tificate authorities trusted by each user’s browser. Users generally
do not themselves configure their browser’s root store but instead
rely upon decisions made by the suppliers of either the browsers
or the devices upon which they run. In this work we explore the
nature and implications of these trust decisions for Android users.
Drawing upon datasets collected by Netalyzr for Android and ICSI’s
Certificate Notary, we characterize the certificate root store popula-
tion present in mobile devices in the wild. Motivated by concerns
that bloated root stores increase the attack surface of mobile users,
we report on the interplay of certificate sets deployed by the device
manufacturers, mobile operators, and the Android OS. We identify
certificates installed exclusively by apps on rooted devices, thus
breaking the audited and supervised root store model, and also dis-
cover use of TLS interception via HTTPS proxies employed by a
market research company.

Categories and Subject Descriptors

C.2.3 [Computer-communication networks]: Network Opera-
tions; D.4.6 [Operating Systems]: Security and Protection; E.3
[Data Encryption]: Public Key Cryptosystems

Keywords

Mobile; TLS; HTTPS; man-in-the-middle; Root Store; Android;
public-key infrastructure; X.509; certificates; security; measurement

1. INTRODUCTION
While most mobile device users realize that handset vendors and

mobile network operators may customize their devices’ firmware,
UI, and pre-loaded apps, the effect of these alterations on the de-
vice’s basic security posture are not widely recognized. The X.509
certificate root store population of a device defines the trust re-
lationships that secure its network communications. Bloated or
compromised root stores significantly increase the attack surface

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CoNEXT’14, December 2–5, 2014, Sydney, Australia.

Copyright 2014 ACM 978-1-4503-3279-8/14/12 ...$15.00.

http://dx.doi.org/10.1145/2674005.2675015.

of the device, with potentially serious consequences for the user.
In this paper, we draw upon on datasets collected by Netalyzr for
Android as well as the ICSI Certificate Notary to characterize and
evaluate the root stores of thousands of mobile devices in the wild.
We make three contributions:

1. Using data from thousands of handsets in active use around
the world, we describe vendor and operator-specific additions
to the official Android Open Source Project (AOSP) root store
populated by Google. Using the ICSI Certificate Notary, we
evaluate the extent to which we see these certificates in use in
large networks around the world.

2. We identify and describe how third-party apps executed on
rooted handsets break the existing model of supervised and
audited root stores. Any malicious app can add and remove
certificates in the root store without any user awareness, mak-
ing mobile users more vulnerable to MITM attacks.

3. We report on a case of TLS interception on proxied mobile
devices for the purpose of user profiling and marketing, and
analyze the mobile apps and domains it affects.

As reported in previous studies [26, 29], removing unnecessary
certificates from the root store and tightly controlling certificate
additions improves HTTPS security. Any of the certificate authori-
ties (CAs) in the system can lead to violations of the apps’ trusted
communication channels.

2. BACKGROUND
As a key component of today’s Internet security, the Transport

Layer Security (TLS) protocol provides endpoint authentication
using the X.509 certificate infrastructure. Trusted certificate au-
thorities (CAs) sign server certificates. Clients can verify these
certificates using a list of trusted root CA certificates shipping with
their browser or operating system. As CAs can sign certificates for
any site on the Internet, they form one of the weakest links of the
global trust hierarchy. When a CA suffers compromise, the attacker
(or the entity compelling it) can obtain certificates which enable
TLS interception attacks on any target domain [27].

More technically, X.509 certificates contain a public key, a sub-
ject string that identifies them, information about the issuer of the
certificate, as well as a signature by that issuer.1 Tampering with the

1According to RFC 5280 [23], signature computation involves tak-
ing the hash of the names of the subject and issuer, a public key
associated with the subject (RSA Key modulus), a validity period,
version number and a serial number, signing it with a signature algo-
rithm specified in the certificate and the private key of the certificate.

141

Android version

Operating system 4.1 4.2 4.3 4.4 iOS7 Mozilla
No. certificates 139 140 146 150 227 153

Table 1: Number of certificates in different root stores.

certificate will invalidate the signature. Server certificate validation
requires following a chain of signatures from the server certificate
to a trusted CA certificate contained in the root-store, potentially
crossing several intermediate CA certificates.

Before Android 4.0, each app had to maintain its own root store if
it wanted to validate certificates. In later versions, Android incorpo-
rates a system-wide read-only root store2 and an API that regulates
application access to it. Nevertheless, apps can still maintain their
own root store [20, 21].

Table 1 shows the number of root certificates included in An-
droid’s official AOSP distribution as supported by Google. Apps
automatically consider these certificates secure and trustworthy de-
spite the fact that some of the CAs included, such as Comodo and
Türktrust, got compromised in the past [16]. Certificates which do
not chain to any of these root certificates can evoke a visual warning
message in apps implementing techniques like cert pinning such as
Twitter and Facebook apps when encountered [20]. The AOSP root
store has increased in size in each consecutive release but currently
still weighs in below the corresponding Mozilla and iOS7 root stores.
The AOSP root store currently contains one certificate, by Autoridad

de Certificacion Firmaprofesional, which expired in Oct. 2013. In
fact, 117 of AOSP 4.4’s 150 certificates also exist in Mozilla’s root
store. In addition, hardware vendors and mobile operators can (and
do) add their own trusted certificates to the root store in the firmware
they ship on their own Android handsets.

Any Android user can manually add, disable or delete any certifi-
cate in the root store through system settings. While the root store
by default only provides read access (i.e., only applications and
services with system permissions can modify it) a rooted operating
system still allow alterations. Any application with root permissions
(either because they are executed on rooted handsets by the users or
because they perform root exploits [22]) can add new certificates and
delete or modify existing ones. This notably increases the attack sur-
face for such Android users. Despite the fact that a mobile app can
protect itself from fraudulently issued certificates using techniques
such as certificate pinning and customary X.509 checks, the fact
that SSL library developers delegate the responsibility to implement
such techniques to application developers [12, 15, 21] means that
apps frequently do not employ those checks correctly. Android 4.4
detects and prevents the use of fraudulent Google certificates used
in secure SSL/TLS communications. Unfortunately, as opposed to
Mozilla’s root store, Android does not support specifying trust levels
for different CA certificates: they can be used for any operation
from TLS server verification to code signing [26].

3. RELATED WORK
To our knowledge, to date there has been no in-depth analysis

of the root stores of active Android devices or the root certificates
added by hardware vendors. Previous work by Perl et al. [26] com-
pared the root stores of several operating systems to Android, but
did not examine differences between devices. They concluded that
a large number of certificates can be removed from most root-stores
as they are not used for HTTPS traffic. Our analysis confirms this

2 Android root certificates reside in
/system/etc/security/cacerts/.

Device model No. sessions Manufacturer No. sessions

Samsung Galaxy SIV 2,762 Samsung 7,709
Samsung Galaxy SIII 2,108 LG 2,908

LG Nexus 4 1,331 ASUS 1,876
LG Nexus 5 1,010 HTC 963

Asus Nexus 7 832 Motorola 837

Table 2: Top 5 mobile devices and manufacturers in our Android dataset.

result. Fahl et al. [20] and Georgiev et al. [21] examined security
issues of Android applications validating certificates by performing
MITM attacks and detailed app-oriented tests (they do not examine
the root store of devices). They argued that one of the main prob-
lems in mobile security is that users still need to see and interpret
the warning messages correctly. Amrutkar et al. [18] measured the
display of security indicators in mobile browsers, but they did not
evaluate differences in root stores. Huang et al. [24] analyzed MITM
attacks on Facebook using forged certificates to intercept encrypted
traffic Via embedded Flash they obtained copies of the presented cer-
tificates, finding a low number of potential exploit attempts (mainly
generated by anti-virus software and corporate-scale content fil-
ters). In our work, we instead examine the presumed-trustworthy
certificates installed on Android devices.

4. DATASET AND METHODOLOGY
To study the root stores of a large number of providers and handset

models, we require a distributed platform enabling the measurement
of mobile device information at a global scale. To this end, we
use two tools implemented and maintained by ICSI: (1) Netalyzr
for Android [9, 10] to measure (i) the root certificates installed on
Android devices, (ii) the full trust chain for a collection of popular
domains and mobile-services, and (iii) a broad spectrum of connec-
tivity aspects; (2) the ICSI SSL Notary [13, 17] to (iv) validate and
classify the observed certificates, (v) examine how often Internet
services (on any port, not only HTTPS) use the certificates present
in Android root stores, and (vi) the number of TLS certificates that
each root certificate collected by Netalyzr can validate.

4.1 Netalyzr
We collected information about 2.3 million root certificates in

15,970 Netalyzr executions between November 2013 and April
2014. Only 314 root certificates are unique based on the certificate
signature. In order to preserve user privacy, we do not collect
information that could identify a device or a user uniquely such as
the IMEI. We use tuples of recorded WiFi and cellular networks,
public IP addresses, handset model, and OS version as a proxy for
device identity. Based on the number of unique tuples, we estimate
that the Netalyzr session set covers at least 3,835 different handsets
and 435 device models. Most of the models belong to a small
number of handset manufacturers, as shown in Table 2.

We inspected Google’s official Android source code repository to
obtain the root certificates maintained by Google. With that infor-
mation in hand, we grouped the certificates Netalyzr encountered
by manufacturer, mobile operator, and handset. We then established
certificate identity based on unique fields (RSA key modulus and
signature string) and compared each certificate to its equivalent
AOSP version root store. Since different Android versions format
certificate information differently, we had to inspect the subject and
issuer fields manually. If none or more than one value is identified,
we crosscheck the signature with Mozilla’s root store or in the certifi-
cate authority’s website to obtain a single value. We analyzed rooted
handsets separately from operator and manufacturer root stores to

142

avoid any bias, as users and third-party apps have permissions to
modify the root store. We report on them separately in Section 6.

4.2 The ICSI Certificate Notary
As opposed to related efforts such as Convergence [4] and the

EFF’s SSL observatory [5], ICSI’s Certificate Notary collects cer-
tificates passively from live upstream traffic to any port at 8 re-
search and university networks [16], aggregating them into a central
database. The certificates collected reflect the activity of about 300K
active users, including any traffic originating from mobile devices
connected to the network over WiFi. We started the data collection
in February 2012. Currently the Notary contains more than 1.9 mil-
lion unique certificates. Out of these, one million have not expired.
The Notary also contains information about more than 66 billion
SSL sessions as well as the certificates included in Android, iOS7,
and Mozilla official root stores.

We again use the RSA key modulus and the signature of the cer-
tificates as collected by Netalyzr to compare them with the Notary’s
entries for validation. When comparing certificates in different root
stores, one needs to note that even though root certificates are not
byte-equivalent they can still be “equivalent” if their subject and
RSA key modulus are identical (i.e., when they can validate the
same child-certificates). In most cases, only the expiration date
change.

5. ANDROID ROOT STORES IN THE

WILD
The scatter plot shown in Figure 1 details the distribution of Net-

alyzr devices depending on the number of AOSP certificates (x-axis)
and non-AOSP certificates (y-axis, in square-root scale to bring out
the differences in lower values) grouped by manufacturer and OS
version. The dashed vertical lines indicate the number of certificates
present in the official AOSP distribution, as distributed by Google.
Despite the fact that most devices have the same number of certifi-
cates in their root stores as in their equivalent AOSP distribution,
39% of sessions also have additional certificates. Only 5 handsets
were missing some certificates present in their respective AOSP
distributions.

The number of additional certificates varies depending on handset
manufacturer and OS version. More than 10% of Android 4.1 and
4.2 devices—mainly HTC, Motorola (4.1 and 4.2), LG (4.1 and 4.2)
and Samsung 4.4 devices—expand the AOSP certificate set by more
than 40 additional certificates. On the other hand, Motorola (4.3
and 4.4 versions), Huawei, Sony, and Asus devices have a similar
root store to their equivalent AOSP distribution, with fewer than
10 additions. In the case of some Sony 4.1 devices, we identified a
certificate was added which is also present in newer AOSP versions.

5.1 Manufacturer and vendor-specific certifi-
cates

This section explains the role played by mobile operators and
hardware manufacturers for the 39% of handsets with extended root
stores. Figure 2 maps the additional certificates issued per Android
version for the most popular manufacturers and mobile operators
in our dataset. We omit handset manufacturers and operators with
fewer than 10 sessions exhibiting modified root stores. The size
of the marker represents the ratio of sessions in which Netalyzr
identified a given certificate to the total number of sessions with
modified root stores for a given manufacturer or operator. The shape
represents whether the Notary identified the certificate as part of
iOS7 and Mozilla root stores simultaneously (6.7%), iOS7 root store
exclusively (16.2%), Android-specific (37.1%), or if the Notary has

4.1 4.2 4.3 4.4

1

3

5

10

20

30

40

50

60

80 100 120 140 80 100 120 140 80 100 120 140 80 100 120 140
Number of AOSP certificates

N
u

m
b

e
r

o
f

a
d

d
it
io

n
a

l
c
e

rt
if
ic

a
te

s
 (

s
q

u
a

re
−

ro
o

t
s
c
a

le
)

Manufacturer

ASUS

HTC

LG

MOTOROLA

SAMSUNG

SONY

Number of
sessions

1

64

256

512

1024

Figure 1: Scatter plot showing the number of devices (size of the symbol
in log2 scale) with a given number of AOSP certificates (x-axis) and extra
root certificates (y-axis, square-root scale) per OS version and manufacturer.
The vertical line shows the number of root certificates present in Google’s
official AOSP distribution.

no record of the certificate at all (40.0%). The latter group contains
certificates that may serve uncommon or offline operations such as
code signing or firmware updates that the Notary never encounters
in network traffic.

Non-AOSP certificates can be issued by well-known CAs such
as Verisign, government bodies, or hardware manufacturers. Small
variations can arise due to certificates added by the users through the
system settings or by apps after requesting user permission. Mobile
manufacturers such as HTC and Samsung3 have alike additional
certificates on their root store (e.g., AddTrust, Deutsche Telekom,
Sonera and U.S. Department of Defense4) independently of the
mobile operator, as shown in Figure 2. In this case, it is possible that
hardware vendors add these certificates to the firmware images they
build for their handsets. On the other hand, we find some roots, such
as CertiSign and ptt-post.nl5 exclusively on 60 to 70% of Motorola
4.1 devices, all of them subscribed to Verizon Wireless. Given that
mobile operators have the ability to modify the firmware they ship
on their subsidized handsets, Verizon Wireless may be the agent
responsible for these certificates’ presence. Similarly, we identified
potential AT&T-specific inclusions on Motorola handsets, such as a
Microsoft Secure Server certificate.

Certain handset-specific certificates are not used for TLS oper-
ations, such as the GeoTrust CA for UTI certificate (installed on
Samsung 4.2 and 4.3 devices) or Motorola’s certificates for FOTA
(Firmware over-the-air) and SUPL (Secure User Plane Location).
UTI (Unified Testing Initiative) is a non-profit group led by hard-
ware vendors and mobile operators to improve the quality of mobile
apps [2]. GeoTrust restricts the use of the certificate to members
of the Java Verified Program [8]. The FOTA and SUPL certificates
secure firmware updates and location-sensor assistance [28], re-
spectively. Given the privacy-sensitive information transmitted over
SUPL (including neighboring WiFi APs and cellular base stations)

3 Note that Samsung 4.1 and 4.2 devices have similar root stores,
but different to 4.3 and 4.4 ones, which are extended.
4 The subject and issuer for this certificate is: CN=DoD CLASS
3 Root CA,OU=PKI,OU=DoD,O=U.S. Government,C=US. iOS7
also contains this certificate by default. It is not a WebTrust audited
CA, so Mozilla considers it as an Intranet CA [25].
5 Issued by the Dutch Postal Services, and also present in the Win-
dows root store.

143

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●● ●●

●

●● ● ●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●● ●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

HTC 4.1
HTC 4.2
HTC 4.3
HTC 4.4

MOTOROLA 4.1
SAMSUNG 4.1
SAMSUNG 4.2
SAMSUNG 4.3
SAMSUNG 4.4

SONY 4.3

3(UK)
AT&T(US)

BOUYGUES(FR)
EE(UK)

FREE(FR)
ORANGE(FR)

SFR(FR)
SPRINT(US)

T−MOBILE(US)
TELSTRA(AU)
VERIZON(US)

VODAFONE(DE)

M
a

n
u

fa
c

tu
re

r
O

p
e

ra
to

r

 S
p
ri

n
t
N

e
x
te

l
R

o
o
t
A

u
th

o
ri

ty
 (

9
7
9
e
b
0
2
7
)

A
B

A
.E

C
O

M
 R

o
o
t
C

A
 (

b
1
d
3
1
1
e
0
)

A
d
d
T
ru

s
t
C

la
s
s
 1

 C
A

 R
o
o
t
(9

6
9
6
d
4
2
1
)

A
d
d
T
ru

s
t
P

u
b
lic

 C
A

 R
o
o
t
(e

9
1
a
3
0
8
f)

A
d
d
T
ru

s
t
Q

u
a
lif

ie
d
 C

A
 R

o
o
t
(e

4
1
e
9
a
fe

)
A

O
L
 T

im
e
 W

a
rn

e
r

R
o
o
t
C

A
 1

 (
9
9
d
e
8
fc

3
)

A
O

L
 T

im
e
 W

a
rn

e
r

R
o
o
t
C

A
 2

 (
b
4
3
7
5
a
0
8
)

B
a
lt
im

o
re

 E
Z

 b
y
 D

S
T

 (
b
c
c
c
b
3
3
d
)

C
e
rt

is
ig

n
 A

C
1
S

 (
b
0
c
0
9
5
e
b
)

C
e
rt

is
ig

n
 A

C
2
 (

b
9
3
0
c
c
a
5
)

C
e
rt

is
ig

n
 A

C
3
S

 (
c
e
6
4
4
e
d
6
)

C
e
rt

is
ig

n
 A

C
4
 (

e
c
8
3
d
4
c
c
)

C
e
rt

p
lu

s
 C

la
s
s
 1

 P
ri

m
a
ry

 C
A

 (
c
3
6
b
2
9
c
8
)

C
e
rt

p
lu

s
 C

la
s
s
 3

 P
ri

m
a
ry

 C
A

 (
b
7
9
4
3
0
6
e
)

C
e
rt

p
lu

s
 C

la
s
s
 3

P
 P

ri
m

a
ry

 C
A

 (
a
b
3
7
ff
e
b
)

C
e
rt

p
lu

s
.
C

la
s
s
 3

T
S

 P
ri

m
a
ry

 C
A

 (
b
d
6
5
9
a
2
3
)

C
F

C
A

 R
o
o
t
C

A
 (

c
1
0
7
f4

8
7
)

C
in

g
u
la

r
P

re
fe

rr
e
d
 R

o
o
t
C

A
 (

d
b
7
f0

a
9
0
)

C
in

g
u
la

r
T
ru

s
te

d
 R

o
o
t
C

A
 (

e
a
a
a
6
6
b
1
)

C
O

M
O

D
O

 R
S

A
 C

A
 (

9
1
e
8
5
4
9
2
)

C
O

M
O

D
O

 S
e
c
u
re

 C
e
rt

if
ic

a
te

 S
e
rv

ic
e
s
 (

c
0
7
1
3
3
8
2
)

C
O

M
O

D
O

.
T
ru

s
te

d
 C

e
rt

if
ic

a
te

 S
e
rv

ic
e
s
 (

d
f7

1
6
f3

6
)

D
e
u
ts

c
h
e
 T

e
le

k
o
m

 R
o
o
t
C

A
 1

 (
d
0
d
d
9
b
0
c
)

D
o
D

 C
L
A

S
S

 3
 R

o
o
t
C

A
 (

b
5
3
0
fe

6
4
)

D
S

T
 (

A
N

X
 N

e
tw

o
rk

)
C

A
 (

b
4
4
8
1
1
8
0
)

D
S

T
 (

N
R

F
)

R
o
o
tC

A
 (

d
9
a
c
9
b
7
7
)

D
S

T
 (

U
P

S
)

R
o
o
tC

A
 (

e
f1

7
e
c
a
f)

D
S

T
 R

o
o
t
C

A
 X

1
 (

d
2
c
6
2
6
b
6
)

D
S

T
 R

o
o
tC

A
 X

2
 (

d
c
7
5
f0

8
c
)

D
S

T
−

E
n
tr

u
s
t
G

T
I
C

A
 (

b
6
1
d
f7

4
b
)

E
n
tr

u
s
t
C

A
 −

 L
1
B

 (
d
c
2
1
f5

6
8
)

E
n
tr

u
s
t.
n
e
t
C

A
 (

a
d
4
d
4
b
a
9
)

E
n
tr

u
s
t.
n
e
t
C

lie
n
t
C

A
 (

9
3
7
4
b
4
b
6
)

E
n
tr

u
s
t.
n
e
t
C

lie
n
t
C

A
 (

c
8
3
a
9
9
5
e
)

E
n
tr

u
s
t.
n
e
t
S

e
c
u
re

 S
e
rv

e
r

C
A

 (
c
7
c
1
5
f4

e
)

e
S

ig
n
 I
m

p
e
ri

to
 P

ri
m

a
ry

 R
o
o
t
C

A
 (

b
6
d
3
5
2
e
a
)

e
S

ig
n
.
G

a
te

k
e
e
p
e
r

R
o
o
t
C

A
 (

b
d
fa

f7
c
6
)

e
S

ig
n
.
P

ri
m

a
ry

 U
ti
lit

y
 R

o
o
t
C

A
 (

a
4
6
d
a
e
f2

)
E

U
n
e
t
In

te
rn

a
ti
o
n
a
l
R

o
o
t
C

A
 (

9
e
4
1
3
b
d
9
)

F
E

S
T

E
 P

u
b
lic

 N
o
ta

ry
 C

e
rt

s
 (

e
1
8
3
f3

9
b
)

F
E

S
T

E
 V

e
ri

fi
e
d
 C

e
rt

s
 (

e
a
6
3
9
f1

f)
F

ir
s
t
D

a
ta

 D
ig

it
a
l
C

A
 (

d
f1

c
1
4
1
e
)

F
re

e
 S

S
L
 C

A
 (

e
d
8
4
6
0
0
0
)

G
e
o
T
ru

s
t
C

A
 f
o
r

A
d
o
b
e
 (

a
7
e
5
7
7
e
0
)

G
e
o
T
ru

s
t
C

A
 f
o
r

U
T

I
(b

9
4
b
8
f0

a
)

G
e
o
T
ru

s
t
M

o
b
ile

 D
e
v
ic

e
 R

o
o
t
−

 P
ri

v
ile

g
e
d
 (

b
b
e
c
6
5
5
9
)

G
e
o
T
ru

s
t
M

o
b
ile

 D
e
v
ic

e
 R

o
o
t
(8

fb
1
a
7
e
e
)

G
e
o
T
ru

s
t
T
ru

e
 C

re
d
e
n
ti
a
ls

 C
A

 2
 (

b
2
9
7
2
c
a
5
)

G
lo

b
a
lS

ig
n
 R

o
o
t
C

A
 (

d
a
0
e
e
6
9
9
)

G
o
D

a
d
d
y
 I
n
c
 (

c
4
2
d
d
5
1
5
)

IP
S

 C
A

 C
L
A

S
E

1
 (

e
0
5
1
2
7
a
7
)

IP
S

 C
A

 C
L
A

S
E

3
 C

A
 (

a
b
1
7
fe

0
e
)

IP
S

 C
A

 C
L
A

S
E

A
1
 C

A
 (

b
b
3
0
d
7
d
c
)

IP
S

 C
A

 C
L
A

S
E

A
3
 (

e
e
8
0
0
0
f6

)
IP

S
 C

A
 T

im
e
s
ta

m
p
in

g
 C

A
 (

b
c
b
8
e
e
5
6
)

IP
S

 C
h
a
in

e
d
 C

A
s
 (

d
c
5
6
9
2
4
9
)

M
ic

ro
s
o
ft
 S

e
c
u
re

 S
e
rv

e
r

A
u
th

o
ri

ty
 (

e
a
9
f5

f9
1
)

M
o
to

ro
la

 F
O

T
A

 R
o
o
t
C

A
 (

b
a
e
1
d
f7

c
)

M
o
to

ro
la

 S
U

P
L
 S

e
rv

e
r

R
o
o
t
C

A
 (

c
a
f7

a
0
d
5
)

P
T

T
 P

o
s
t
R

o
o
t
C

A
.
K

e
y
M

a
il

(b
0
7
e
e
2
3
a
)

R
S

A
 D

a
ta

 S
e
c
u
ri

ty
 C

A
 (

9
2
c
e
7
a
c
1
)

S
e
c
u
re

S
ig

n
 R

o
o
t
C

A
2
.
J
a
p
a
n
 (

9
6
7
b
9
2
2
3
)

S
e
c
u
re

S
ig

n
 R

o
o
t
C

A
3
.
J
a
p
a
n
 (

9
9
5
e
1
e
8
0
)

S
E

V
E

N
 O

p
e
n
 C

h
a
n
n
e
l
P

ri
m

a
ry

 C
A

 (
c
c
2
4
7
9
e
d
)

S
IA

 S
e
c
u
re

 C
lie

n
t
C

A
 (

d
2
fc

b
0
4
0
)

S
IA

 S
e
c
u
re

 S
e
rv

e
r

C
A

 (
d
b
c
1
0
b
c
c
)

S
o
n
e
ra

 C
la

s
s
1
 C

A
 (

b
5
8
9
1
f2

b
)

S
o
n
y
 C

o
m

p
u
te

r
D

N
A

S
 R

o
o
t
0
5
 (

d
9
8
f7

b
3
6
)

S
o
n
y
 E

ri
c
s
s
o
n
 S

e
c
u
re

 E
2
E

 (
e
d
8
4
9
d
0
f)

S
p
ri

n
t
X

C
A

0
1
 (

c
6
5
c
8
0
d
1
)

S
ta

rf
ie

ld
 S

e
rv

ic
e
s
 R

o
o
t
C

A
 (

f2
c
c
5
6
2
a
)

T
C

 T
ru

s
tC

e
n
te

r
C

la
s
s
 1

 C
A

 (
b
0
2
9
e
b
b
4
)

T
h
a
w

te
 P

e
rs

o
n
a
l
B

a
s
ic

 C
A

 (
b
c
b
c
9
3
5
3
)

T
h
a
w

te
 P

e
rs

o
n
a
l
F

re
e
m

a
il

C
A

 (
d
4
6
9
d
7
d
4
)

T
h
a
w

te
 P

e
rs

o
n
a
l
P

re
m

iu
m

 C
A

 (
c
9
6
6
d
9
f8

)
T

h
a
w

te
 P

re
m

iu
m

 S
e
rv

e
r

C
A

 (
d
2
3
6
3
6
6
a
)

T
h
a
w

te
 S

e
rv

e
r

C
A

 (
d
3
a
4
5
0
6
e
)

T
h
a
w

te
 T

im
e
s
ta

m
p
in

g
 C

A
 (

d
6
2
b
5
8
7
8
)

T
ru

s
tC

e
n
te

r
C

la
s
s
 2

 C
A

 (
d
a
3
8
e
8
e
d
)

T
ru

s
tC

e
n
te

r
C

la
s
s
 3

 C
A

 (
b
6
b
4
c
1
3
5
)

U
s
e
rT

ru
s
t
C

lie
n
t
A

u
th

.
a
n
d
 E

m
a
il

(b
2
3
9
8
5
a
4
)

U
s
e
rT

ru
s
t
R

S
A

 E
x
te

n
d
e
d
 V

a
l.
 S

e
c
.
S

e
rv

e
r

C
A

 (
9
4
9
c
2
3
8
c
)

U
s
e
rT

ru
s
t
U

T
N

−
U

S
E

R
F

ir
s
t
(c

e
a
a
8
1
3
f)

V
e
ri

S
ig

n
 (

d
3
2
e
2
0
f0

)
V

e
ri

S
ig

n
 C

la
s
s
 1

 P
u
b
lic

 P
ri

m
a
ry

 C
A

 (
d
d
8
4
d
4
b
9
)

V
e
ri

S
ig

n
 C

la
s
s
 1

 P
u
b
lic

 P
ri

m
a
ry

 C
A

 (
e
5
1
9
b
f6

d
)

V
e
ri

S
ig

n
 C

la
s
s
 2

 P
u
b
lic

 P
ri

m
a
ry

 C
A

 (
a
f0

a
0
d
c
2
)

V
e
ri

S
ig

n
 C

la
s
s
 2

 P
u
b
lic

 P
ri

m
a
ry

 C
A

 (
b
6
5
a
8
b
a
3
)

V
e
ri

S
ig

n
 C

la
s
s
 3

 E
x
te

n
d
e
d
 V

a
lid

a
ti
o
n
 S

S
L
 S

G
C

 C
A

 (
b
d
5
6
8
8
b
a
)

V
e
ri

S
ig

n
 C

la
s
s
 3

 I
n
te

rn
a
ti
o
n
a
l
S

e
rv

e
r

C
A

 −
 G

3
 (

9
9
d
6
9
c
6
2
)

V
e
ri

S
ig

n
 C

la
s
s
 3

 P
u
b
lic

 P
ri

m
a
ry

 C
A

 (
c
9
5
c
5
9
9
e
)

V
e
ri

S
ig

n
 C

la
s
s
 3

 S
e
c
u
re

 S
e
rv

e
r

C
A

 −
 G

3
 (

b
1
8
7
8
4
1
f)

V
e
ri

S
ig

n
 C

la
s
s
 3

 S
e
c
u
re

 S
e
rv

e
r

C
A

 (
9
5
c
3
2
1
1
2
)

V
e
ri

S
ig

n
 C

o
m

m
e
rc

ia
l
S

o
ft
w

a
re

 P
u
b
lis

h
e
rs

 C
A

 (
c
3
d
3
6
9
6
5
)

V
e
ri

S
ig

n
 C

P
S

 (
d
8
8
2
8
0
e
8
)

V
e
ri

S
ig

n
 I
n
d
iv

id
u
a
l
S

o
ft
w

a
re

 P
u
b
lis

h
e
rs

 C
A

 (
c
1
7
a
c
a
6
5
)

V
e
ri

S
ig

n
 T

ru
s
t
N

e
tw

o
rk

 (
a
7
8
8
0
1
2
1
)

V
e
ri

S
ig

n
 T

ru
s
t
N

e
tw

o
rk

 (
a
a
d
0
b
a
b
e
)

V
e
ri

S
ig

n
 T

ru
s
t
N

e
tw

o
rk

 (
c
c
5
e
d
1
1
1
)

V
is

a
 I
n
fo

rm
a
ti
o
n
 D

e
liv

e
ry

 R
o
o
t
C

A
 (

c
9
1
1
0
0
e
1
)

V
o
d
a
fo

n
e
 (

O
p
e
ra

to
r

D
o
m

a
in

)
(c

1
4
8
b
3
3
9
)

V
o
d
a
fo

n
e
 (

W
id

g
e
t
O

p
e
ra

to
r

D
o
m

a
in

)
(9

4
1
c
5
d
6
8
)

W
e
lls

 F
a
rg

o
 C

A
 0

1
 (

9
d
2
9
d
5
b
9
)

X
c
e
rt

 E
Z

 b
y
 D

S
T

 (
a
d
5
4
1
8
d
e
)

Frequency ● ● ● ●0.00 0.25 0.50 0.75 1.00

Presence in other
root stores

●
Not recorded
by ICSI Notary

Only Android Mozilla, and iOS7 iOS7

Figure 2: Scatterplot showing the ratio of sessions (size) with a given root certificate (x-axis) relative to the total number of sessions for a given operator or
manufacturer (y-axis). The value in brackets shows the first 32 bits of the certificate subject.

and the security implications of software updates, these operations
require a secure channel. Google, as well as mobile operators, As-
sisted GPS (A-GPS) chipset and handset vendors can also provide
SUPL and FOTA services. Consequently, it is plausible that some
of the root certificates included by other vendors may be used for
similar purposes.

5.2 Additional observations
We observed several unusual root certificates for which we could

not definitively establish their origin. These certificates, issued by 15
CAs, can be found in a wide range of handsets, mobile operators and
countries. Here we group them into three categories and speculate
regarding their possible origin:

• Certificates added manually by users for general connectivity
management (VPN). We identified a number of self-signed
certificates, each recorded exclusively on a single device.

• Certificates added by mobile operators for custom services
and APIs such as location services, widgets, email or mes-
saging. For these we observer Vodafone Group certificates,
a Verizon Wireless certificate found on three Verizon Pan-
tech6 4.1 devices, likely associated with the Verizon Network
API [14]; Meditel certificates (a Moroccan ISP) recorded in
several Samsung 4.1 devices in Bermuda; and two root certifi-
cates issued by Telefonica and recorded in Motorola 4.1 de-
vices. These devices were connected to Telefonica/Movistar
and Claro networks in Argentina, Colombia, Mexico and Peru.
Presumably, the appearance of a root certificate issued by an

6Pantech manufactures phones for AT&T and Verizon in the USA.

operator different than the operator providing the network
access suggests a user roaming or traveling abroad.

• Certificates issued by government agencies. These certificates
are presumably legitimately installed by applications using
Android APIs or directly by handset manufacturers. Two
examples are the certificates issued by Venezuelan National

CA—recorded in Compal devices in Taiwan—and the four
certificates issued by the Chinese Finance CA (CFCA) found
in HTC, Motorola and Lenovo devices from a number of coun-
tries such as Albania, Argentina, Belarus, Brazil, Bulgaria,
China, Colombia, India, Mexico and Russia. The addition of
CFCA certificates to Mozilla’s root store program has spurred
discussion [3].

These certificates did not manifest in the ICSI Notary data.

5.3 Root store validation with ICSI’s Notary
Table 3 shows the total number of TLS certificates known to the

Notary validated by each AOSP version and Mozilla root store. The
results indicate that there few practical differences between them.
The small variations mostly arise due to the fact some government-
issued CA certificates (e.g., the U.S. DoD) do not appear in all
root stores. However, not all certificates contribute equally to these
numbers. Figure 3 shows the ECDF of the number of certificates
(out of the more than 1 million non-expired certificates recorded
by the Notary) that each root certificate can validate, grouped by
different categories. We include the iOS7 and Mozilla root stores for
comparison. The figure shows that the subset of AOSP certificates
that are also included on Mozilla root store can validate most TLS

144

Root store No. validated certificates

Mozilla 744,069
iOS 7 745,736

AOSP 4.1 744,350
AOSP 4.2 744,350
AOSP 4.3 744,384
AOSP 4.4 744,398

Table 3: Number of certificates validated by Mozilla and AOSP root stores.

0.00

0.25

0.50

0.75

1.00

10
0

10
1

10
2

10
3

10
4

10
5

Number of ICSI Notary Certificates Validated

E
C

D
F

Aggregated Android root certs

AOSP 4.1

AOSP 4.4

AOSP 4.4 and Mozilla root certs

iOS7

Mozilla

Non AOSP and non Mozilla Android certs

Non AOSP Android certs

Figure 3: ECDF of the number of TLS certificates recorded by ICSI’s
Notary that each root store can progressively validate as we cumulatively
consider each of its certificates (starting with the certificates that can validate
the most additional certs).

sessions, while the superset of all Android root certificates collected
by Netalyzr has a similar behavior as the iOS7 root store (the largest
one).

An interesting observation concerns the y-axis offset in Figure 3
for each category. The offset indicates the percentage of certificates
for a given group that did not validate any of the certificates recorded
by the Notary for common operations such as HTTPS connections
or TLS-secured email delivery. In particular, 23% of AOSP 4.4
root certificates did not validate any of the Notary TLS certificates,
as opposed to 72% of the extra Android certificates that appear in
neither the official AOSP 4.4 root store nor in Mozilla’s. One could
seemingly disable these certificates with little negative effect on
the user experience or TLS functionality, though the Notary’s does
not provide a comprehensive enough perspective for us to state this
definitively.

6. ROOTING ANDROID HANDSETS
In Section 2, we explained how rooting mobile handsets allows

malicious mobile apps to add, delete and modify certificates on the
root store. 24% of our Netalyzr sessions ran on rooted handsets. We
identified certificates that appear exclusively in rooted handsets in
6% of those (so about 1.5% of all sessions).

Table 5 reports the set of root certificates more frequently ap-
pearing on rooted rather than non-rooted devices. None of these
occurred in Notary traffic. Generally, the issuers of these certificates
are the users themselves or small corporations looking to employ
other means of secure communication such as VPNs. This is the
case for the certificates signed by USER_X7 and Mind Overflow

7Anonymized.

Root store category
Total
root
certs

Root certs that
do not validate

Notary certs

Non AOSP and Non Mozilla root
certs

85 72%

Non AOSP root certs found on
Mozilla’s

16 38%

AOSP 4.4 and Mozilla root certs 130 15%

AOSP 4.1 certs 139 22%

AOSP 4.4 certs 150 23%

Aggregated Android root certs 235 40%

Mozilla root store certs 153 22%

iOS 7 root store certs 227 41%

Table 4: Number of root certificates found in ICSI’s Notary per category, and
how many of them did not validate any of the certificates stored on ICSI’s
Notary.

Certificate authority Total devices

CRAZY HOUSE 70

MIND OVERFLOW 1

USER_X 1

CDA/EMAILADDRESS 1

CIRRUS, PRIVATE 1

Table 5: List of CAs and user self-signed certificates found more frequently
on rooted devices.

(we could not identify any application or real CA with this name),
both collected from the same device. Likewise, CDA (Chaine de

Distribution Alimentaire) Senegal certificate was identified on a
rooted Nexus 7 device connected from a Senegalese WiFi AP.

The certificate issued by Madkit-Crazy House (Ukraine) recorded
in 70 different handsets illustrates the sort of security hazard that
can result on rooted Android handsets. The ICSI Certificate Notary
has no record of this certificate. After checking the applications
running in the background on the affected handsets, we verified that
this certificate is installed by the Freedom app [7], which enables
free in-app purchases on the Google Play Store. This app requires
root permissions (so it can modify the root store) and compels the
user to accept egregious permissions such as accessing the Google
accounts set up on the device, reading phone status and identity, and
modifying system settings.

7. TLS INTERCEPTION
Netalyzr for Android checks the full trust chain of TLS connec-

tions to the domains of popular websites and mobile apps. We use
the ICSI Notary to assess each of the observed certificates. Out
of the 15K sessions, we identified a case of TLS interception for
one user running a Nexus 7 device on Android 4.4, communicating
with an HTTPS-proxied WiFi access point. In this case, a British
marketing research provider called Reality Mine [11] signed the
root certificates.

Looking deeper at the connectivity results reported by Net-
alyzr, we observe that this user’s traffic flows via a tun inter-
face that tunnels all traffic to a proxy controlled by Reality Mine
(v-us-49.analyzeme.me.uk). The proxy name matches the
name a Reality Mine app on Google Play [1]. In fact, all Android
applications published by Reality Mine in Google Play (Consumer-
Input Mobile, USA TouchPoints, MediaTrack, and AnalyzeMe)
require (as of Oct. 2014) the user to accept both a permission for

145

Intercepted domains Whitelisted domains

gmail.com:443 google-analytics.com:443
mail.google.com:443 maps.google.com:443
mail.yahoo.com:443 orcart.facebook.com:8883

orcart.facebook.com:443 play.google.com:443
www.bankofamerica.com:443 supl.google.com:7275

www.chase.com:443 www.facebook.com:443
www.hsbc.com:443 www.google.com:443

www.icsi.berkeley.edu:443 www.google.co.uk:443
www.outlook.com:443 www.twitter.com:443
www.skype.com:443
www.viber.com:443
www.yahoo.com:443

Table 6: Domains being intercepted and whitelisted by Reality Mine HTTPS
proxy.

changing handset network configuration and one to intercept user
traffic. The latter permission, requested by any app behaving as
a VPN client, allows the application to create a virtual tun inter-
face with which it associates a raw read socket. In this case, we
cannot identify whether TLS interception takes place on the local
host versus the remote server, since the app could employ either
approach.

In addition to network and traffic interception permissions, the
application requires access to protected storage and the ability to
read contacts, calendar, location, text messages, device ID, call
information, Web bookmarks and history, and sensitive log data.
The application requires an invitation from Reality Mine to run and
does not require including any certificate in the root store.

The proxy listens on ports 80 and 443, intercepting and re-
generating both root and intermediate certificates on-the-fly for spe-
cific domains. The proxy whitelists Google’s SUPL service (7275)
and Facebook chat (8883), as well as popular apps implementing
mechanisms like certificate pinning for security [19, 21]: Facebook,
Twitter, and most Google services. Table 6 summarizes this ob-
servation. We contacted Reality Mine to verify whether their TLS
interception occurs with user consent. According to their statements,
they recruit participants and all data is cleaned and anonymized in
line with the best practices defined by Esomar association [6]. As of
this writing, we have not received a response we requested from Re-
ality Mine regarding the terms of use and the privacy considerations
of app users.

8. RECOMMENDATIONS
Given that Android does not differentiate the use and scope of

certificates installed in the root store, and does not protect the root
store from malicious apps with root permissions, a bloated root
store increases the attack surface for malicious apps. Such design
decisions make mobile users more vulnerable to TLS interception
attacks. In order to improve mobile user security, we recommend
enforcing an audited and more strict root store for Android, per the
approaches adopted by Mozilla and iOS. If operators wish to install
additional certificates, they should do so via this auditing process.

We question whether users have sufficient awareness of the con-
sequences of their actions on their own security and privacy. Our
results highlight how rooting an Android device can seriously un-
dermine user protections. As widely reported in previous work,
users must exercise prudence and caution when granting rights to
applications during initial installation and subsequent updates. App
developers can mask malicious intentions behind seemingly helpful
permission requests such as traffic interception to enable VPNs,
which, if granted, provide access to a user’s entire traffic. In effect,

abusing such app permissions breaks the app sandboxing model
implemented in Android to protect users’ privacy.

9. SUMMARY
It is generally recognized that certificate root stores represent a

significant potential weak link in TLS security. X.509 certificates
found in the root store are automatically considered secure and trust-
worthy: users will trust any CA that their mobile device and its apps
trusts. In this work we used data from Netalyzr for Android and the
ICSI Certificate Notary to characterize the root stores of thousands
of Android phones in the wild. Our analysis highlights three con-
cerns. First, we demonstrate how mobile operators and hardware
manufacturers modify and extend Google’s official Android root
store. Second, we report on how rooted Android handsets can lead
to undermining the model of audited and supervised root stores,
allowing malicious apps to modify the store without user awareness.
Third, we illustrate the use of TLS interception for marketing re-
search. We show how apps can request overreaching permissions
to exploit the lack of security mechanisms such as certificate pin-
ning. These observations lead us to highlight the need for an audited
and strictly controlled root store for Android, and efforts towards
improving user awareness of the implications of their actions when
granting permissions.

10. ACKNOWLEDGMENTS
We are deeply grateful to Netalyzr’s many users for making this

study possible, and also for their helpful feedback. We would like
to thank the anonymous reviewers for their valuable comments.
This work was supported by the National Science Foundation under
grants NSF-0831535, NSF-1213157, and NSF-1237265, and by the
DHS Directorate of Science and Technology under grant N66001-
12-C-0128. We also wish to thank Amazon, Comcast, and Google
for their generous support.

11. REFERENCES

[1] AnalyzeMe App. https://play.google.com/store/
apps/details?id=com.apadmi.analyzeme.android.

[2] App Quality Alliance.
http://www.appqualityalliance.org.

[3] Bugzilla @ Mozilla. CFCA root CA. https://bugzilla.
mozilla.org/show_bug.cgi?id=926029.

[4] Convergence. http://convergence.io.

[5] EFF Observatory. https://www.eff.org/observatory.

[6] Esomar. http://www.esomar.org.

[7] Freedom App.
http://system.in−appstore.com/freedom.

[8] Geotrust Unified Testing Initiative (UTI) Root Key Certificate.
https://www.geotrust.com/resources/root−

certificates/root12_terms.html.

[9] Netalyzr. http://netalyzr.icsi.berkeley.edu.

[10] Netalyzr for Android. Google Play.
https://play.google.com/store/apps/details?

id=edu.berkeley.icsi.netalyzr.android.

[11] Reality Mine. http://www.realitymine.com.

[12] Security with HTTPS and SSL.
http://developer.android.com/training/

articles/security−ssl.html.

[13] The ICSI Certificate Notary.
http://notary.icsi.berkeley.edu.

146

https://play.google.com/store/apps/details?id=com.apadmi.analyzeme.android
https://play.google.com/store/apps/details?id=com.apadmi.analyzeme.android
http://www.appqualityalliance.org
https://bugzilla.mozilla.org/show_bug.cgi?id=926029
https://bugzilla.mozilla.org/show_bug.cgi?id=926029
http://convergence.io
https://www.eff.org/observatory
http://www.esomar.org
http://system.in-appstore.com/freedom
https://www.geotrust.com/resources/root-certificates/root12_terms.html
https://www.geotrust.com/resources/root-certificates/root12_terms.html
http://netalyzr.icsi.berkeley.edu
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.netalyzr.android
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.netalyzr.android
http://www.realitymine.com
http://developer.android.com/training/articles/security-ssl.html
http://developer.android.com/training/articles/security-ssl.html
http://notary.icsi.berkeley.edu

[14] Verizon Network API. http://developer.verizon.com/
content/vdc/en/verizon−tools−apis/verizon_

apis/network−api.html.

[15] X509TrustManager Android API.
http://developer.android.com/reference/javax/

net/ssl/X509TrustManager.html.

[16] B. Amann, R. Sommer, M. Vallentin, and S. Hall. No Attack
Necessary: The Surprising Dynamics of SSL Trust
Relationships. In Proc. of ACM ACSAC, 2013.

[17] B. Amann, M. Vallentin, S. Hall, and R. Sommer. Extracting
Certificates from Live Traffic: A Near Real-Time SSL Notary
Service. Technical Report TR-12-014, ICSI, November 2012.

[18] C. Amrutkar, P. Traynor, and P. C. van Oorschot. Measuring
SSL Indicators on Mobile Browsers: Extended Life, or End of
the Road? In Proc. Inf. Sec. Conf., 2012.

[19] Facebook. Secure browsing by default. https://www.
facebook.com/notes/facebook−engineering/

secure−browsing−by−default/10151590414803920.

[20] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner,
B. Freisleben, and M. Smith. Why Eve and Mallory Love
Android: An Analysis of Android SSL (in)Security. In ACM

CCS, 2012.

[21] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The Most Dangerous Code in the World:
Validating SSL Certificates in Non-browser Software. In Proc.

ACM CCS, 2012.

[22] T. Ho, D. Dean, X. Gu, and W. Enck. Prec: practical root
exploit containment for android devices. In Proc. ACM

CODASPY, 2014.

[23] R. Housley, W. Ford, W Polk, and D. Solo. Rfc 5280: Internet
X. 509 Public Key Infrastructure Certificate and CRL profile,
2008.

[24] L. Huang, A. Rice, E. Ellingsen, and C. Jackson. Analyzing
Forged SSL Certificates in the Wild. In Proc. IEEE

Symposium on Security and Privacy, 2014.

[25] Mozilla Foundation. Bug 208323 - Add DoD root CA.
https://bugzilla.mozilla.org/show_bug.cgi?id=

208323.

[26] H. Perl, S. Fahl, and M. Smith. You Won’t Be Needing These
Any More: On Removing Unused Certificates From Trust
Stores. In Financial Cryptography and Data Security, 2014.

[27] B. Schneier. New NSA Leak Shows MITM Attacks Against
Major Internet Services. https://www.schneier.com/
blog/archives/2013/09/new_nsa_leak_sh.html,
2014.

[28] N. Vallina-Rodriguez, J. Crowcroft, A. Finamore,
Y. Grunenberger, and K. Papagiannaki. When Assistance
Becomes Dependence: Characterizing the Costs and
Inefficiencies of A-GPS. ACM SIGMOBILE Mob. Comput.

Commun. Rev., 2013.

[29] D. Wendlandt, D. Andersen, and A. Perrig. Perspectives:
Improving SSH-style Host Authentication with Multi-Path
Probing. In USENIX Annual Technical Conference, 2008.

147

http://developer.verizon.com/content/vdc/en/verizon-tools-apis/verizon_apis/network-api.html
http://developer.verizon.com/content/vdc/en/verizon-tools-apis/verizon_apis/network-api.html
http://developer.verizon.com/content/vdc/en/verizon-tools-apis/verizon_apis/network-api.html
http://developer.android.com/reference/javax/net/ssl/X509TrustManager.html
http://developer.android.com/reference/javax/net/ssl/X509TrustManager.html
https://www.facebook.com/notes/facebook-engineering/secure-browsing-by-default/10151590414803920
https://www.facebook.com/notes/facebook-engineering/secure-browsing-by-default/10151590414803920
https://www.facebook.com/notes/facebook-engineering/secure-browsing-by-default/10151590414803920
https://bugzilla.mozilla.org/show_bug.cgi?id=208323
https://bugzilla.mozilla.org/show_bug.cgi?id=208323
https://www.schneier.com/blog/archives/2013/09/new_nsa_leak_sh.html
https://www.schneier.com/blog/archives/2013/09/new_nsa_leak_sh.html

	1 Introduction
	2 Background
	3 Related work
	4 Dataset and Methodology
	4.1 Netalyzr
	4.2 The ICSI Certificate Notary

	5 Android root stores in the wild
	5.1 Manufacturer and vendor-specific certificates
	5.2 Additional observations
	5.3 Root store validation with ICSI's Notary

	6 Rooting Android handsets
	7 TLS Interception
	8 Recommendations
	9 Summary
	10 Acknowledgments
	11 References

